Properties

Label 363.2.i
Level $363$
Weight $2$
Character orbit 363.i
Rep. character $\chi_{363}(34,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $220$
Newform subspaces $2$
Sturm bound $88$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.i (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 2 \)
Sturm bound: \(88\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(363, [\chi])\).

Total New Old
Modular forms 460 220 240
Cusp forms 420 220 200
Eisenstein series 40 0 40

Trace form

\( 220 q - 4 q^{2} - 26 q^{4} - 4 q^{5} - 2 q^{6} - 12 q^{7} - 12 q^{8} + 220 q^{9} + 6 q^{10} + 10 q^{11} - 8 q^{12} + 32 q^{13} + 24 q^{14} - 8 q^{15} - 42 q^{16} - 16 q^{17} - 4 q^{18} - 20 q^{19} - 36 q^{20}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(363, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
363.2.i.a 363.i 121.e $110$ $2.899$ None 363.2.i.a \(-3\) \(110\) \(-6\) \(-8\) $\mathrm{SU}(2)[C_{11}]$
363.2.i.b 363.i 121.e $110$ $2.899$ None 363.2.i.b \(-1\) \(-110\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{2}^{\mathrm{old}}(363, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(363, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 2}\)