Properties

Label 3700.2.a.p.1.9
Level $3700$
Weight $2$
Character 3700.1
Self dual yes
Analytic conductor $29.545$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3700,2,Mod(1,3700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3700.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3700 = 2^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3700.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.5446487479\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 13x^{7} + 57x^{5} - 2x^{4} - 96x^{3} + 12x^{2} + 48x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 740)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(0.807220\) of defining polynomial
Character \(\chi\) \(=\) 3700.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.05716 q^{3} -0.448446 q^{7} +6.34624 q^{9} +1.79699 q^{11} +3.55175 q^{13} +1.08306 q^{17} +0.502334 q^{19} -1.37097 q^{21} +1.38561 q^{23} +10.2300 q^{27} -3.33072 q^{29} +2.17657 q^{31} +5.49370 q^{33} +1.00000 q^{37} +10.8583 q^{39} -0.833432 q^{41} -11.0621 q^{43} +5.06914 q^{47} -6.79890 q^{49} +3.31109 q^{51} +2.12975 q^{53} +1.53572 q^{57} +8.02989 q^{59} +10.9546 q^{61} -2.84595 q^{63} -7.15244 q^{67} +4.23603 q^{69} -8.82409 q^{71} +14.3995 q^{73} -0.805855 q^{77} +8.21536 q^{79} +12.2360 q^{81} -13.0316 q^{83} -10.1826 q^{87} -4.73198 q^{89} -1.59277 q^{91} +6.65412 q^{93} -15.4101 q^{97} +11.4041 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 4 q^{7} + 9 q^{9} + 10 q^{13} + 18 q^{17} - 2 q^{19} - 8 q^{21} + 14 q^{23} + 2 q^{29} + 4 q^{31} + 26 q^{33} + 9 q^{37} - 4 q^{39} - 2 q^{41} + 8 q^{43} + 14 q^{47} - 3 q^{49} - 20 q^{51} + 36 q^{53}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.05716 1.76505 0.882527 0.470262i \(-0.155841\pi\)
0.882527 + 0.470262i \(0.155841\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.448446 −0.169497 −0.0847484 0.996402i \(-0.527009\pi\)
−0.0847484 + 0.996402i \(0.527009\pi\)
\(8\) 0 0
\(9\) 6.34624 2.11541
\(10\) 0 0
\(11\) 1.79699 0.541814 0.270907 0.962606i \(-0.412676\pi\)
0.270907 + 0.962606i \(0.412676\pi\)
\(12\) 0 0
\(13\) 3.55175 0.985078 0.492539 0.870290i \(-0.336069\pi\)
0.492539 + 0.870290i \(0.336069\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.08306 0.262681 0.131340 0.991337i \(-0.458072\pi\)
0.131340 + 0.991337i \(0.458072\pi\)
\(18\) 0 0
\(19\) 0.502334 0.115243 0.0576217 0.998338i \(-0.481648\pi\)
0.0576217 + 0.998338i \(0.481648\pi\)
\(20\) 0 0
\(21\) −1.37097 −0.299171
\(22\) 0 0
\(23\) 1.38561 0.288919 0.144460 0.989511i \(-0.453856\pi\)
0.144460 + 0.989511i \(0.453856\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 10.2300 1.96876
\(28\) 0 0
\(29\) −3.33072 −0.618499 −0.309250 0.950981i \(-0.600078\pi\)
−0.309250 + 0.950981i \(0.600078\pi\)
\(30\) 0 0
\(31\) 2.17657 0.390923 0.195462 0.980711i \(-0.437379\pi\)
0.195462 + 0.980711i \(0.437379\pi\)
\(32\) 0 0
\(33\) 5.49370 0.956330
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 10.8583 1.73872
\(40\) 0 0
\(41\) −0.833432 −0.130160 −0.0650801 0.997880i \(-0.520730\pi\)
−0.0650801 + 0.997880i \(0.520730\pi\)
\(42\) 0 0
\(43\) −11.0621 −1.68696 −0.843480 0.537160i \(-0.819497\pi\)
−0.843480 + 0.537160i \(0.819497\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.06914 0.739409 0.369705 0.929149i \(-0.379459\pi\)
0.369705 + 0.929149i \(0.379459\pi\)
\(48\) 0 0
\(49\) −6.79890 −0.971271
\(50\) 0 0
\(51\) 3.31109 0.463646
\(52\) 0 0
\(53\) 2.12975 0.292544 0.146272 0.989244i \(-0.453273\pi\)
0.146272 + 0.989244i \(0.453273\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.53572 0.203411
\(58\) 0 0
\(59\) 8.02989 1.04540 0.522701 0.852516i \(-0.324924\pi\)
0.522701 + 0.852516i \(0.324924\pi\)
\(60\) 0 0
\(61\) 10.9546 1.40259 0.701294 0.712872i \(-0.252606\pi\)
0.701294 + 0.712872i \(0.252606\pi\)
\(62\) 0 0
\(63\) −2.84595 −0.358556
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.15244 −0.873810 −0.436905 0.899508i \(-0.643925\pi\)
−0.436905 + 0.899508i \(0.643925\pi\)
\(68\) 0 0
\(69\) 4.23603 0.509958
\(70\) 0 0
\(71\) −8.82409 −1.04723 −0.523613 0.851956i \(-0.675416\pi\)
