Properties

Label 740.2.d.a.149.17
Level $740$
Weight $2$
Character 740.149
Analytic conductor $5.909$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(149,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 26 x^{16} + 283 x^{14} + 1674 x^{12} + 5841 x^{10} + 12196 x^{8} + 14736 x^{6} + 9408 x^{4} + \cdots + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.17
Root \(0.807220i\) of defining polynomial
Character \(\chi\) \(=\) 740.149
Dual form 740.2.d.a.149.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.05716i q^{3} +(0.115303 + 2.23309i) q^{5} +0.448446i q^{7} -6.34624 q^{9} +1.79699 q^{11} +3.55175i q^{13} +(-6.82693 + 0.352499i) q^{15} -1.08306i q^{17} -0.502334 q^{19} -1.37097 q^{21} +1.38561i q^{23} +(-4.97341 + 0.514964i) q^{25} -10.2300i q^{27} +3.33072 q^{29} +2.17657 q^{31} +5.49370i q^{33} +(-1.00142 + 0.0517071i) q^{35} -1.00000i q^{37} -10.8583 q^{39} -0.833432 q^{41} -11.0621i q^{43} +(-0.731739 - 14.1717i) q^{45} -5.06914i q^{47} +6.79890 q^{49} +3.31109 q^{51} +2.12975i q^{53} +(0.207198 + 4.01285i) q^{55} -1.53572i q^{57} -8.02989 q^{59} +10.9546 q^{61} -2.84595i q^{63} +(-7.93139 + 0.409527i) q^{65} +7.15244i q^{67} -4.23603 q^{69} -8.82409 q^{71} +14.3995i q^{73} +(-1.57433 - 15.2045i) q^{75} +0.805855i q^{77} -8.21536 q^{79} +12.2360 q^{81} -13.0316i q^{83} +(2.41858 - 0.124880i) q^{85} +10.1826i q^{87} +4.73198 q^{89} -1.59277 q^{91} +6.65412i q^{93} +(-0.0579205 - 1.12176i) q^{95} +15.4101i q^{97} -11.4041 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{5} - 18 q^{9} + 6 q^{15} + 4 q^{19} - 16 q^{21} - 2 q^{25} - 4 q^{29} + 8 q^{31} - 2 q^{35} + 8 q^{39} - 4 q^{41} + 8 q^{45} + 6 q^{49} - 40 q^{51} - 6 q^{55} + 8 q^{59} - 12 q^{65} + 28 q^{69}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.05716i 1.76505i 0.470262 + 0.882527i \(0.344159\pi\)
−0.470262 + 0.882527i \(0.655841\pi\)
\(4\) 0 0
\(5\) 0.115303 + 2.23309i 0.0515650 + 0.998670i
\(6\) 0 0
\(7\) 0.448446i 0.169497i 0.996402 + 0.0847484i \(0.0270086\pi\)
−0.996402 + 0.0847484i \(0.972991\pi\)
\(8\) 0 0
\(9\) −6.34624 −2.11541
\(10\) 0 0
\(11\) 1.79699 0.541814 0.270907 0.962606i \(-0.412676\pi\)
0.270907 + 0.962606i \(0.412676\pi\)
\(12\) 0 0
\(13\) 3.55175i 0.985078i 0.870290 + 0.492539i \(0.163931\pi\)
−0.870290 + 0.492539i \(0.836069\pi\)
\(14\) 0 0
\(15\) −6.82693 + 0.352499i −1.76271 + 0.0910149i
\(16\) 0 0
\(17\) 1.08306i 0.262681i −0.991337 0.131340i \(-0.958072\pi\)
0.991337 0.131340i \(-0.0419281\pi\)
\(18\) 0 0
\(19\) −0.502334 −0.115243 −0.0576217 0.998338i \(-0.518352\pi\)
−0.0576217 + 0.998338i \(0.518352\pi\)
\(20\) 0 0
\(21\) −1.37097 −0.299171
\(22\) 0 0
\(23\) 1.38561i 0.288919i 0.989511 + 0.144460i \(0.0461444\pi\)
−0.989511 + 0.144460i \(0.953856\pi\)
\(24\) 0 0
\(25\) −4.97341 + 0.514964i −0.994682 + 0.102993i
\(26\) 0 0
\(27\) 10.2300i 1.96876i
\(28\) 0 0
\(29\) 3.33072 0.618499 0.309250 0.950981i \(-0.399922\pi\)
0.309250 + 0.950981i \(0.399922\pi\)
\(30\) 0 0
\(31\) 2.17657 0.390923 0.195462 0.980711i \(-0.437379\pi\)
0.195462 + 0.980711i \(0.437379\pi\)
\(32\) 0 0
\(33\) 5.49370i 0.956330i
\(34\) 0 0
\(35\) −1.00142 + 0.0517071i −0.169271 + 0.00874010i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0 0
\(39\) −10.8583 −1.73872
\(40\) 0 0
\(41\) −0.833432 −0.130160 −0.0650801 0.997880i \(-0.520730\pi\)
−0.0650801 + 0.997880i \(0.520730\pi\)
\(42\) 0 0
\(43\) 11.0621i 1.68696i −0.537160 0.843480i \(-0.680503\pi\)
0.537160 0.843480i \(-0.319497\pi\)
\(44\) 0 0
\(45\) −0.731739 14.1717i −0.109081 2.11260i
\(46\) 0 0
\(47\) 5.06914i 0.739409i −0.929149 0.369705i \(-0.879459\pi\)
0.929149 0.369705i \(-0.120541\pi\)
\(48\) 0 0
\(49\) 6.79890 0.971271
\(50\) 0 0
\(51\) 3.31109 0.463646
\(52\) 0 0
\(53\) 2.12975i 0.292544i 0.989244 + 0.146272i \(0.0467274\pi\)
−0.989244 + 0.146272i \(0.953273\pi\)
\(54\) 0 0
\(55\) 0.207198 + 4.01285i 0.0279386 + 0.541093i
\(56\) 0 0
\(57\) 1.53572i 0.203411i
\(58\) 0 0
\(59\) −8.02989 −1.04540 −0.522701 0.852516i \(-0.675076\pi\)
−0.522701 + 0.852516i \(0.675076\pi\)
\(60\) 0 0
\(61\) 10.9546 1.40259 0.701294 0.712872i \(-0.252606\pi\)
0.701294 + 0.712872i \(0.252606\pi\)
\(62\) 0 0
\(63\) 2.84595i 0.358556i
\(64\) 0 0
\(65\) −7.93139 + 0.409527i −0.983768 + 0.0507955i
\(66\) 0 0
\(67\) 7.15244i 0.873810i 0.899508 + 0.436905i \(0.143925\pi\)
−0.899508 + 0.436905i \(0.856075\pi\)
\(68\) 0 0
\(69\) −4.23603 −0.509958
\(70\) 0 0
\(71\) −8.82409 −1.04723 −0.523613 0.851956i \(-0.675416\pi\)
−0.523613 + 0.851956i \(0.675416\pi\)
