Defining parameters
Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 363.i (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 121 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(88\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(363, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 460 | 220 | 240 |
Cusp forms | 420 | 220 | 200 |
Eisenstein series | 40 | 0 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(363, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
363.2.i.a | $110$ | $2.899$ | None | \(-3\) | \(110\) | \(-6\) | \(-8\) | ||
363.2.i.b | $110$ | $2.899$ | None | \(-1\) | \(-110\) | \(2\) | \(-4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(363, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(363, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 2}\)