−0.523613 + 0.851956i \(0.675416\pi\)
\(72\) 0 0
\(73\) 14.3995 1.68534 0.842669 0.538431i \(-0.180983\pi\)
0.842669 + 0.538431i \(0.180983\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.805855 −0.0918357
\(78\) 0 0
\(79\) 8.21536 0.924300 0.462150 0.886802i \(-0.347078\pi\)
0.462150 + 0.886802i \(0.347078\pi\)
\(80\) 0 0
\(81\) 12.2360 1.35956
\(82\) 0 0
\(83\) −13.0316 −1.43041 −0.715204 0.698915i \(-0.753666\pi\)
−0.715204 + 0.698915i \(0.753666\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −10.1826 −1.09168
\(88\) 0 0
\(89\) −4.73198 −0.501589 −0.250794 0.968040i \(-0.580692\pi\)
−0.250794 + 0.968040i \(0.580692\pi\)
\(90\) 0 0
\(91\) −1.59277 −0.166968
\(92\) 0 0
\(93\) 6.65412 0.690000
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −15.4101 −1.56466 −0.782332 0.622862i \(-0.785970\pi\)
−0.782332 + 0.622862i \(0.785970\pi\)
\(98\) 0 0
\(99\) 11.4041 1.14616
\(100\) 0 0
\(101\) 11.6226 1.15649 0.578247 0.815862i \(-0.303737\pi\)
0.578247 + 0.815862i \(0.303737\pi\)
\(102\) 0 0
\(103\) 10.9452 1.07846 0.539231 0.842158i \(-0.318715\pi\)
0.539231 + 0.842158i \(0.318715\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.3841 −1.29389 −0.646945 0.762537i \(-0.723954\pi\)
−0.646945 + 0.762537i \(0.723954\pi\)
\(108\) 0 0
\(109\) −10.2736 −0.984029 −0.492014 0.870587i \(-0.663739\pi\)
−0.492014 + 0.870587i \(0.663739\pi\)
\(110\) 0 0
\(111\) 3.05716 0.290173
\(112\) 0 0
\(113\) 18.5406 1.74416 0.872078 0.489366i \(-0.162772\pi\)
0.872078 + 0.489366i \(0.162772\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 22.5403 2.08385
\(118\) 0 0
\(119\) −0.485695 −0.0445236
\(120\) 0 0
\(121\) −7.77082 −0.706438
\(122\) 0 0
\(123\) −2.54794 −0.229740
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.07107 0.804927 0.402464 0.915436i \(-0.368154\pi\)
0.402464 + 0.915436i \(0.368154\pi\)
\(128\) 0 0
\(129\) −33.8188 −2.97758
\(130\) 0 0
\(131\) −4.71173 −0.411665 −0.205833 0.978587i \(-0.565990\pi\)
−0.205833 + 0.978587i \(0.565990\pi\)
\(132\) 0 0
\(133\) −0.225270 −0.0195334
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.64911 −0.226329 −0.113164 0.993576i \(-0.536099\pi\)
−0.113164 + 0.993576i \(0.536099\pi\)
\(138\) 0 0
\(139\) −17.1883 −1.45789 −0.728946 0.684571i \(-0.759989\pi\)
−0.728946 + 0.684571i \(0.759989\pi\)
\(140\) 0 0
\(141\) 15.4972 1.30510
\(142\) 0 0
\(143\) 6.38247 0.533729
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −20.7853 −1.71434
\(148\) 0 0
\(149\) 15.6090 1.27874 0.639369 0.768900i \(-0.279196\pi\)
0.639369 + 0.768900i \(0.279196\pi\)
\(150\) 0 0
\(151\) 20.0474 1.63143 0.815715 0.578454i \(-0.196344\pi\)
0.815715 + 0.578454i \(0.196344\pi\)
\(152\) 0 0
\(153\) 6.87337 0.555679
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.3913 0.829315 0.414657 0.909978i \(-0.363901\pi\)
0.414657 + 0.909978i \(0.363901\pi\)
\(158\) 0 0
\(159\) 6.51099 0.516355
\(160\) 0 0
\(161\) −0.621371 −0.0489709
\(162\) 0 0
\(163\) 18.1408 1.42090 0.710450 0.703748i \(-0.248491\pi\)
0.710450 + 0.703748i \(0.248491\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.5406 1.58948 0.794741 0.606949i \(-0.207607\pi\)
0.794741 + 0.606949i \(0.207607\pi\)
\(168\) 0 0
\(169\) −0.385066 −0.0296205
\(170\) 0 0
\(171\) 3.18793 0.243787
\(172\) 0 0
\(173\) 10.1606 0.772499 0.386249 0.922394i \(-0.373770\pi\)
0.386249 + 0.922394i \(0.373770\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 24.5487 1.84519
\(178\) 0 0
\(179\) 8.33088 0.622679 0.311340 0.950299i \(-0.399222\pi\)
0.311340 + 0.950299i \(0.399222\pi\)
\(180\) 0 0
\(181\) −18.7286 −1.39208 −0.696042 0.718001i \(-0.745057\pi\)
−0.696042 + 0.718001i \(0.745057\pi\)
\(182\) 0 0
\(183\) 33.4899 2.47564
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.94625 0.142324
\(188\) 0 0
\(189\) −4.58760 −0.333699
\(190\) 0 0
\(191\) −11.9574 −0.865208 −0.432604 0.901584i \(-0.642405\pi\)
−0.432604 + 0.901584i \(0.642405\pi\)
\(192\) 0 0
\(193\) −12.9063 −0.929012 −0.464506 0.885570i \(-0.653768\pi\)
−0.464506 + 0.885570i \(0.653768\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.94271 −0.494647 −0.247324 0.968933i \(-0.579551\pi\)