\(72\) 0 0
\(73\) 14.3995i 1.68534i 0.538431 + 0.842669i \(0.319017\pi\)
−0.538431 + 0.842669i \(0.680983\pi\)
\(74\) 0 0
\(75\) −1.57433 15.2045i −0.181788 1.75567i
\(76\) 0 0
\(77\) 0.805855i 0.0918357i
\(78\) 0 0
\(79\) −8.21536 −0.924300 −0.462150 0.886802i \(-0.652922\pi\)
−0.462150 + 0.886802i \(0.652922\pi\)
\(80\) 0 0
\(81\) 12.2360 1.35956
\(82\) 0 0
\(83\) 13.0316i 1.43041i −0.698915 0.715204i \(-0.746334\pi\)
0.698915 0.715204i \(-0.253666\pi\)
\(84\) 0 0
\(85\) 2.41858 0.124880i 0.262331 0.0135451i
\(86\) 0 0
\(87\) 10.1826i 1.09168i
\(88\) 0 0
\(89\) 4.73198 0.501589 0.250794 0.968040i \(-0.419308\pi\)
0.250794 + 0.968040i \(0.419308\pi\)
\(90\) 0 0
\(91\) −1.59277 −0.166968
\(92\) 0 0
\(93\) 6.65412i 0.690000i
\(94\) 0 0
\(95\) −0.0579205 1.12176i −0.00594252 0.115090i
\(96\) 0 0
\(97\) 15.4101i 1.56466i 0.622862 + 0.782332i \(0.285970\pi\)
−0.622862 + 0.782332i \(0.714030\pi\)
\(98\) 0 0
\(99\) −11.4041 −1.14616
\(100\) 0 0
\(101\) 11.6226 1.15649 0.578247 0.815862i \(-0.303737\pi\)
0.578247 + 0.815862i \(0.303737\pi\)
\(102\) 0 0
\(103\) 10.9452i 1.07846i 0.842158 + 0.539231i \(0.181285\pi\)
−0.842158 + 0.539231i \(0.818715\pi\)
\(104\) 0 0
\(105\) −0.158077 3.06151i −0.0154267 0.298773i
\(106\) 0 0
\(107\) 13.3841i 1.29389i 0.762537 + 0.646945i \(0.223954\pi\)
−0.762537 + 0.646945i \(0.776046\pi\)
\(108\) 0 0
\(109\) 10.2736 0.984029 0.492014 0.870587i \(-0.336261\pi\)
0.492014 + 0.870587i \(0.336261\pi\)
\(110\) 0 0
\(111\) 3.05716 0.290173
\(112\) 0 0
\(113\) 18.5406i 1.74416i 0.489366 + 0.872078i \(0.337228\pi\)
−0.489366 + 0.872078i \(0.662772\pi\)
\(114\) 0 0
\(115\) −3.09419 + 0.159765i −0.288535 + 0.0148981i
\(116\) 0 0
\(117\) 22.5403i 2.08385i
\(118\) 0 0
\(119\) 0.485695 0.0445236
\(120\) 0 0
\(121\) −7.77082 −0.706438
\(122\) 0 0
\(123\) 2.54794i 0.229740i
\(124\) 0 0
\(125\) −1.72341 11.0467i −0.154147 0.988048i
\(126\) 0 0
\(127\) 9.07107i 0.804927i −0.915436 0.402464i \(-0.868154\pi\)
0.915436 0.402464i \(-0.131846\pi\)
\(128\) 0 0
\(129\) 33.8188 2.97758
\(130\) 0 0
\(131\) −4.71173 −0.411665 −0.205833 0.978587i \(-0.565990\pi\)
−0.205833 + 0.978587i \(0.565990\pi\)
\(132\) 0 0
\(133\) 0.225270i 0.0195334i
\(134\) 0 0
\(135\) 22.8445 1.17955i 1.96614 0.101519i
\(136\) 0 0
\(137\) 2.64911i 0.226329i 0.993576 + 0.113164i \(0.0360987\pi\)
−0.993576 + 0.113164i \(0.963901\pi\)
\(138\) 0 0
\(139\) 17.1883 1.45789 0.728946 0.684571i \(-0.240011\pi\)
0.728946 + 0.684571i \(0.240011\pi\)
\(140\) 0 0
\(141\) 15.4972 1.30510
\(142\) 0 0
\(143\) 6.38247i 0.533729i
\(144\) 0 0
\(145\) 0.384041 + 7.43781i 0.0318929 + 0.617676i
\(146\) 0 0
\(147\) 20.7853i 1.71434i
\(148\) 0 0
\(149\) −15.6090 −1.27874 −0.639369 0.768900i \(-0.720804\pi\)
−0.639369 + 0.768900i \(0.720804\pi\)
\(150\) 0 0
\(151\) 20.0474 1.63143 0.815715 0.578454i \(-0.196344\pi\)
0.815715 + 0.578454i \(0.196344\pi\)
\(152\) 0 0
\(153\) 6.87337i 0.555679i
\(154\) 0 0
\(155\) 0.250964 + 4.86048i 0.0201579 + 0.390403i
\(156\) 0 0
\(157\) 10.3913i 0.829315i −0.909978 0.414657i \(-0.863901\pi\)
0.909978 0.414657i \(-0.136099\pi\)
\(158\) 0 0
\(159\) −6.51099 −0.516355
\(160\) 0 0
\(161\) −0.621371 −0.0489709
\(162\) 0 0
\(163\) 18.1408i 1.42090i 0.703748 + 0.710450i \(0.251509\pi\)
−0.703748 + 0.710450i \(0.748491\pi\)
\(164\) 0 0
\(165\) −12.2679 + 0.633439i −0.955058 + 0.0493131i
\(166\) 0 0
\(167\) 20.5406i 1.58948i −0.606949 0.794741i \(-0.707607\pi\)
0.606949 0.794741i \(-0.292393\pi\)
\(168\) 0 0
\(169\) 0.385066 0.0296205
\(170\) 0 0
\(171\) 3.18793 0.243787
\(172\) 0 0
\(173\) 10.1606i 0.772499i 0.922394 + 0.386249i \(0.126230\pi\)
−0.922394 + 0.386249i \(0.873770\pi\)
\(174\) 0 0
\(175\) −0.230934 2.23031i −0.0174569 0.168595i
\(176\) 0 0
\(177\) 24.5487i 1.84519i
\(178\) 0 0
\(179\) −8.33088 −0.622679 −0.311340 0.950299i \(-0.600778\pi\)
−0.311340 + 0.950299i \(0.600778\pi\)
\(180\) 0 0
\(181\) −18.7286 −1.39208 −0.696042 0.718001i \(-0.745057\pi\)
−0.696042 + 0.718001i \(0.745057\pi\)
\(182\) 0 0
\(183\) 33.4899i 2.47564i
\(184\) 0 0
\(185\) 2.23309 0.115303i 0.164180 0.00847723i
\(186\) 0 0
\(187\) 1.94625i 0.142324i
\(188\) 0 0
\(189\) 4.58760 0.333699
\(190\) 0 0
\(191\) −11.9574 −0.865208 −0.432604 0.901584i \(-0.642405\pi\)
−0.432604 + 0.901584i \(0.642405\pi\)
\(192\) 0 0
\(193\) 12.9063i 0.929012i −0.885570 0.464506i \(-0.846232\pi\)
0.885570 0.464506i \(-0.153768\pi\)
\(194\) 0 0
\(195\) −1.25199 24.2475i −0.0896569 1.73640i
\(196\) 0 0
\(197\) 6.94271i 0.494647i 0.968933 + 0.247324i \(0.0795511\pi\)
