Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [363,2,Mod(34,363)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(363, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("363.34");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 363.i (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.89856959337\) |
Analytic rank: | \(0\) |
Dimension: | \(110\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34.1 | −0.376853 | − | 2.62107i | 1.00000 | −4.80902 | + | 1.41206i | −1.49341 | + | 3.27011i | −0.376853 | − | 2.62107i | 1.28940 | + | 0.828649i | 3.31334 | + | 7.25519i | 1.00000 | 9.13399 | + | 2.68198i | ||||
34.2 | −0.330553 | − | 2.29905i | 1.00000 | −3.25737 | + | 0.956450i | 1.06578 | − | 2.33374i | −0.330553 | − | 2.29905i | 3.57344 | + | 2.29651i | 1.34590 | + | 2.94710i | 1.00000 | −5.71768 | − | 1.67886i | ||||
34.3 | −0.281562 | − | 1.95831i | 1.00000 | −1.83670 | + | 0.539304i | −0.612450 | + | 1.34108i | −0.281562 | − | 1.95831i | −3.83832 | − | 2.46674i | −0.0704841 | − | 0.154339i | 1.00000 | 2.79869 | + | 0.821768i | ||||
34.4 | −0.215462 | − | 1.49857i | 1.00000 | −0.280297 | + | 0.0823026i | 1.26386 | − | 2.76746i | −0.215462 | − | 1.49857i | −0.870717 | − | 0.559576i | −1.07413 | − | 2.35202i | 1.00000 | −4.41954 | − | 1.29769i | ||||
34.5 | −0.124489 | − | 0.865842i | 1.00000 | 1.18480 | − | 0.347889i | −1.60595 | + | 3.51653i | −0.124489 | − | 0.865842i | 1.93251 | + | 1.24195i | −1.17548 | − | 2.57394i | 1.00000 | 3.24469 | + | 0.952726i | ||||
34.6 | −0.0568188 | − | 0.395183i | 1.00000 | 1.76604 | − | 0.518557i | −0.433191 | + | 0.948555i | −0.0568188 | − | 0.395183i | −0.717772 | − | 0.461284i | −0.636976 | − | 1.39478i | 1.00000 | 0.399466 | + | 0.117294i | ||||
34.7 | 0.0394089 | + | 0.274095i | 1.00000 | 1.84541 | − | 0.541862i | 0.254412 | − | 0.557084i | 0.0394089 | + | 0.274095i | 3.50795 | + | 2.25442i | 0.451315 | + | 0.988243i | 1.00000 | 0.162720 | + | 0.0477789i | ||||
34.8 | 0.0866573 | + | 0.602715i | 1.00000 | 1.56323 | − | 0.459006i | 1.19980 | − | 2.62720i | 0.0866573 | + | 0.602715i | −2.25620 | − | 1.44997i | 0.918018 | + | 2.01018i | 1.00000 | 1.68742 | + | 0.495471i | ||||
34.9 | 0.246669 | + | 1.71562i | 1.00000 | −0.963518 | + | 0.282914i | 0.586690 | − | 1.28467i | 0.246669 | + | 1.71562i | 0.292439 | + | 0.187939i | 0.717003 | + | 1.57002i | 1.00000 | 2.34873 | + | 0.689648i | ||||
34.10 | 0.249246 | + | 1.73354i | 1.00000 | −1.02406 | + | 0.300690i | −1.04073 | + | 2.27889i | 0.249246 | + | 1.73354i | −1.67784 | − | 1.07828i | 0.678588 | + | 1.48590i | 1.00000 | −4.20994 | − | 1.23615i | ||||
34.11 | 0.381997 | + | 2.65685i | 1.00000 | −4.99393 | + | 1.46635i | −1.32324 | + | 2.89750i | 0.381997 | + | 2.65685i | 3.57319 | + | 2.29635i | −3.57344 | − | 7.82475i | 1.00000 | −8.20368 | − | 2.40882i | ||||
67.1 | −2.62777 | + | 0.771584i | 1.00000 | 4.62734 | − | 2.97381i | −1.65159 | − | 1.90604i | −2.62777 | + | 0.771584i | 0.238411 | + | 0.522048i | −6.27811 | + | 7.24533i | 1.00000 | 5.81068 | + | 3.73430i | ||||
67.2 | −1.91396 | + | 0.561990i | 1.00000 | 1.66491 | − | 1.06997i | −0.318763 | − | 0.367872i | −1.91396 | + | 0.561990i | −0.203664 | − | 0.445963i | 0.0273229 | − | 0.0315323i | 1.00000 | 0.816841 | + | 0.524952i | ||||
67.3 | −1.66022 | + | 0.487484i | 1.00000 | 0.836175 | − | 0.537377i | 0.840806 | + | 0.970341i | −1.66022 | + | 0.487484i | 1.37086 | + | 3.00177i | 1.13995 | − | 1.31557i | 1.00000 | −1.86895 | − | 1.20110i | ||||
67.4 | −0.703082 | + | 0.206444i | 1.00000 | −1.23080 | + | 0.790988i | −2.65913 | − | 3.06880i | −0.703082 | + | 0.206444i | 1.84052 | + | 4.03017i | 1.66178 | − | 1.91779i | 1.00000 | 2.50312 | + | 1.60866i | ||||
67.5 | −0.488277 | + | 0.143371i | 1.00000 | −1.46465 | + | 0.941272i | 2.84817 | + | 3.28696i | −0.488277 | + | 0.143371i | −0.361141 | − | 0.790788i | 1.24671 | − | 1.43878i | 1.00000 | −1.86195 | − | 1.19660i | ||||
67.6 | −0.462869 | + | 0.135910i | 1.00000 | −1.48673 | + | 0.955464i | −0.614517 | − | 0.709190i | −0.462869 | + | 0.135910i | −1.47089 | − | 3.22079i | 1.19013 | − | 1.37348i | 1.00000 | 0.380827 | + | 0.244743i | ||||
67.7 | −0.188159 | + | 0.0552484i | 1.00000 | −1.65016 | + | 1.06049i | −0.807975 | − | 0.932452i | −0.188159 | + | 0.0552484i | −1.17818 | − | 2.57985i | 0.508740 | − | 0.587118i | 1.00000 | 0.203544 | + | 0.130810i | ||||
67.8 | 0.747690 | − | 0.219542i | 1.00000 | −1.17166 | + | 0.752983i | 1.02919 | + | 1.18775i | 0.747690 | − | 0.219542i | 0.462266 | + | 1.01222i | −1.73134 | + | 1.99807i | 1.00000 | 1.03028 | + | 0.662118i | ||||
67.9 | 1.24406 | − | 0.365288i | 1.00000 | −0.268265 | + | 0.172403i | 0.476429 | + | 0.549828i | 1.24406 | − | 0.365288i | 1.81181 | + | 3.96731i | −1.96892 | + | 2.27225i | 1.00000 | 0.793551 | + | 0.509984i | ||||
See next 80 embeddings (of 110 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
121.e | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 363.2.i.a | ✓ | 110 |
121.e | even | 11 | 1 | inner | 363.2.i.a | ✓ | 110 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
363.2.i.a | ✓ | 110 | 1.a | even | 1 | 1 | trivial |
363.2.i.a | ✓ | 110 | 121.e | even | 11 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{110} + 3 T_{2}^{109} + 24 T_{2}^{108} + 72 T_{2}^{107} + 365 T_{2}^{106} + 1029 T_{2}^{105} + \cdots + 529 \)
acting on \(S_{2}^{\mathrm{new}}(363, [\chi])\).