−0.247324 + 0.968933i \(0.579551\pi\)
\(198\) 0 0
\(199\) −24.6083 −1.74444 −0.872220 0.489114i \(-0.837320\pi\)
−0.872220 + 0.489114i \(0.837320\pi\)
\(200\) 0 0
\(201\) −21.8662 −1.54232
\(202\) 0 0
\(203\) 1.49365 0.104834
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.79341 0.611184
\(208\) 0 0
\(209\) 0.902691 0.0624404
\(210\) 0 0
\(211\) 13.2009 0.908788 0.454394 0.890801i \(-0.349856\pi\)
0.454394 + 0.890801i \(0.349856\pi\)
\(212\) 0 0
\(213\) −26.9767 −1.84841
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.976074 −0.0662602
\(218\) 0 0
\(219\) 44.0217 2.97471
\(220\) 0 0
\(221\) 3.84676 0.258761
\(222\) 0 0
\(223\) −4.62772 −0.309895 −0.154947 0.987923i \(-0.549521\pi\)
−0.154947 + 0.987923i \(0.549521\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.20796 0.412037 0.206018 0.978548i \(-0.433949\pi\)
0.206018 + 0.978548i \(0.433949\pi\)
\(228\) 0 0
\(229\) −26.6510 −1.76115 −0.880573 0.473911i \(-0.842842\pi\)
−0.880573 + 0.473911i \(0.842842\pi\)
\(230\) 0 0
\(231\) −2.46363 −0.162095
\(232\) 0 0
\(233\) 20.2645 1.32757 0.663787 0.747922i \(-0.268948\pi\)
0.663787 + 0.747922i \(0.268948\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 25.1157 1.63144
\(238\) 0 0
\(239\) −8.60759 −0.556779 −0.278389 0.960468i \(-0.589801\pi\)
−0.278389 + 0.960468i \(0.589801\pi\)
\(240\) 0 0
\(241\) −0.683555 −0.0440316 −0.0220158 0.999758i \(-0.507008\pi\)
−0.0220158 + 0.999758i \(0.507008\pi\)
\(242\) 0 0
\(243\) 6.71757 0.430932
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.78417 0.113524
\(248\) 0 0
\(249\) −39.8398 −2.52475
\(250\) 0 0
\(251\) −18.5993 −1.17398 −0.586989 0.809595i \(-0.699687\pi\)
−0.586989 + 0.809595i \(0.699687\pi\)
\(252\) 0 0
\(253\) 2.48993 0.156540
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.0027 0.623948 0.311974 0.950091i \(-0.399010\pi\)
0.311974 + 0.950091i \(0.399010\pi\)
\(258\) 0 0
\(259\) −0.448446 −0.0278651
\(260\) 0 0
\(261\) −21.1375 −1.30838
\(262\) 0 0
\(263\) −8.05851 −0.496909 −0.248455 0.968644i \(-0.579923\pi\)
−0.248455 + 0.968644i \(0.579923\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −14.4664 −0.885331
\(268\) 0 0
\(269\) −19.6458 −1.19782 −0.598912 0.800815i \(-0.704400\pi\)
−0.598912 + 0.800815i \(0.704400\pi\)
\(270\) 0 0
\(271\) 0.816358 0.0495902 0.0247951 0.999693i \(-0.492107\pi\)
0.0247951 + 0.999693i \(0.492107\pi\)
\(272\) 0 0
\(273\) −4.86935 −0.294707
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 23.7950 1.42970 0.714852 0.699276i \(-0.246494\pi\)
0.714852 + 0.699276i \(0.246494\pi\)
\(278\) 0 0
\(279\) 13.8130 0.826964
\(280\) 0 0
\(281\) −7.04816 −0.420458 −0.210229 0.977652i \(-0.567421\pi\)
−0.210229 + 0.977652i \(0.567421\pi\)
\(282\) 0 0
\(283\) −4.00339 −0.237977 −0.118988 0.992896i \(-0.537965\pi\)
−0.118988 + 0.992896i \(0.537965\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.373750 0.0220617
\(288\) 0 0
\(289\) −15.8270 −0.930999
\(290\) 0 0
\(291\) −47.1113 −2.76171
\(292\) 0 0
\(293\) −15.1899 −0.887404 −0.443702 0.896174i \(-0.646335\pi\)
−0.443702 + 0.896174i \(0.646335\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 18.3832 1.06670
\(298\) 0 0
\(299\) 4.92134 0.284608
\(300\) 0 0
\(301\) 4.96078 0.285934
\(302\) 0 0
\(303\) 35.5322 2.04127
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −13.4367 −0.766875 −0.383438 0.923567i \(-0.625260\pi\)
−0.383438 + 0.923567i \(0.625260\pi\)
\(308\) 0 0
\(309\) 33.4612 1.90354
\(310\) 0 0
\(311\) −27.1028 −1.53686 −0.768430 0.639934i \(-0.778962\pi\)
−0.768430 + 0.639934i \(0.778962\pi\)
\(312\) 0 0
\(313\) −13.1432 −0.742899 −0.371450 0.928453i \(-0.621139\pi\)
−0.371450 + 0.928453i \(0.621139\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.69453 0.488333 0.244167 0.969733i \(-0.421486\pi\)
0.244167 + 0.969733i \(0.421486\pi\)
\(318\) 0 0
\(319\) −5.98528 −0.335111
\(320\) 0 0
\(321\) −40.9174 −2.28379
\(322\) 0 0
\(323\) 0.544059 0.0302722
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −31.4080 −1.73686
\(328\) 0 0