−0.968933 + 0.247324i \(0.920449\pi\)
\(198\) 0 0
\(199\) 24.6083 1.74444 0.872220 0.489114i \(-0.162680\pi\)
0.872220 + 0.489114i \(0.162680\pi\)
\(200\) 0 0
\(201\) −21.8662 −1.54232
\(202\) 0 0
\(203\) 1.49365i 0.104834i
\(204\) 0 0
\(205\) −0.0960971 1.86113i −0.00671171 0.129987i
\(206\) 0 0
\(207\) 8.79341i 0.611184i
\(208\) 0 0
\(209\) −0.902691 −0.0624404
\(210\) 0 0
\(211\) 13.2009 0.908788 0.454394 0.890801i \(-0.349856\pi\)
0.454394 + 0.890801i \(0.349856\pi\)
\(212\) 0 0
\(213\) 26.9767i 1.84841i
\(214\) 0 0
\(215\) 24.7028 1.27550i 1.68472 0.0869881i
\(216\) 0 0
\(217\) 0.976074i 0.0662602i
\(218\) 0 0
\(219\) −44.0217 −2.97471
\(220\) 0 0
\(221\) 3.84676 0.258761
\(222\) 0 0
\(223\) 4.62772i 0.309895i −0.987923 0.154947i \(-0.950479\pi\)
0.987923 0.154947i \(-0.0495208\pi\)
\(224\) 0 0
\(225\) 31.5625 3.26808i 2.10416 0.217872i
\(226\) 0 0
\(227\) 6.20796i 0.412037i −0.978548 0.206018i \(-0.933949\pi\)
0.978548 0.206018i \(-0.0660506\pi\)
\(228\) 0 0
\(229\) 26.6510 1.76115 0.880573 0.473911i \(-0.157158\pi\)
0.880573 + 0.473911i \(0.157158\pi\)
\(230\) 0 0
\(231\) −2.46363 −0.162095
\(232\) 0 0
\(233\) 20.2645i 1.32757i 0.747922 + 0.663787i \(0.231052\pi\)
−0.747922 + 0.663787i \(0.768948\pi\)
\(234\) 0 0
\(235\) 11.3199 0.584486i 0.738426 0.0381276i
\(236\) 0 0
\(237\) 25.1157i 1.63144i
\(238\) 0 0
\(239\) 8.60759 0.556779 0.278389 0.960468i \(-0.410199\pi\)
0.278389 + 0.960468i \(0.410199\pi\)
\(240\) 0 0
\(241\) −0.683555 −0.0440316 −0.0220158 0.999758i \(-0.507008\pi\)
−0.0220158 + 0.999758i \(0.507008\pi\)
\(242\) 0 0
\(243\) 6.71757i 0.430932i
\(244\) 0 0
\(245\) 0.783932 + 15.1826i 0.0500836 + 0.969979i
\(246\) 0 0
\(247\) 1.78417i 0.113524i
\(248\) 0 0
\(249\) 39.8398 2.52475
\(250\) 0 0
\(251\) −18.5993 −1.17398 −0.586989 0.809595i \(-0.699687\pi\)
−0.586989 + 0.809595i \(0.699687\pi\)
\(252\) 0 0
\(253\) 2.48993i 0.156540i
\(254\) 0 0
\(255\) 0.381778 + 7.39398i 0.0239079 + 0.463029i
\(256\) 0 0
\(257\) 10.0027i 0.623948i −0.950091 0.311974i \(-0.899010\pi\)
0.950091 0.311974i \(-0.100990\pi\)
\(258\) 0 0
\(259\) 0.448446 0.0278651
\(260\) 0 0
\(261\) −21.1375 −1.30838
\(262\) 0 0
\(263\) 8.05851i 0.496909i −0.968644 0.248455i \(-0.920077\pi\)
0.968644 0.248455i \(-0.0799227\pi\)
\(264\) 0 0
\(265\) −4.75593 + 0.245566i −0.292154 + 0.0150850i
\(266\) 0 0
\(267\) 14.4664i 0.885331i
\(268\) 0 0
\(269\) 19.6458 1.19782 0.598912 0.800815i \(-0.295600\pi\)
0.598912 + 0.800815i \(0.295600\pi\)
\(270\) 0 0
\(271\) 0.816358 0.0495902 0.0247951 0.999693i \(-0.492107\pi\)
0.0247951 + 0.999693i \(0.492107\pi\)
\(272\) 0 0
\(273\) 4.86935i 0.294707i
\(274\) 0 0
\(275\) −8.93718 + 0.925386i −0.538932 + 0.0558029i
\(276\) 0 0
\(277\) 23.7950i 1.42970i −0.699276 0.714852i \(-0.746494\pi\)
0.699276 0.714852i \(-0.253506\pi\)
\(278\) 0 0
\(279\) −13.8130 −0.826964
\(280\) 0 0
\(281\) −7.04816 −0.420458 −0.210229 0.977652i \(-0.567421\pi\)
−0.210229 + 0.977652i \(0.567421\pi\)
\(282\) 0 0
\(283\) 4.00339i 0.237977i −0.992896 0.118988i \(-0.962035\pi\)
0.992896 0.118988i \(-0.0379651\pi\)
\(284\) 0 0
\(285\) 3.42940 0.177072i 0.203140 0.0104889i
\(286\) 0 0
\(287\) 0.373750i 0.0220617i
\(288\) 0 0
\(289\) 15.8270 0.930999
\(290\) 0 0
\(291\) −47.1113 −2.76171
\(292\) 0 0
\(293\) 15.1899i 0.887404i −0.896174 0.443702i \(-0.853665\pi\)
0.896174 0.443702i \(-0.146335\pi\)
\(294\) 0 0
\(295\) −0.925869 17.9315i −0.0539062 1.04401i
\(296\) 0 0
\(297\) 18.3832i 1.06670i
\(298\) 0 0
\(299\) −4.92134 −0.284608
\(300\) 0 0
\(301\) 4.96078 0.285934
\(302\) 0 0
\(303\) 35.5322i 2.04127i
\(304\) 0 0
\(305\) 1.26309 + 24.4626i 0.0723244 + 1.40072i
\(306\) 0 0
\(307\) 13.4367i 0.766875i 0.923567 + 0.383438i \(0.125260\pi\)
−0.923567 + 0.383438i \(0.874740\pi\)
\(308\) 0 0
\(309\) −33.4612 −1.90354
\(310\) 0 0
\(311\) −27.1028 −1.53686 −0.768430 0.639934i \(-0.778962\pi\)
−0.768430 + 0.639934i \(0.778962\pi\)
\(312\) 0 0
\(313\) 13.1432i 0.742899i −0.928453 0.371450i \(-0.878861\pi\)
0.928453 0.371450i \(-0.121139\pi\)
\(314\) 0 0
\(315\) 6.35527 0.328146i 0.358079 0.0184889i
\(316\) 0 0
\(317\) 8.69453i 0.488333i −0.969733 0.244167i \(-0.921486\pi\)
0.969733 0.244167i \(-0.0785144\pi\)
\(318\) 0 0
\(319\) 5.98528 0.335111
\(320\) 0 0
\(321\) −40.9174 −2.28379
\(322\) 0 0
\(323\) 0.544059i 0.0302722i
\(324\) 0 0
\(325\) −1.82902 17.6643i −0.101456 0.979840i
\(326\) 0 0
\(327\) 31.4080i 1.73686i
\(328\) 0 0
\(329\) 2.27324 0.125328
\(330\) 0 0
