gp: [N,k,chi] = [363,2,Mod(34,363)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(363, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 10]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("363.34");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [110,-3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{110} + 3 T_{2}^{109} + 24 T_{2}^{108} + 72 T_{2}^{107} + 365 T_{2}^{106} + 1029 T_{2}^{105} + \cdots + 529 \)
T2^110 + 3*T2^109 + 24*T2^108 + 72*T2^107 + 365*T2^106 + 1029*T2^105 + 4309*T2^104 + 11486*T2^103 + 42654*T2^102 + 109053*T2^101 + 372056*T2^100 + 897166*T2^99 + 2886111*T2^98 + 6523639*T2^97 + 20058749*T2^96 + 42188083*T2^95 + 127709686*T2^94 + 245525281*T2^93 + 763904752*T2^92 + 1349587639*T2^91 + 4507974393*T2^90 + 7613938223*T2^89 + 26130110249*T2^88 + 43062119309*T2^87 + 147616883260*T2^86 + 237510334115*T2^85 + 795506770665*T2^84 + 1263408518698*T2^83 + 4058420039730*T2^82 + 6675299851995*T2^81 + 19686137420806*T2^80 + 32859589184238*T2^79 + 89010597179133*T2^78 + 149314182632619*T2^77 + 387418436957525*T2^76 + 635462002504303*T2^75 + 1617377480797040*T2^74 + 2640512954143155*T2^73 + 6881240078623726*T2^72 + 11775311479064727*T2^71 + 30417944626803159*T2^70 + 53771273871073952*T2^69 + 126493165595726862*T2^68 + 215951737733720077*T2^67 + 453559836387952084*T2^66 + 707087078090860966*T2^65 + 1366378085583744408*T2^64 + 1945010556108865958*T2^63 + 3537196866037643509*T2^62 + 4690130095130298655*T2^61 + 8281444509843837030*T2^60 + 9855061078821984668*T2^59 + 17640693360643394132*T2^58 + 18542665935968945070*T2^57 + 35672897386199659576*T2^56 + 32419362435488304698*T2^55 + 69480611413592336277*T2^54 + 49891495003570902229*T2^53 + 125923215680960616497*T2^52 + 68817656612033145609*T2^51 + 229830428461370212081*T2^50 + 106173723396797828920*T2^49 + 407404042285900166727*T2^48 + 145117808830953282404*T2^47 + 631606213348438215841*T2^46 + 252988503042210305561*T2^45 + 944113096211966807761*T2^44 + 517598925919442212760*T2^43 + 1072415374123408664486*T2^42 + 851255798318633310304*T2^41 + 1249998143040624302947*T2^40 + 1295395333886746351899*T2^39 + 1286188258217464823984*T2^38 + 1352696222125269104844*T2^37 + 1358692006221536202442*T2^36 + 1294285238943107083837*T2^35 + 1040042717723929546889*T2^34 + 817246117597854788069*T2^33 + 746359389945363369517*T2^32 + 629740747982568563424*T2^31 + 540339920165615669411*T2^30 + 366563687471418435832*T2^29 + 229401704074370919847*T2^28 + 200799752425020157219*T2^27 + 176893625581763169703*T2^26 + 129701307422784020112*T2^25 + 83755328705925130586*T2^24 + 52880734320811684400*T2^23 + 41136461291152421586*T2^22 + 40227420263551325492*T2^21 + 38924355288904814238*T2^20 + 32391357716881285264*T2^19 + 22514862459124724301*T2^18 + 13188416386733258081*T2^17 + 6617539324115853063*T2^16 + 2887254908162365128*T2^15 + 1108728892849268945*T2^14 + 377754262112421803*T2^13 + 114595007934583661*T2^12 + 30905923055753018*T2^11 + 7369542954405946*T2^10 + 1539804777290389*T2^9 + 277781137433738*T2^8 + 42198536685350*T2^7 + 5198175236356*T2^6 + 493259359925*T2^5 + 33601823470*T2^4 + 1462204390*T2^3 + 30289737*T2^2 - 88964*T2 + 529
acting on \(S_{2}^{\mathrm{new}}(363, [\chi])\).