\(329\) −2.27324 −0.125328
\(330\) 0 0
\(331\) 6.66210 0.366182 0.183091 0.983096i \(-0.441390\pi\)
0.183091 + 0.983096i \(0.441390\pi\)
\(332\) 0 0
\(333\) 6.34624 0.347772
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −30.6358 −1.66884 −0.834419 0.551131i \(-0.814196\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(338\) 0 0
\(339\) 56.6817 3.07853
\(340\) 0 0
\(341\) 3.91128 0.211808
\(342\) 0 0
\(343\) 6.18806 0.334124
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.70306 −0.520888 −0.260444 0.965489i \(-0.583869\pi\)
−0.260444 + 0.965489i \(0.583869\pi\)
\(348\) 0 0
\(349\) −13.2195 −0.707623 −0.353812 0.935317i \(-0.615115\pi\)
−0.353812 + 0.935317i \(0.615115\pi\)
\(350\) 0 0
\(351\) 36.3344 1.93939
\(352\) 0 0
\(353\) 12.1558 0.646986 0.323493 0.946231i \(-0.395143\pi\)
0.323493 + 0.946231i \(0.395143\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.48485 −0.0785865
\(358\) 0 0
\(359\) −12.3936 −0.654109 −0.327055 0.945005i \(-0.606056\pi\)
−0.327055 + 0.945005i \(0.606056\pi\)
\(360\) 0 0
\(361\) −18.7477 −0.986719
\(362\) 0 0
\(363\) −23.7567 −1.24690
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.5473 0.550567 0.275283 0.961363i \(-0.411228\pi\)
0.275283 + 0.961363i \(0.411228\pi\)
\(368\) 0 0
\(369\) −5.28916 −0.275343
\(370\) 0 0
\(371\) −0.955078 −0.0495852
\(372\) 0 0
\(373\) 3.16321 0.163785 0.0818923 0.996641i \(-0.473904\pi\)
0.0818923 + 0.996641i \(0.473904\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11.8299 −0.609270
\(378\) 0 0
\(379\) 26.2277 1.34723 0.673614 0.739084i \(-0.264741\pi\)
0.673614 + 0.739084i \(0.264741\pi\)
\(380\) 0 0
\(381\) 27.7317 1.42074
\(382\) 0 0
\(383\) −6.10204 −0.311799 −0.155900 0.987773i \(-0.549828\pi\)
−0.155900 + 0.987773i \(0.549828\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −70.2030 −3.56862
\(388\) 0 0
\(389\) −11.0799 −0.561771 −0.280886 0.959741i \(-0.590628\pi\)
−0.280886 + 0.959741i \(0.590628\pi\)
\(390\) 0 0
\(391\) 1.50070 0.0758936
\(392\) 0 0
\(393\) −14.4045 −0.726611
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −11.3837 −0.571329 −0.285665 0.958330i \(-0.592214\pi\)
−0.285665 + 0.958330i \(0.592214\pi\)
\(398\) 0 0
\(399\) −0.688687 −0.0344775
\(400\) 0 0
\(401\) −7.96999 −0.398002 −0.199001 0.979999i \(-0.563770\pi\)
−0.199001 + 0.979999i \(0.563770\pi\)
\(402\) 0 0
\(403\) 7.73063 0.385090
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.79699 0.0890736
\(408\) 0 0
\(409\) 35.7633 1.76838 0.884191 0.467126i \(-0.154711\pi\)
0.884191 + 0.467126i \(0.154711\pi\)
\(410\) 0 0
\(411\) −8.09876 −0.399482
\(412\) 0 0
\(413\) −3.60098 −0.177192
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −52.5474 −2.57326
\(418\) 0 0
\(419\) −30.4526 −1.48771 −0.743853 0.668343i \(-0.767004\pi\)
−0.743853 + 0.668343i \(0.767004\pi\)
\(420\) 0 0
\(421\) 6.37088 0.310498 0.155249 0.987875i \(-0.450382\pi\)
0.155249 + 0.987875i \(0.450382\pi\)
\(422\) 0 0
\(423\) 32.1700 1.56416
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.91253 −0.237734
\(428\) 0 0
\(429\) 19.5122 0.942060
\(430\) 0 0
\(431\) 25.5381 1.23013 0.615064 0.788477i \(-0.289130\pi\)
0.615064 + 0.788477i \(0.289130\pi\)
\(432\) 0 0
\(433\) −19.2955 −0.927285 −0.463642 0.886022i \(-0.653458\pi\)
−0.463642 + 0.886022i \(0.653458\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.696039 0.0332961
\(438\) 0 0
\(439\) −12.9250 −0.616876 −0.308438 0.951244i \(-0.599806\pi\)
−0.308438 + 0.951244i \(0.599806\pi\)
\(440\) 0 0
\(441\) −43.1474 −2.05464
\(442\) 0 0
\(443\) −19.8707 −0.944085 −0.472042 0.881576i \(-0.656483\pi\)
−0.472042 + 0.881576i \(0.656483\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 47.7192 2.25704
\(448\) 0 0
\(449\) 23.1727 1.09359 0.546793 0.837268i \(-0.315848\pi\)
0.546793 + 0.837268i \(0.315848\pi\)
\(450\) 0 0
\(451\) −1.49767 −0.0705226
\(452\) 0 0
\(453\) 61.2880 2.87956
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.5062 0.585013 0.292507 0.956264i \(-0.405511\pi\)
0.292507 + 0.956264i \(0.405511\pi\)
\(458\) 0 0
\(459\) 11.0797 0.517157
\(460\) 0 0