\(331\) 6.66210 0.366182 0.183091 0.983096i \(-0.441390\pi\)
0.183091 + 0.983096i \(0.441390\pi\)
\(332\) 0 0
\(333\) 6.34624i 0.347772i
\(334\) 0 0
\(335\) −15.9721 + 0.824697i −0.872648 + 0.0450580i
\(336\) 0 0
\(337\) 30.6358i 1.66884i 0.551131 + 0.834419i \(0.314196\pi\)
−0.551131 + 0.834419i \(0.685804\pi\)
\(338\) 0 0
\(339\) −56.6817 −3.07853
\(340\) 0 0
\(341\) 3.91128 0.211808
\(342\) 0 0
\(343\) 6.18806i 0.334124i
\(344\) 0 0
\(345\) −0.488426 9.45945i −0.0262960 0.509280i
\(346\) 0 0
\(347\) 9.70306i 0.520888i 0.965489 + 0.260444i \(0.0838689\pi\)
−0.965489 + 0.260444i \(0.916131\pi\)
\(348\) 0 0
\(349\) 13.2195 0.707623 0.353812 0.935317i \(-0.384885\pi\)
0.353812 + 0.935317i \(0.384885\pi\)
\(350\) 0 0
\(351\) 36.3344 1.93939
\(352\) 0 0
\(353\) 12.1558i 0.646986i 0.946231 + 0.323493i \(0.104857\pi\)
−0.946231 + 0.323493i \(0.895143\pi\)
\(354\) 0 0
\(355\) −1.01744 19.7050i −0.0540002 1.04583i
\(356\) 0 0
\(357\) 1.48485i 0.0785865i
\(358\) 0 0
\(359\) 12.3936 0.654109 0.327055 0.945005i \(-0.393944\pi\)
0.327055 + 0.945005i \(0.393944\pi\)
\(360\) 0 0
\(361\) −18.7477 −0.986719
\(362\) 0 0
\(363\) 23.7567i 1.24690i
\(364\) 0 0
\(365\) −32.1555 + 1.66031i −1.68310 + 0.0869044i
\(366\) 0 0
\(367\) 10.5473i 0.550567i −0.961363 0.275283i \(-0.911228\pi\)
0.961363 0.275283i \(-0.0887717\pi\)
\(368\) 0 0
\(369\) 5.28916 0.275343
\(370\) 0 0
\(371\) −0.955078 −0.0495852
\(372\) 0 0
\(373\) 3.16321i 0.163785i 0.996641 + 0.0818923i \(0.0260964\pi\)
−0.996641 + 0.0818923i \(0.973904\pi\)
\(374\) 0 0
\(375\) 33.7716 5.26874i 1.74396 0.272077i
\(376\) 0 0
\(377\) 11.8299i 0.609270i
\(378\) 0 0
\(379\) −26.2277 −1.34723 −0.673614 0.739084i \(-0.735259\pi\)
−0.673614 + 0.739084i \(0.735259\pi\)
\(380\) 0 0
\(381\) 27.7317 1.42074
\(382\) 0 0
\(383\) 6.10204i 0.311799i −0.987773 0.155900i \(-0.950172\pi\)
0.987773 0.155900i \(-0.0498277\pi\)
\(384\) 0 0
\(385\) −1.79955 + 0.0929173i −0.0917135 + 0.00473550i
\(386\) 0 0
\(387\) 70.2030i 3.56862i
\(388\) 0 0
\(389\) 11.0799 0.561771 0.280886 0.959741i \(-0.409372\pi\)
0.280886 + 0.959741i \(0.409372\pi\)
\(390\) 0 0
\(391\) 1.50070 0.0758936
\(392\) 0 0
\(393\) 14.4045i 0.726611i
\(394\) 0 0
\(395\) −0.947254 18.3457i −0.0476615 0.923070i
\(396\) 0 0
\(397\) 11.3837i 0.571329i 0.958330 + 0.285665i \(0.0922144\pi\)
−0.958330 + 0.285665i \(0.907786\pi\)
\(398\) 0 0
\(399\) 0.688687 0.0344775
\(400\) 0 0
\(401\) −7.96999 −0.398002 −0.199001 0.979999i \(-0.563770\pi\)
−0.199001 + 0.979999i \(0.563770\pi\)
\(402\) 0 0
\(403\) 7.73063i 0.385090i
\(404\) 0 0
\(405\) 1.41085 + 27.3242i 0.0701057 + 1.35775i
\(406\) 0 0
\(407\) 1.79699i 0.0890736i
\(408\) 0 0
\(409\) −35.7633 −1.76838 −0.884191 0.467126i \(-0.845289\pi\)
−0.884191 + 0.467126i \(0.845289\pi\)
\(410\) 0 0
\(411\) −8.09876 −0.399482
\(412\) 0 0
\(413\) 3.60098i 0.177192i
\(414\) 0 0
\(415\) 29.1009 1.50258i 1.42851 0.0737590i
\(416\) 0 0
\(417\) 52.5474i 2.57326i
\(418\) 0 0
\(419\) 30.4526 1.48771 0.743853 0.668343i \(-0.232996\pi\)
0.743853 + 0.668343i \(0.232996\pi\)
\(420\) 0 0
\(421\) 6.37088 0.310498 0.155249 0.987875i \(-0.450382\pi\)
0.155249 + 0.987875i \(0.450382\pi\)
\(422\) 0 0
\(423\) 32.1700i 1.56416i
\(424\) 0 0
\(425\) 0.557737 + 5.38651i 0.0270542 + 0.261284i
\(426\) 0 0
\(427\) 4.91253i 0.237734i
\(428\) 0 0
\(429\) −19.5122 −0.942060
\(430\) 0 0
\(431\) 25.5381 1.23013 0.615064 0.788477i \(-0.289130\pi\)
0.615064 + 0.788477i \(0.289130\pi\)
\(432\) 0 0
\(433\) 19.2955i 0.927285i −0.886022 0.463642i \(-0.846542\pi\)
0.886022 0.463642i \(-0.153458\pi\)
\(434\) 0 0
\(435\) −22.7386 + 1.17408i −1.09023 + 0.0562927i
\(436\) 0 0
\(437\) 0.696039i 0.0332961i
\(438\) 0 0
\(439\) 12.9250 0.616876 0.308438 0.951244i \(-0.400194\pi\)
0.308438 + 0.951244i \(0.400194\pi\)
\(440\) 0 0
\(441\) −43.1474 −2.05464
\(442\) 0 0
\(443\) 19.8707i 0.944085i −0.881576 0.472042i \(-0.843517\pi\)
0.881576 0.472042i \(-0.156483\pi\)
\(444\) 0 0
\(445\) 0.545611 + 10.5670i 0.0258644 + 0.500922i
\(446\) 0 0
\(447\) 47.7192i 2.25704i
\(448\) 0 0
\(449\) −23.1727 −1.09359 −0.546793 0.837268i \(-0.684152\pi\)
−0.546793 + 0.837268i \(0.684152\pi\)
\(450\) 0 0
\(451\) −1.49767 −0.0705226
\(452\) 0 0
\(453\) 61.2880i 2.87956i
\(454\) 0 0
\(455\) −0.183651 3.55680i −0.00860968 0.166745i
\(456\) 0 0
\(457\) 12.5062i 0.585013i −0.956264 0.292507i \(-0.905511\pi\)
0.956264 0.292507i \(-0.0944893\pi\)
\(458\) 0 0
\(459\) −11.0797 −0.517157
\(460\) 0 0
\(461\) −41.4167 −1.92897 −0.964484 0.264143i \(-0.914911\pi\)
