Properties

Label 363.2
Level 363
Weight 2
Dimension 3431
Nonzero newspaces 8
Newform subspaces 45
Sturm bound 19360
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 45 \)
Sturm bound: \(19360\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(363))\).

Total New Old
Modular forms 5160 3711 1449
Cusp forms 4521 3431 1090
Eisenstein series 639 280 359

Trace form

\( 3431 q + 3 q^{2} - 44 q^{3} - 83 q^{4} + 6 q^{5} - 52 q^{6} - 102 q^{7} - 25 q^{8} - 64 q^{9} - 132 q^{10} - 10 q^{11} - 118 q^{12} - 96 q^{13} - 36 q^{14} - 79 q^{15} - 179 q^{16} - 42 q^{17} - 72 q^{18}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(363))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
363.2.a \(\chi_{363}(1, \cdot)\) 363.2.a.a 1 1
363.2.a.b 1
363.2.a.c 1
363.2.a.d 2
363.2.a.e 2
363.2.a.f 2
363.2.a.g 2
363.2.a.h 2
363.2.a.i 2
363.2.a.j 4
363.2.d \(\chi_{363}(362, \cdot)\) 363.2.d.a 2 1
363.2.d.b 2
363.2.d.c 4
363.2.d.d 4
363.2.d.e 8
363.2.d.f 8
363.2.e \(\chi_{363}(124, \cdot)\) 363.2.e.a 4 4
363.2.e.b 4
363.2.e.c 4
363.2.e.d 4
363.2.e.e 4
363.2.e.f 4
363.2.e.g 4
363.2.e.h 4
363.2.e.i 4
363.2.e.j 4
363.2.e.k 4
363.2.e.l 4
363.2.e.m 8
363.2.e.n 16
363.2.f \(\chi_{363}(161, \cdot)\) 363.2.f.a 8 4
363.2.f.b 8
363.2.f.c 8
363.2.f.d 8
363.2.f.e 8
363.2.f.f 8
363.2.f.g 16
363.2.f.h 16
363.2.f.i 32
363.2.i \(\chi_{363}(34, \cdot)\) 363.2.i.a 110 10
363.2.i.b 110
363.2.j \(\chi_{363}(32, \cdot)\) 363.2.j.a 420 10
363.2.m \(\chi_{363}(4, \cdot)\) 363.2.m.a 440 40
363.2.m.b 440
363.2.p \(\chi_{363}(2, \cdot)\) 363.2.p.a 1680 40

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(363))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(363)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)