\(461\) −41.4167 −1.92897 −0.964484 0.264143i \(-0.914911\pi\)
−0.964484 + 0.264143i \(0.914911\pi\)
\(462\) 0 0
\(463\) −14.2735 −0.663344 −0.331672 0.943395i \(-0.607613\pi\)
−0.331672 + 0.943395i \(0.607613\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 38.3655 1.77534 0.887672 0.460475i \(-0.152321\pi\)
0.887672 + 0.460475i \(0.152321\pi\)
\(468\) 0 0
\(469\) 3.20749 0.148108
\(470\) 0 0
\(471\) 31.7678 1.46378
\(472\) 0 0
\(473\) −19.8786 −0.914018
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 13.5159 0.618851
\(478\) 0 0
\(479\) −6.76138 −0.308935 −0.154468 0.987998i \(-0.549366\pi\)
−0.154468 + 0.987998i \(0.549366\pi\)
\(480\) 0 0
\(481\) 3.55175 0.161946
\(482\) 0 0
\(483\) −1.89963 −0.0864363
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −5.55868 −0.251888 −0.125944 0.992037i \(-0.540196\pi\)
−0.125944 + 0.992037i \(0.540196\pi\)
\(488\) 0 0
\(489\) 55.4595 2.50796
\(490\) 0 0
\(491\) −15.4135 −0.695600 −0.347800 0.937569i \(-0.613071\pi\)
−0.347800 + 0.937569i \(0.613071\pi\)
\(492\) 0 0
\(493\) −3.60737 −0.162468
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.95713 0.177502
\(498\) 0 0
\(499\) −31.7897 −1.42310 −0.711550 0.702635i \(-0.752007\pi\)
−0.711550 + 0.702635i \(0.752007\pi\)
\(500\) 0 0
\(501\) 62.7960 2.80552
\(502\) 0 0
\(503\) −30.1261 −1.34326 −0.671628 0.740889i \(-0.734404\pi\)
−0.671628 + 0.740889i \(0.734404\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.17721 −0.0522818
\(508\) 0 0
\(509\) −37.0537 −1.64238 −0.821189 0.570657i \(-0.806689\pi\)
−0.821189 + 0.570657i \(0.806689\pi\)
\(510\) 0 0
\(511\) −6.45742 −0.285659
\(512\) 0 0
\(513\) 5.13888 0.226887
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9.10920 0.400622
\(518\) 0 0
\(519\) 31.0627 1.36350
\(520\) 0 0
\(521\) 5.20283 0.227940 0.113970 0.993484i \(-0.463643\pi\)
0.113970 + 0.993484i \(0.463643\pi\)
\(522\) 0 0
\(523\) −31.0528 −1.35784 −0.678922 0.734210i \(-0.737553\pi\)
−0.678922 + 0.734210i \(0.737553\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.35736 0.102688
\(528\) 0 0
\(529\) −21.0801 −0.916526
\(530\) 0 0
\(531\) 50.9596 2.21146
\(532\) 0 0
\(533\) −2.96014 −0.128218
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 25.4689 1.09906
\(538\) 0 0
\(539\) −12.2176 −0.526248
\(540\) 0 0
\(541\) 21.7498 0.935097 0.467548 0.883967i \(-0.345137\pi\)
0.467548 + 0.883967i \(0.345137\pi\)
\(542\) 0 0
\(543\) −57.2563 −2.45710
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.97017 0.298023 0.149012 0.988835i \(-0.452391\pi\)
0.149012 + 0.988835i \(0.452391\pi\)
\(548\) 0 0
\(549\) 69.5203 2.96705
\(550\) 0 0
\(551\) −1.67313 −0.0712779
\(552\) 0 0
\(553\) −3.68415 −0.156666
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.7192 1.13213 0.566065 0.824361i \(-0.308465\pi\)
0.566065 + 0.824361i \(0.308465\pi\)
\(558\) 0 0
\(559\) −39.2900 −1.66179
\(560\) 0 0
\(561\) 5.95001 0.251210
\(562\) 0 0
\(563\) 38.2345 1.61139 0.805695 0.592331i \(-0.201792\pi\)
0.805695 + 0.592331i \(0.201792\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5.48721 −0.230441
\(568\) 0 0
\(569\) −2.63777 −0.110581 −0.0552904 0.998470i \(-0.517608\pi\)
−0.0552904 + 0.998470i \(0.517608\pi\)
\(570\) 0 0
\(571\) 11.0844 0.463867 0.231934 0.972732i \(-0.425495\pi\)
0.231934 + 0.972732i \(0.425495\pi\)
\(572\) 0 0
\(573\) −36.5557 −1.52714
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5.87140 −0.244430 −0.122215 0.992504i \(-0.539000\pi\)
−0.122215 + 0.992504i \(0.539000\pi\)
\(578\) 0 0
\(579\) −39.4565 −1.63976
\(580\) 0 0
\(581\) 5.84399 0.242450
\(582\) 0 0
\(583\) 3.82714 0.158504
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 35.9503 1.48383 0.741915 0.670494i \(-0.233918\pi\)
0.741915 + 0.670494i \(0.233918\pi\)
\(588\) 0 0
\(589\) 1.09336 0.0450513
\(590\) 0 0
\(591\) −21.2250 −0.873079
\(592\) 0 0
\(593\) 11.3178 0.464768 0.232384 0.972624i \(-0.425347\pi\)
0.232384 + 0.972624i \(0.425347\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −75.2317 −3.07903
\(598\) 0 0
\(599\) 28.4210 1.16125 0.580626 0.814171i \(-0.302808\pi\)