−0.964484 + 0.264143i \(0.914911\pi\)
\(462\) 0 0
\(463\) 14.2735i 0.663344i −0.943395 0.331672i \(-0.892387\pi\)
0.943395 0.331672i \(-0.107613\pi\)
\(464\) 0 0
\(465\) −14.8593 + 0.767239i −0.689082 + 0.0355799i
\(466\) 0 0
\(467\) 38.3655i 1.77534i −0.460475 0.887672i \(-0.652321\pi\)
0.460475 0.887672i \(-0.347679\pi\)
\(468\) 0 0
\(469\) −3.20749 −0.148108
\(470\) 0 0
\(471\) 31.7678 1.46378
\(472\) 0 0
\(473\) 19.8786i 0.914018i
\(474\) 0 0
\(475\) 2.49831 0.258684i 0.114631 0.0118692i
\(476\) 0 0
\(477\) 13.5159i 0.618851i
\(478\) 0 0
\(479\) 6.76138 0.308935 0.154468 0.987998i \(-0.450634\pi\)
0.154468 + 0.987998i \(0.450634\pi\)
\(480\) 0 0
\(481\) 3.55175 0.161946
\(482\) 0 0
\(483\) 1.89963i 0.0864363i
\(484\) 0 0
\(485\) −34.4123 + 1.77683i −1.56258 + 0.0806818i
\(486\) 0 0
\(487\) 5.55868i 0.251888i 0.992037 + 0.125944i \(0.0401960\pi\)
−0.992037 + 0.125944i \(0.959804\pi\)
\(488\) 0 0
\(489\) −55.4595 −2.50796
\(490\) 0 0
\(491\) −15.4135 −0.695600 −0.347800 0.937569i \(-0.613071\pi\)
−0.347800 + 0.937569i \(0.613071\pi\)
\(492\) 0 0
\(493\) 3.60737i 0.162468i
\(494\) 0 0
\(495\) −1.31493 25.4665i −0.0591017 1.14463i
\(496\) 0 0
\(497\) 3.95713i 0.177502i
\(498\) 0 0
\(499\) 31.7897 1.42310 0.711550 0.702635i \(-0.247993\pi\)
0.711550 + 0.702635i \(0.247993\pi\)
\(500\) 0 0
\(501\) 62.7960 2.80552
\(502\) 0 0
\(503\) 30.1261i 1.34326i −0.740889 0.671628i \(-0.765596\pi\)
0.740889 0.671628i \(-0.234404\pi\)
\(504\) 0 0
\(505\) 1.34012 + 25.9544i 0.0596346 + 1.15496i
\(506\) 0 0
\(507\) 1.17721i 0.0522818i
\(508\) 0 0
\(509\) 37.0537 1.64238 0.821189 0.570657i \(-0.193311\pi\)
0.821189 + 0.570657i \(0.193311\pi\)
\(510\) 0 0
\(511\) −6.45742 −0.285659
\(512\) 0 0
\(513\) 5.13888i 0.226887i
\(514\) 0 0
\(515\) −24.4416 + 1.26201i −1.07703 + 0.0556109i
\(516\) 0 0
\(517\) 9.10920i 0.400622i
\(518\) 0 0
\(519\) −31.0627 −1.36350
\(520\) 0 0
\(521\) 5.20283 0.227940 0.113970 0.993484i \(-0.463643\pi\)
0.113970 + 0.993484i \(0.463643\pi\)
\(522\) 0 0
\(523\) 31.0528i 1.35784i −0.734210 0.678922i \(-0.762447\pi\)
0.734210 0.678922i \(-0.237553\pi\)
\(524\) 0 0
\(525\) 6.81841 0.706001i 0.297580 0.0308124i
\(526\) 0 0
\(527\) 2.35736i 0.102688i
\(528\) 0 0
\(529\) 21.0801 0.916526
\(530\) 0 0
\(531\) 50.9596 2.21146
\(532\) 0 0
\(533\) 2.96014i 0.128218i
\(534\) 0 0
\(535\) −29.8880 + 1.54322i −1.29217 + 0.0667194i
\(536\) 0 0
\(537\) 25.4689i 1.09906i
\(538\) 0 0
\(539\) 12.2176 0.526248
\(540\) 0 0
\(541\) 21.7498 0.935097 0.467548 0.883967i \(-0.345137\pi\)
0.467548 + 0.883967i \(0.345137\pi\)
\(542\) 0 0
\(543\) 57.2563i 2.45710i
\(544\) 0 0
\(545\) 1.18457 + 22.9418i 0.0507414 + 0.982720i
\(546\) 0 0
\(547\) 6.97017i 0.298023i −0.988835 0.149012i \(-0.952391\pi\)
0.988835 0.149012i \(-0.0476092\pi\)
\(548\) 0 0
\(549\) −69.5203 −2.96705
\(550\) 0 0
\(551\) −1.67313 −0.0712779
\(552\) 0 0
\(553\) 3.68415i 0.156666i
\(554\) 0 0
\(555\) 0.352499 + 6.82693i 0.0149628 + 0.289787i
\(556\) 0 0
\(557\) 26.7192i 1.13213i −0.824361 0.566065i \(-0.808465\pi\)
0.824361 0.566065i \(-0.191535\pi\)
\(558\) 0 0
\(559\) 39.2900 1.66179
\(560\) 0 0
\(561\) 5.95001 0.251210
\(562\) 0 0
\(563\) 38.2345i 1.61139i 0.592331 + 0.805695i \(0.298208\pi\)
−0.592331 + 0.805695i \(0.701792\pi\)
\(564\) 0 0
\(565\) −41.4030 + 2.13779i −1.74184 + 0.0899374i
\(566\) 0 0
\(567\) 5.48721i 0.230441i
\(568\) 0 0
\(569\) 2.63777 0.110581 0.0552904 0.998470i \(-0.482392\pi\)
0.0552904 + 0.998470i \(0.482392\pi\)
\(570\) 0 0
\(571\) 11.0844 0.463867 0.231934 0.972732i \(-0.425495\pi\)
0.231934 + 0.972732i \(0.425495\pi\)
\(572\) 0 0
\(573\) 36.5557i 1.52714i
\(574\) 0 0
\(575\) −0.713538 6.89120i −0.0297566 0.287383i
\(576\) 0 0
\(577\) 5.87140i 0.244430i 0.992504 + 0.122215i \(0.0389997\pi\)
−0.992504 + 0.122215i \(0.961000\pi\)
\(578\) 0 0
\(579\) 39.4565 1.63976
\(580\) 0 0
\(581\) 5.84399 0.242450
\(582\) 0 0
\(583\) 3.82714i 0.158504i
\(584\) 0 0
\(585\) 50.3345 2.59896i 2.08108 0.107454i
\(586\) 0 0
\(587\) 35.9503i 1.48383i −0.670494 0.741915i \(-0.733918\pi\)
0.670494 0.741915i \(-0.266082\pi\)
\(588\) 0 0
\(589\) −1.09336 −0.0450513
\(590\) 0 0
\(591\) −21.2250 −0.873079
\(592\) 0 0
\(593\) 11.3178i 0.464768i 0.972624 + 0.232384i \(0.0746526\pi\)
−0.972624 + 0.232384i \(0.925347\pi\)
\(594\) 0 0
\(595\) 0.0560020 + 1.08460i 0.00229586 + 0.0444643i
\(596\) 0 0
\(597\) 75.2317i 3.07903i
\(598\) 0 0
\(599\) −28.4210 −1.16125 −0.580626 0.814171i \(-0.697192\pi\)
−0.580626 + 0.814171i \(0.697192\pi\)
\(600\) 0 0
\(601\) 23.0837 0.941602 0.470801 0.882239i \(-0.343965\pi\)
0.470801 + 0.882239i \(0.343965\pi\)
\(602\) 0 0
\(603\) 45.3911i 1.84847i
\(604\) 0 0
\(605\) −0.895997 17.3530i −0.0364275 0.705498i
\(606\) 0 0
\(607\) 8.55759i 0.347342i 0.984804 + 0.173671i \(0.0555629\pi\)
−0.984804 + 0.173671i \(0.944437\pi\)
\(608\) 0 0
\(609\) −4.56633 −0.185037
\(610\) 0 0
\(611\) 18.0043 0.728376
\(612\) 0 0
\(613\) 6.23495i 0.251827i −0.992041 0.125914i \(-0.959814\pi\)
0.992041 0.125914i \(-0.0401862\pi\)
\(614\) 0 0
\(615\) 5.68978 0.293784i 0.229434 0.0118465i
\(616\) 0 0
\(617\) 40.1159i 1.61500i −0.589865 0.807502i \(-0.700819\pi\)
0.589865 0.807502i \(-0.299181\pi\)
\(618\) 0 0
\(619\) 41.2861 1.65943 0.829714 0.558188i \(-0.188503\pi\)
0.829714 + 0.558188i \(0.188503\pi\)
\(620\) 0 0
\(621\) 14.1748 0.568814
\(622\) 0 0
\(623\) 2.12204i 0.0850177i
\(624\) 0 0
\(625\) 24.4696 5.12225i 0.978785 0.204890i
\(626\) 0 0
\(627\) 2.75967i 0.110211i
\(628\) 0 0
\(629\) −1.08306 −0.0431845
\(630\) 0 0
\(631\) −12.6926 −0.505284 −0.252642 0.967560i \(-0.581299\pi\)
−0.252642 + 0.967560i \(0.581299\pi\)
\(632\) 0 0
\(633\) 40.3573i 1.60406i
\(634\) 0 0
\(635\) 20.2565 1.04592i 0.803857 0.0415061i
\(636\) 0 0
\(637\) 24.1480i 0.956778i
\(638\) 0 0
\(639\) 55.9998 2.21532
\(640\) 0 0
\(641\) 25.3440 1.00103 0.500514 0.865729i \(-0.333145\pi\)
0.500514 + 0.865729i \(0.333145\pi\)
\(642\) 0 0
\(643\) 23.5901i 0.930304i −0.885231 0.465152i \(-0.846000\pi\)
0.885231 0.465152i \(-0.154000\pi\)
\(644\) 0 0
\(645\) 3.89940 + 75.5205i 0.153539 + 2.97361i
\(646\) 0 0
\(647\) 23.3132i 0.916535i −0.888814 0.458267i \(-0.848470\pi\)
0.888814 0.458267i \(-0.151530\pi\)
\(648\) 0 0
\(649\) −14.4297 −0.566414
\(650\) 0 0
\(651\) −2.98402 −0.116953
\(652\) 0 0
\(653\) 40.8357i 1.59802i 0.601315 + 0.799012i \(0.294644\pi\)
−0.601315 + 0.799012i \(0.705356\pi\)
\(654\) 0 0
\(655\) −0.543275 10.5217i −0.0212275 0.411118i
\(656\) 0 0
\(657\) 91.3829i 3.56519i
\(658\) 0 0
\(659\) −22.6517 −0.882384 −0.441192 0.897413i \(-0.645444\pi\)
−0.441192 + 0.897413i \(0.645444\pi\)
\(660\) 0 0
\(661\) 0.230985 0.00898429 0.00449214 0.999990i \(-0.498570\pi\)
0.00449214 + 0.999990i \(0.498570\pi\)
\(662\) 0 0
\(663\) 11.7602i 0.456728i
\(664\) 0 0
\(665\) 0.503049 0.0259743i 0.0195074 0.00100724i
\(666\) 0 0
\(667\) 4.61508i 0.178696i
\(668\) 0 0
\(669\) 14.1477 0.546981
\(670\) 0 0
\(671\) 19.6853 0.759941
\(672\) 0 0
\(673\) 23.5437i 0.907543i −0.891118 0.453771i \(-0.850078\pi\)
0.891118 0.453771i \(-0.149922\pi\)
\(674\) 0 0
\(675\) 5.26808 + 50.8780i 0.202768 + 1.95829i
\(676\) 0 0
\(677\) 5.61986i 0.215989i −0.994151 0.107994i \(-0.965557\pi\)
0.994151 0.107994i \(-0.0344429\pi\)
\(678\) 0 0
\(679\) −6.91062 −0.265205
\(680\) 0 0
\(681\) 18.9787 0.727267
\(682\) 0 0
\(683\) 9.37947i 0.358896i 0.983767 + 0.179448i \(0.0574311\pi\)
−0.983767 + 0.179448i \(0.942569\pi\)
\(684\) 0 0
\(685\) −5.91571 + 0.305450i −0.226028 + 0.0116706i
\(686\) 0 0
\(687\) 81.4763i 3.10852i
\(688\) 0 0
\(689\) −7.56434 −0.288178
\(690\) 0 0
\(691\) −2.58554 −0.0983584 −0.0491792 0.998790i \(-0.515661\pi\)
−0.0491792 + 0.998790i \(0.515661\pi\)
\(692\) 0 0
\(693\) 5.11415i 0.194270i
\(694\) 0 0
\(695\) 1.98186 + 38.3830i 0.0751761 + 1.45595i
\(696\) 0 0
\(697\) 0.902658i 0.0341906i
\(698\) 0 0
\(699\) −61.9520 −2.34324
\(700\) 0 0
\(701\) 25.1954 0.951618 0.475809 0.879549i \(-0.342155\pi\)
0.475809 + 0.879549i \(0.342155\pi\)
\(702\) 0 0
\(703\) 0.502334i 0.0189459i
\(704\) 0 0
\(705\) 1.78687 + 34.6066i 0.0672973 + 1.30336i
\(706\) 0 0
\(707\) 5.21212i 0.196022i
\(708\) 0 0
\(709\) −42.7884 −1.60695 −0.803476 0.595337i \(-0.797019\pi\)
−0.803476 + 0.595337i \(0.797019\pi\)
\(710\) 0 0
\(711\) 52.1366 1.95528
\(712\) 0 0
\(713\) 3.01587i 0.112945i
\(714\) 0 0
\(715\) −14.2526 + 0.735917i −0.533019 + 0.0275217i
\(716\) 0 0
\(717\) 26.3148i 0.982744i
\(718\) 0 0
\(719\) 21.4988 0.801771 0.400886 0.916128i \(-0.368702\pi\)
0.400886 + 0.916128i \(0.368702\pi\)
\(720\) 0 0
\(721\) −4.90833 −0.182796
\(722\) 0 0
\(723\) 2.08974i 0.0777182i
\(724\) 0 0
\(725\) −16.5650 + 1.71520i −0.615210 + 0.0637009i
\(726\) 0 0
\(727\) 3.85916i 0.143128i −0.997436 0.0715641i \(-0.977201\pi\)
0.997436 0.0715641i \(-0.0227991\pi\)
\(728\) 0 0
\(729\) 16.1714 0.598942
\(730\) 0 0
\(731\) −11.9810 −0.443133
\(732\) 0 0
\(733\) 18.9340i 0.699345i 0.936872 + 0.349672i \(0.113707\pi\)
−0.936872 + 0.349672i \(0.886293\pi\)
\(734\) 0 0
\(735\) −46.4156 + 2.39661i −1.71206 + 0.0884002i