0.580626 + 0.814171i \(0.302808\pi\)
\(600\) 0 0
\(601\) 23.0837 0.941602 0.470801 0.882239i \(-0.343965\pi\)
0.470801 + 0.882239i \(0.343965\pi\)
\(602\) 0 0
\(603\) −45.3911 −1.84847
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8.55759 −0.347342 −0.173671 0.984804i \(-0.555563\pi\)
−0.173671 + 0.984804i \(0.555563\pi\)
\(608\) 0 0
\(609\) 4.56633 0.185037
\(610\) 0 0
\(611\) 18.0043 0.728376
\(612\) 0 0
\(613\) −6.23495 −0.251827 −0.125914 0.992041i \(-0.540186\pi\)
−0.125914 + 0.992041i \(0.540186\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.1159 1.61500 0.807502 0.589865i \(-0.200819\pi\)
0.807502 + 0.589865i \(0.200819\pi\)
\(618\) 0 0
\(619\) −41.2861 −1.65943 −0.829714 0.558188i \(-0.811497\pi\)
−0.829714 + 0.558188i \(0.811497\pi\)
\(620\) 0 0
\(621\) 14.1748 0.568814
\(622\) 0 0
\(623\) 2.12204 0.0850177
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.75967 0.110211
\(628\) 0 0
\(629\) 1.08306 0.0431845
\(630\) 0 0
\(631\) −12.6926 −0.505284 −0.252642 0.967560i \(-0.581299\pi\)
−0.252642 + 0.967560i \(0.581299\pi\)
\(632\) 0 0
\(633\) 40.3573 1.60406
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −24.1480 −0.956778
\(638\) 0 0
\(639\) −55.9998 −2.21532
\(640\) 0 0
\(641\) 25.3440 1.00103 0.500514 0.865729i \(-0.333145\pi\)
0.500514 + 0.865729i \(0.333145\pi\)
\(642\) 0 0
\(643\) −23.5901 −0.930304 −0.465152 0.885231i \(-0.654000\pi\)
−0.465152 + 0.885231i \(0.654000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.3132 0.916535 0.458267 0.888814i \(-0.348470\pi\)
0.458267 + 0.888814i \(0.348470\pi\)
\(648\) 0 0
\(649\) 14.4297 0.566414
\(650\) 0 0
\(651\) −2.98402 −0.116953
\(652\) 0 0
\(653\) 40.8357 1.59802 0.799012 0.601315i \(-0.205356\pi\)
0.799012 + 0.601315i \(0.205356\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 91.3829 3.56519
\(658\) 0 0
\(659\) 22.6517 0.882384 0.441192 0.897413i \(-0.354556\pi\)
0.441192 + 0.897413i \(0.354556\pi\)
\(660\) 0 0
\(661\) 0.230985 0.00898429 0.00449214 0.999990i \(-0.498570\pi\)
0.00449214 + 0.999990i \(0.498570\pi\)
\(662\) 0 0
\(663\) 11.7602 0.456728
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.61508 −0.178696
\(668\) 0 0
\(669\) −14.1477 −0.546981
\(670\) 0 0
\(671\) 19.6853 0.759941
\(672\) 0 0
\(673\) −23.5437 −0.907543 −0.453771 0.891118i \(-0.649922\pi\)
−0.453771 + 0.891118i \(0.649922\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.61986 0.215989 0.107994 0.994151i \(-0.465557\pi\)
0.107994 + 0.994151i \(0.465557\pi\)
\(678\) 0 0
\(679\) 6.91062 0.265205
\(680\) 0 0
\(681\) 18.9787 0.727267
\(682\) 0 0
\(683\) 9.37947 0.358896 0.179448 0.983767i \(-0.442569\pi\)
0.179448 + 0.983767i \(0.442569\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −81.4763 −3.10852
\(688\) 0 0
\(689\) 7.56434 0.288178
\(690\) 0 0
\(691\) −2.58554 −0.0983584 −0.0491792 0.998790i \(-0.515661\pi\)
−0.0491792 + 0.998790i \(0.515661\pi\)
\(692\) 0 0
\(693\) −5.11415 −0.194270
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.902658 −0.0341906
\(698\) 0 0
\(699\) 61.9520 2.34324
\(700\) 0 0
\(701\) 25.1954 0.951618 0.475809 0.879549i \(-0.342155\pi\)
0.475809 + 0.879549i \(0.342155\pi\)
\(702\) 0 0
\(703\) 0.502334 0.0189459
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.21212 −0.196022
\(708\) 0 0
\(709\) 42.7884 1.60695 0.803476 0.595337i \(-0.202981\pi\)
0.803476 + 0.595337i \(0.202981\pi\)
\(710\) 0 0
\(711\) 52.1366 1.95528
\(712\) 0 0
\(713\) 3.01587 0.112945
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −26.3148 −0.982744
\(718\) 0 0
\(719\) −21.4988 −0.801771 −0.400886 0.916128i \(-0.631298\pi\)
−0.400886 + 0.916128i \(0.631298\pi\)
\(720\) 0 0
\(721\) −4.90833 −0.182796
\(722\) 0 0
\(723\) −2.08974 −0.0777182
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.85916 0.143128 0.0715641 0.997436i \(-0.477201\pi\)
0.0715641 + 0.997436i \(0.477201\pi\)
\(728\) 0 0
\(729\) −16.1714 −0.598942
\(730\) 0 0
\(731\) −11.9810 −0.443133
\(732\) 0 0
\(733\) 18.9340 0.699345 0.349672 0.936872i \(-0.386293\pi\)
0.349672 + 0.936872i \(0.386293\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.8529 −0.473442