\(736\) 0 0
\(737\) 12.8529i 0.473442i
\(738\) 0 0
\(739\) 28.4508 1.04658 0.523290 0.852155i \(-0.324704\pi\)
0.523290 + 0.852155i \(0.324704\pi\)
\(740\) 0 0
\(741\) 5.45448 0.200375
\(742\) 0 0
\(743\) 45.2282i 1.65926i −0.558313 0.829630i \(-0.688551\pi\)
0.558313 0.829630i \(-0.311449\pi\)
\(744\) 0 0
\(745\) −1.79976 34.8563i −0.0659381 1.27704i
\(746\) 0 0
\(747\) 82.7019i 3.02591i
\(748\) 0 0
\(749\) −6.00205 −0.219310
\(750\) 0 0
\(751\) 28.6127 1.04409 0.522046 0.852917i \(-0.325169\pi\)
0.522046 + 0.852917i \(0.325169\pi\)
\(752\) 0 0
\(753\) 56.8611i 2.07213i
\(754\) 0 0
\(755\) 2.31152 + 44.7676i 0.0841247 + 1.62926i
\(756\) 0 0
\(757\) 37.0006i 1.34481i 0.740183 + 0.672406i \(0.234739\pi\)
−0.740183 + 0.672406i \(0.765261\pi\)
\(758\) 0 0
\(759\) −7.61212 −0.276302
\(760\) 0 0
\(761\) −23.8512 −0.864605 −0.432303 0.901729i \(-0.642299\pi\)
−0.432303 + 0.901729i \(0.642299\pi\)
\(762\) 0 0
\(763\) 4.60714i 0.166790i
\(764\) 0 0
\(765\) −15.3489 + 0.792518i −0.554940 + 0.0286536i
\(766\) 0 0
\(767\) 28.5202i 1.02980i
\(768\) 0 0
\(769\) −18.8200 −0.678665 −0.339333 0.940666i \(-0.610201\pi\)
−0.339333 + 0.940666i \(0.610201\pi\)
\(770\) 0 0
\(771\) 30.5797 1.10130
\(772\) 0 0
\(773\) 8.85107i 0.318351i 0.987250 + 0.159175i \(0.0508835\pi\)
−0.987250 + 0.159175i \(0.949116\pi\)
\(774\) 0 0
\(775\) −10.8250 + 1.12085i −0.388844 + 0.0402623i
\(776\) 0 0
\(777\) 1.37097i 0.0491834i
\(778\) 0 0
\(779\) 0.418662 0.0150001
\(780\) 0 0
\(781\) −15.8568 −0.567402
\(782\) 0 0
\(783\) 34.0733i 1.21768i
\(784\) 0 0
\(785\) 23.2047 1.19814i 0.828211 0.0427636i
\(786\) 0 0
\(787\) 50.4985i 1.80008i 0.435810 + 0.900039i \(0.356462\pi\)
−0.435810 + 0.900039i \(0.643538\pi\)
\(788\) 0 0
\(789\) 24.6362 0.877071
\(790\) 0 0
\(791\) −8.31448 −0.295629
\(792\) 0 0
\(793\) 38.9079i 1.38166i
\(794\) 0 0
\(795\) −0.750735 14.5396i −0.0266258 0.515668i
\(796\) 0 0
\(797\) 28.6495i 1.01482i −0.861706 0.507408i \(-0.830604\pi\)
0.861706 0.507408i \(-0.169396\pi\)
\(798\) 0 0
\(799\) −5.49018 −0.194229
\(800\) 0 0
\(801\) −30.0303 −1.06107
\(802\) 0 0
\(803\) 25.8759i 0.913139i
\(804\) 0 0
\(805\) −0.0716458 1.38758i −0.00252518 0.0489058i
\(806\) 0 0
\(807\) 60.0603i 2.11422i
\(808\) 0 0
\(809\) 42.7386 1.50261 0.751305 0.659955i \(-0.229425\pi\)
0.751305 + 0.659955i \(0.229425\pi\)
\(810\) 0 0
\(811\) −2.86550 −0.100621 −0.0503107 0.998734i \(-0.516021\pi\)
−0.0503107 + 0.998734i \(0.516021\pi\)
\(812\) 0 0
\(813\) 2.49574i 0.0875294i
\(814\) 0 0
\(815\) −40.5102 + 2.09169i −1.41901 + 0.0732687i
\(816\) 0 0
\(817\) 5.55689i 0.194411i
\(818\) 0 0
\(819\) 10.1081 0.353206
\(820\) 0 0
\(821\) 36.5616 1.27601 0.638004 0.770033i \(-0.279760\pi\)
0.638004 + 0.770033i \(0.279760\pi\)
\(822\) 0 0
\(823\) 31.5554i 1.09995i 0.835180 + 0.549976i \(0.185363\pi\)
−0.835180 + 0.549976i \(0.814637\pi\)
\(824\) 0 0
\(825\) −2.82906 27.3224i −0.0984951 0.951244i
\(826\) 0 0
\(827\) 6.47860i 0.225283i −0.993636 0.112642i \(-0.964069\pi\)
0.993636 0.112642i \(-0.0359312\pi\)
\(828\) 0 0
\(829\) 0.642832 0.0223265 0.0111632 0.999938i \(-0.496447\pi\)
0.0111632 + 0.999938i \(0.496447\pi\)
\(830\) 0 0
\(831\) 72.7452 2.52350
\(832\) 0 0
\(833\) 7.36362i 0.255134i
\(834\) 0 0
\(835\) 45.8691 2.36839i 1.58737 0.0819616i
\(836\) 0 0
\(837\) 22.2663i 0.769636i
\(838\) 0 0
\(839\) 29.4919 1.01817 0.509087 0.860715i \(-0.329983\pi\)
0.509087 + 0.860715i \(0.329983\pi\)
\(840\) 0 0
\(841\) −17.9063 −0.617459
\(842\) 0 0
\(843\) 21.5474i 0.742130i
\(844\) 0 0
\(845\) 0.0443992 + 0.859889i 0.00152738 + 0.0295811i
\(846\) 0 0
\(847\) 3.48479i 0.119739i
\(848\) 0 0
\(849\) 12.2390 0.420042
\(850\) 0 0
\(851\) 1.38561 0.0474981
\(852\) 0 0
\(853\) 4.06198i 0.139080i −0.997579 0.0695398i \(-0.977847\pi\)
0.997579 0.0695398i \(-0.0221531\pi\)
\(854\) 0 0
\(855\) 0.367578 + 7.11895i 0.0125709 + 0.243463i
\(856\) 0 0
\(857\) 15.9330i 0.544260i −0.962260 0.272130i \(-0.912272\pi\)
0.962260 0.272130i \(-0.0877281\pi\)
\(858\) 0 0
\(859\) 3.60380 0.122960 0.0614801 0.998108i \(-0.480418\pi\)
0.0614801 + 0.998108i \(0.480418\pi\)
\(860\) 0 0
\(861\) 1.14261 0.0389401
\(862\) 0 0
\(863\) 24.7833i 0.843634i −0.906681 0.421817i \(-0.861393\pi\)
0.906681 0.421817i \(-0.138607\pi\)
\(864\) 0 0
\(865\) −22.6896 + 1.17155i −0.771471 + 0.0398339i
\(866\) 0 0
\(867\) 48.3856i 1.64326i
\(868\) 0 0
\(869\) −14.7629 −0.500798
\(870\) 0 0
\(871\) −25.4037 −0.860771
\(872\) 0 0
\(873\) 97.7965i 3.30991i
\(874\) 0 0
\(875\) 4.95386 0.772857i 0.167471 0.0261273i
\(876\) 0 0
\(877\) 21.3618i 0.721337i −0.932694 0.360669i \(-0.882549\pi\)
0.932694 0.360669i \(-0.117451\pi\)
\(878\) 0 0
\(879\) 46.4380 1.56632
\(880\) 0 0
\(881\) 47.1125 1.58726 0.793630 0.608401i \(-0.208189\pi\)
0.793630 + 0.608401i \(0.208189\pi\)
\(882\) 0 0
\(883\) 43.0287i 1.44803i −0.689784 0.724015i \(-0.742295\pi\)
0.689784 0.724015i \(-0.257705\pi\)
\(884\) 0 0
\(885\) 54.8195 2.83053i 1.84274 0.0951473i
\(886\) 0 0
\(887\) 39.2127i 1.31663i 0.752741 + 0.658317i \(0.228731\pi\)
−0.752741 + 0.658317i \(0.771269\pi\)
\(888\) 0 0
\(889\) 4.06789 0.136433
\(890\) 0 0
\(891\) 21.9881 0.736628
\(892\) 0 0
\(893\) 2.54640i 0.0852120i
\(894\) 0 0
\(895\) −0.960574 18.6036i −0.0321084 0.621851i
\(896\) 0 0
\(897\) 15.0453i 0.502349i
\(898\) 0 0
\(899\) 7.24954 0.241786
\(900\) 0 0
\(901\) 2.30665 0.0768456
\(902\) 0 0
\(903\) 15.1659i 0.504690i
\(904\) 0 0
\(905\) −2.15946 41.8227i −0.0717828 1.39023i
\(906\) 0 0
\(907\) 37.0368i 1.22979i −0.788610 0.614893i \(-0.789199\pi\)
0.788610 0.614893i \(-0.210801\pi\)
\(908\) 0 0
\(909\) −73.7599 −2.44646
\(910\) 0 0
\(911\) −36.5966 −1.21250 −0.606250 0.795274i \(-0.707327\pi\)
−0.606250 + 0.795274i \(0.707327\pi\)
\(912\) 0 0
\(913\) 23.4178i 0.775015i
\(914\) 0 0
\(915\) −74.7860 + 3.86148i −2.47235 + 0.127656i
\(916\) 0 0
\(917\) 2.11296i 0.0697760i
\(918\) 0 0
\(919\) −15.2311 −0.502426 −0.251213 0.967932i \(-0.580829\pi\)
−0.251213 + 0.967932i \(0.580829\pi\)
\(920\) 0 0
\(921\) −41.0783 −1.35358
\(922\) 0 0
\(923\) 31.3410i 1.03160i
\(924\) 0 0
\(925\) 0.514964 + 4.97341i 0.0169319 + 0.163525i
\(926\) 0 0
\(927\) 69.4609i 2.28139i
\(928\) 0 0
\(929\) 12.2944 0.403365 0.201683 0.979451i \(-0.435359\pi\)
0.201683 + 0.979451i \(0.435359\pi\)
\(930\) 0 0
\(931\) −3.41532 −0.111933
\(932\) 0 0
\(933\) 82.8577i 2.71264i
\(934\) 0 0
\(935\) 4.34616 0.224408i 0.142135 0.00733894i
\(936\) 0 0
\(937\) 32.9738i 1.07721i 0.842560 + 0.538603i \(0.181048\pi\)
−0.842560 + 0.538603i \(0.818952\pi\)
\(938\) 0 0
\(939\) 40.1810 1.31126
\(940\) 0 0
\(941\) −35.0646 −1.14307 −0.571537 0.820576i \(-0.693653\pi\)
−0.571537 + 0.820576i \(0.693653\pi\)
\(942\) 0 0
\(943\) 1.15481i 0.0376058i
\(944\) 0 0
\(945\) 0.528964 + 10.2445i 0.0172072 + 0.333255i
\(946\) 0 0
\(947\) 31.6836i 1.02958i 0.857317 + 0.514789i \(0.172130\pi\)
−0.857317 + 0.514789i \(0.827870\pi\)
\(948\) 0 0
\(949\) −51.1436 −1.66019
\(950\) 0 0
\(951\) 26.5806 0.861934
\(952\) 0 0
\(953\) 16.1636i 0.523589i 0.965124 + 0.261795i \(0.0843143\pi\)
−0.965124 + 0.261795i \(0.915686\pi\)
\(954\) 0 0
\(955\) −1.37872 26.7020i −0.0446144 0.864057i
\(956\) 0 0
\(957\) 18.2980i 0.591489i
\(958\) 0 0
\(959\) −1.18798 −0.0383620
\(960\) 0 0
\(961\) −26.2626 −0.847179
\(962\) 0 0
\(963\) 84.9387i 2.73711i
\(964\) 0 0
\(965\) 28.8209 1.48813i 0.927776 0.0479045i
\(966\) 0 0
\(967\) 28.4425i 0.914649i 0.889300 + 0.457325i \(0.151192\pi\)
−0.889300 + 0.457325i \(0.848808\pi\)
\(968\) 0 0
\(969\) −1.66328 −0.0534321
\(970\) 0 0
\(971\) −48.2297 −1.54776 −0.773882 0.633329i \(-0.781688\pi\)
−0.773882 + 0.633329i \(0.781688\pi\)
\(972\) 0 0
\(973\) 7.70802i 0.247108i
\(974\) 0 0
\(975\) 54.0027 5.59162i 1.72947 0.179075i
\(976\) 0 0
\(977\) 6.29722i 0.201466i −0.994913 0.100733i \(-0.967881\pi\)
0.994913 0.100733i \(-0.0321188\pi\)
\(978\) 0 0
\(979\) 8.50333 0.271768
\(980\) 0 0
\(981\) −65.1985 −2.08163
\(982\) 0 0
\(983\) 44.7044i 1.42585i 0.701241 + 0.712924i \(0.252630\pi\)
−0.701241 + 0.712924i \(0.747370\pi\)
\(984\) 0 0
\(985\) −15.5037 + 0.800514i −0.493989 + 0.0255065i
\(986\) 0 0
\(987\) 6.94965i 0.221210i
\(988\) 0 0
\(989\) 15.3278 0.487396
\(990\) 0 0
\(991\) −48.1874 −1.53072 −0.765362 0.643600i \(-0.777440\pi\)
−0.765362 + 0.643600i \(0.777440\pi\)
\(992\) 0 0
\(993\) 20.3671i 0.646331i
\(994\) 0 0
\(995\) 2.83741 + 54.9527i 0.0899520 + 1.74212i
\(996\) 0 0
\(997\) 12.1005i 0.383225i −0.981471 0.191613i \(-0.938628\pi\)
0.981471 0.191613i \(-0.0613717\pi\)
\(998\) 0 0
\(999\) −10.2300 −0.323663
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.d.a.149.17 yes 18
3.2 odd 2 6660.2.f.c.5329.9 18
5.2 odd 4 3700.2.a.p.1.9 9
5.3 odd 4 3700.2.a.o.1.1 9
5.4 even 2 inner 740.2.d.a.149.2 18
15.14 odd 2 6660.2.f.c.5329.10 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.d.a.149.2 18 5.4 even 2 inner
740.2.d.a.149.17 yes 18 1.1 even 1 trivial
3700.2.a.o.1.1 9 5.3 odd 4
3700.2.a.p.1.9 9 5.2 odd 4
6660.2.f.c.5329.9 18 3.2 odd 2
6660.2.f.c.5329.10 18 15.14 odd 2