\(738\) 0 0
\(739\) −28.4508 −1.04658 −0.523290 0.852155i \(-0.675296\pi\)
−0.523290 + 0.852155i \(0.675296\pi\)
\(740\) 0 0
\(741\) 5.45448 0.200375
\(742\) 0 0
\(743\) −45.2282 −1.65926 −0.829630 0.558313i \(-0.811449\pi\)
−0.829630 + 0.558313i \(0.811449\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −82.7019 −3.02591
\(748\) 0 0
\(749\) 6.00205 0.219310
\(750\) 0 0
\(751\) 28.6127 1.04409 0.522046 0.852917i \(-0.325169\pi\)
0.522046 + 0.852917i \(0.325169\pi\)
\(752\) 0 0
\(753\) −56.8611 −2.07213
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −37.0006 −1.34481 −0.672406 0.740183i \(-0.734739\pi\)
−0.672406 + 0.740183i \(0.734739\pi\)
\(758\) 0 0
\(759\) 7.61212 0.276302
\(760\) 0 0
\(761\) −23.8512 −0.864605 −0.432303 0.901729i \(-0.642299\pi\)
−0.432303 + 0.901729i \(0.642299\pi\)
\(762\) 0 0
\(763\) 4.60714 0.166790
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28.5202 1.02980
\(768\) 0 0
\(769\) 18.8200 0.678665 0.339333 0.940666i \(-0.389799\pi\)
0.339333 + 0.940666i \(0.389799\pi\)
\(770\) 0 0
\(771\) 30.5797 1.10130
\(772\) 0 0
\(773\) 8.85107 0.318351 0.159175 0.987250i \(-0.449116\pi\)
0.159175 + 0.987250i \(0.449116\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.37097 −0.0491834
\(778\) 0 0
\(779\) −0.418662 −0.0150001
\(780\) 0 0
\(781\) −15.8568 −0.567402
\(782\) 0 0
\(783\) −34.0733 −1.21768
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −50.4985 −1.80008 −0.900039 0.435810i \(-0.856462\pi\)
−0.900039 + 0.435810i \(0.856462\pi\)
\(788\) 0 0
\(789\) −24.6362 −0.877071
\(790\) 0 0
\(791\) −8.31448 −0.295629
\(792\) 0 0
\(793\) 38.9079 1.38166
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.6495 1.01482 0.507408 0.861706i \(-0.330604\pi\)
0.507408 + 0.861706i \(0.330604\pi\)
\(798\) 0 0
\(799\) 5.49018 0.194229
\(800\) 0 0
\(801\) −30.0303 −1.06107
\(802\) 0 0
\(803\) 25.8759 0.913139
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −60.0603 −2.11422
\(808\) 0 0
\(809\) −42.7386 −1.50261 −0.751305 0.659955i \(-0.770575\pi\)
−0.751305 + 0.659955i \(0.770575\pi\)
\(810\) 0 0
\(811\) −2.86550 −0.100621 −0.0503107 0.998734i \(-0.516021\pi\)
−0.0503107 + 0.998734i \(0.516021\pi\)
\(812\) 0 0
\(813\) 2.49574 0.0875294
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −5.55689 −0.194411
\(818\) 0 0
\(819\) −10.1081 −0.353206
\(820\) 0 0
\(821\) 36.5616 1.27601 0.638004 0.770033i \(-0.279760\pi\)
0.638004 + 0.770033i \(0.279760\pi\)
\(822\) 0 0
\(823\) 31.5554 1.09995 0.549976 0.835180i \(-0.314637\pi\)
0.549976 + 0.835180i \(0.314637\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.47860 0.225283 0.112642 0.993636i \(-0.464069\pi\)
0.112642 + 0.993636i \(0.464069\pi\)
\(828\) 0 0
\(829\) −0.642832 −0.0223265 −0.0111632 0.999938i \(-0.503553\pi\)
−0.0111632 + 0.999938i \(0.503553\pi\)
\(830\) 0 0
\(831\) 72.7452 2.52350
\(832\) 0 0
\(833\) −7.36362 −0.255134
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 22.2663 0.769636
\(838\) 0 0
\(839\) −29.4919 −1.01817 −0.509087 0.860715i \(-0.670017\pi\)
−0.509087 + 0.860715i \(0.670017\pi\)
\(840\) 0 0
\(841\) −17.9063 −0.617459
\(842\) 0 0
\(843\) −21.5474 −0.742130
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.48479 0.119739
\(848\) 0 0
\(849\) −12.2390 −0.420042
\(850\) 0 0
\(851\) 1.38561 0.0474981
\(852\) 0 0
\(853\) −4.06198 −0.139080 −0.0695398 0.997579i \(-0.522153\pi\)
−0.0695398 + 0.997579i \(0.522153\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.9330 0.544260 0.272130 0.962260i \(-0.412272\pi\)
0.272130 + 0.962260i \(0.412272\pi\)
\(858\) 0 0
\(859\) −3.60380 −0.122960 −0.0614801 0.998108i \(-0.519582\pi\)
−0.0614801 + 0.998108i \(0.519582\pi\)
\(860\) 0 0
\(861\) 1.14261 0.0389401
\(862\) 0 0
\(863\) −24.7833 −0.843634 −0.421817 0.906681i \(-0.638607\pi\)
−0.421817 + 0.906681i \(0.638607\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −48.3856 −1.64326
\(868\) 0 0
\(869\) 14.7629 0.500798
\(870\) 0 0
\(871\) −25.4037 −0.860771
\(872\) 0 0
\(873\) −97.7965 −3.30991
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 21.3618 0.721337 0.360669 0.932694i \(-0.382549\pi\)
0.360669 + 0.932694i \(0.382549\pi\)
\(878\) 0 0
\(879\) −46.4380 −1.56632
\(880\) 0 0
\(881\) 47.1125 1.58726 0.793630 0.608401i \(-0.208189\pi\)
0.793630 + 0.608401i \(0.208189\pi\)
\(882\) 0 0
\(883\) −43.0287 −1.44803 −0.724015 0.689784i \(-0.757705\pi\)
−0.724015 + 0.689784i \(0.757705\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39.2127 −1.31663 −0.658317 0.752741i \(-0.728731\pi\)
−0.658317 + 0.752741i \(0.728731\pi\)
\(888\) 0 0
\(889\) −4.06789 −0.136433
\(890\) 0 0
\(891\) 21.9881 0.736628
\(892\) 0 0
\(893\) 2.54640 0.0852120
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 15.0453 0.502349
\(898\) 0 0
\(899\) −7.24954 −0.241786
\(900\) 0 0
\(901\) 2.30665 0.0768456
\(902\) 0 0
\(903\) 15.1659 0.504690
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 37.0368 1.22979 0.614893 0.788610i \(-0.289199\pi\)
0.614893 + 0.788610i \(0.289199\pi\)
\(908\) 0 0
\(909\) 73.7599 2.44646
\(910\) 0 0
\(911\) −36.5966 −1.21250 −0.606250 0.795274i \(-0.707327\pi\)
−0.606250 + 0.795274i \(0.707327\pi\)
\(912\) 0 0
\(913\) −23.4178 −0.775015
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.11296 0.0697760
\(918\) 0 0
\(919\) 15.2311 0.502426 0.251213 0.967932i \(-0.419171\pi\)
0.251213 + 0.967932i \(0.419171\pi\)
\(920\) 0 0
\(921\) −41.0783 −1.35358
\(922\) 0 0
\(923\) −31.3410 −1.03160
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 69.4609 2.28139
\(928\) 0 0
\(929\) −12.2944 −0.403365 −0.201683 0.979451i \(-0.564641\pi\)
−0.201683 + 0.979451i \(0.564641\pi\)
\(930\) 0 0
\(931\) −3.41532 −0.111933
\(932\) 0 0
\(933\) −82.8577 −2.71264
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −32.9738 −1.07721 −0.538603 0.842560i \(-0.681048\pi\)
−0.538603 + 0.842560i \(0.681048\pi\)
\(938\) 0 0
\(939\) −40.1810 −1.31126
\(940\) 0 0
\(941\) −35.0646 −1.14307 −0.571537 0.820576i \(-0.693653\pi\)
−0.571537 + 0.820576i \(0.693653\pi\)
\(942\) 0 0
\(943\) −1.15481 −0.0376058
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31.6836 −1.02958 −0.514789 0.857317i \(-0.672130\pi\)
−0.514789 + 0.857317i \(0.672130\pi\)
\(948\) 0 0
\(949\) 51.1436 1.66019
\(950\) 0 0
\(951\) 26.5806 0.861934
\(952\) 0 0
\(953\) 16.1636 0.523589 0.261795 0.965124i \(-0.415686\pi\)
0.261795 + 0.965124i \(0.415686\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −18.2980 −0.591489
\(958\) 0 0
\(959\) 1.18798 0.0383620
\(960\) 0 0
\(961\) −26.2626 −0.847179
\(962\) 0 0
\(963\) −84.9387 −2.73711
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −28.4425 −0.914649 −0.457325 0.889300i \(-0.651192\pi\)
−0.457325 + 0.889300i \(0.651192\pi\)
\(968\) 0 0
\(969\) 1.66328 0.0534321
\(970\) 0 0
\(971\) −48.2297 −1.54776 −0.773882 0.633329i \(-0.781688\pi\)
−0.773882 + 0.633329i \(0.781688\pi\)
\(972\) 0 0
\(973\) 7.70802 0.247108
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.29722 0.201466 0.100733 0.994913i \(-0.467881\pi\)
0.100733 + 0.994913i \(0.467881\pi\)
\(978\) 0 0
\(979\) −8.50333 −0.271768
\(980\) 0 0
\(981\) −65.1985 −2.08163
\(982\) 0 0
\(983\) 44.7044 1.42585 0.712924 0.701241i \(-0.247370\pi\)
0.712924 + 0.701241i \(0.247370\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −6.94965 −0.221210
\(988\) 0 0
\(989\) −15.3278 −0.487396
\(990\) 0 0
\(991\) −48.1874 −1.53072 −0.765362 0.643600i \(-0.777440\pi\)
−0.765362 + 0.643600i \(0.777440\pi\)
\(992\) 0 0
\(993\) 20.3671 0.646331
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 12.1005 0.383225 0.191613 0.981471i \(-0.438628\pi\)
0.191613 + 0.981471i \(0.438628\pi\)
\(998\) 0 0
\(999\) 10.2300 0.323663
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3700.2.a.p.1.9 9
5.2 odd 4 740.2.d.a.149.2 18
5.3 odd 4 740.2.d.a.149.17 yes 18
5.4 even 2 3700.2.a.o.1.1 9
15.2 even 4 6660.2.f.c.5329.10 18
15.8 even 4 6660.2.f.c.5329.9 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.d.a.149.2 18 5.2 odd 4
740.2.d.a.149.17 yes 18 5.3 odd 4
3700.2.a.o.1.1 9 5.4 even 2
3700.2.a.p.1.9 9 1.1 even 1 trivial
6660.2.f.c.5329.9 18 15.8 even 4
6660.2.f.c.5329.10 18 15.2 even 4