Properties

Label 361.2.e.m.234.3
Level $361$
Weight $2$
Character 361.234
Analytic conductor $2.883$
Analytic rank $0$
Dimension $24$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,2,Mod(28,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,24,0,0,0,30,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.88259951297\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 234.3
Character \(\chi\) \(=\) 361.234
Dual form 361.2.e.m.54.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.900539 - 0.755642i) q^{2} +(1.10467 + 0.402069i) q^{3} +(-0.107320 + 0.608645i) q^{4} +(0.214641 + 1.21729i) q^{5} +(1.29862 - 0.472660i) q^{6} +(2.11803 - 3.66854i) q^{7} +(1.53884 + 2.66535i) q^{8} +(-1.23949 - 1.04005i) q^{9} +(1.11313 + 0.934025i) q^{10} +(1.80902 + 3.13331i) q^{11} +(-0.363271 + 0.629204i) q^{12} +(-2.89208 + 1.05263i) q^{13} +(-0.864733 - 4.90414i) q^{14} +(-0.252326 + 1.43101i) q^{15} +(2.23832 + 0.814680i) q^{16} +(1.89377 - 1.58906i) q^{17} -1.90211 q^{18} -0.763932 q^{20} +(3.81475 - 3.20095i) q^{21} +(3.99675 + 1.45470i) q^{22} +(-0.454617 + 2.57826i) q^{23} +(0.628265 + 3.56307i) q^{24} +(3.26274 - 1.18754i) q^{25} +(-1.80902 + 3.13331i) q^{26} +(-2.71441 - 4.70150i) q^{27} +(2.00553 + 1.68284i) q^{28} +(-2.01367 - 1.68967i) q^{29} +(0.854102 + 1.47935i) q^{30} +(0.587785 - 1.01807i) q^{31} +(-3.15285 + 1.14755i) q^{32} +(0.738570 + 4.18864i) q^{33} +(0.504651 - 2.86202i) q^{34} +(4.92029 + 1.79084i) q^{35} +(0.766044 - 0.642788i) q^{36} -6.43288 q^{37} -3.61803 q^{39} +(-2.91421 + 2.44531i) q^{40} +(-8.67623 - 3.15789i) q^{41} +(1.01655 - 5.76517i) q^{42} +(-1.09854 - 6.23013i) q^{43} +(-2.10122 + 0.764780i) q^{44} +(1.00000 - 1.73205i) q^{45} +(1.53884 + 2.66535i) q^{46} +(-1.93646 - 1.62488i) q^{47} +(2.14505 + 1.79991i) q^{48} +(-5.47214 - 9.47802i) q^{49} +(2.04087 - 3.53489i) q^{50} +(2.73091 - 0.993969i) q^{51} +(-0.330298 - 1.87322i) q^{52} +(0.0779729 - 0.442206i) q^{53} +(-5.99709 - 2.18276i) q^{54} +(-3.42585 + 2.87463i) q^{55} +13.0373 q^{56} -3.09017 q^{58} +(-2.14505 + 1.79991i) q^{59} +(-0.843897 - 0.307153i) q^{60} +(-0.0916626 + 0.519845i) q^{61} +(-0.239976 - 1.36097i) q^{62} +(-6.44075 + 2.34424i) q^{63} +(-4.35410 + 7.54153i) q^{64} +(-1.90211 - 3.29456i) q^{65} +(3.83022 + 3.21394i) q^{66} +(-0.131387 - 0.110247i) q^{67} +(0.763932 + 1.32317i) q^{68} +(-1.53884 + 2.66535i) q^{69} +(5.78415 - 2.10526i) q^{70} +(2.10795 + 11.9548i) q^{71} +(0.864733 - 4.90414i) q^{72} +(-8.45723 - 3.07818i) q^{73} +(-5.79306 + 4.86096i) q^{74} +4.08174 q^{75} +15.3262 q^{77} +(-3.25818 + 2.73394i) q^{78} +(7.14961 + 2.60224i) q^{79} +(-0.511267 + 2.89954i) q^{80} +(-0.265311 - 1.50465i) q^{81} +(-10.1995 + 3.71232i) q^{82} +(-0.618034 + 1.07047i) q^{83} +(1.53884 + 2.66535i) q^{84} +(2.34082 + 1.96418i) q^{85} +(-5.69703 - 4.78037i) q^{86} +(-1.54508 - 2.67617i) q^{87} +(-5.56758 + 9.64333i) q^{88} +(16.6697 - 6.06729i) q^{89} +(-0.408271 - 2.31542i) q^{90} +(-2.26390 + 12.8392i) q^{91} +(-1.52045 - 0.553400i) q^{92} +(1.05865 - 0.888311i) q^{93} -2.97168 q^{94} -3.94427 q^{96} +(-12.0008 + 10.0699i) q^{97} +(-12.0899 - 4.40035i) q^{98} +(1.01655 - 5.76517i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{7} + 30 q^{11} - 72 q^{20} - 30 q^{26} - 60 q^{30} - 60 q^{39} + 24 q^{45} - 24 q^{49} + 60 q^{58} - 24 q^{64} + 72 q^{68} + 180 q^{77} + 12 q^{83} + 30 q^{87} + 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/361\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.900539 0.755642i 0.636777 0.534320i −0.266249 0.963904i \(-0.585784\pi\)
0.903027 + 0.429585i \(0.141340\pi\)
\(3\) 1.10467 + 0.402069i 0.637784 + 0.232135i 0.640616 0.767861i \(-0.278679\pi\)
−0.00283156 + 0.999996i \(0.500901\pi\)
\(4\) −0.107320 + 0.608645i −0.0536602 + 0.304322i
\(5\) 0.214641 + 1.21729i 0.0959904 + 0.544388i 0.994439 + 0.105311i \(0.0335837\pi\)
−0.898449 + 0.439078i \(0.855305\pi\)
\(6\) 1.29862 0.472660i 0.530161 0.192963i
\(7\) 2.11803 3.66854i 0.800542 1.38658i −0.118718 0.992928i \(-0.537879\pi\)
0.919260 0.393651i \(-0.128788\pi\)
\(8\) 1.53884 + 2.66535i 0.544063 + 0.942344i
\(9\) −1.23949 1.04005i −0.413162 0.346684i
\(10\) 1.11313 + 0.934025i 0.352002 + 0.295365i
\(11\) 1.80902 + 3.13331i 0.545439 + 0.944728i 0.998579 + 0.0532889i \(0.0169704\pi\)
−0.453140 + 0.891439i \(0.649696\pi\)
\(12\) −0.363271 + 0.629204i −0.104867 + 0.181636i
\(13\) −2.89208 + 1.05263i −0.802118 + 0.291947i −0.710364 0.703835i \(-0.751470\pi\)
−0.0917540 + 0.995782i \(0.529247\pi\)
\(14\) −0.864733 4.90414i −0.231110 1.31069i
\(15\) −0.252326 + 1.43101i −0.0651502 + 0.369485i
\(16\) 2.23832 + 0.814680i 0.559579 + 0.203670i
\(17\) 1.89377 1.58906i 0.459306 0.385403i −0.383570 0.923512i \(-0.625305\pi\)
0.842875 + 0.538109i \(0.180861\pi\)
\(18\) −1.90211 −0.448332
\(19\) 0 0
\(20\) −0.763932 −0.170820
\(21\) 3.81475 3.20095i 0.832446 0.698505i
\(22\) 3.99675 + 1.45470i 0.852110 + 0.310143i
\(23\) −0.454617 + 2.57826i −0.0947942 + 0.537604i 0.900016 + 0.435857i \(0.143555\pi\)
−0.994810 + 0.101748i \(0.967557\pi\)
\(24\) 0.628265 + 3.56307i 0.128244 + 0.727308i
\(25\) 3.26274 1.18754i 0.652548 0.237508i
\(26\) −1.80902 + 3.13331i −0.354777 + 0.614493i
\(27\) −2.71441 4.70150i −0.522389 0.904804i
\(28\) 2.00553 + 1.68284i 0.379010 + 0.318027i
\(29\) −2.01367 1.68967i −0.373929 0.313763i 0.436385 0.899760i \(-0.356259\pi\)
−0.810313 + 0.585997i \(0.800703\pi\)
\(30\) 0.854102 + 1.47935i 0.155937 + 0.270091i
\(31\) 0.587785 1.01807i 0.105569 0.182851i −0.808401 0.588632i \(-0.799667\pi\)
0.913971 + 0.405780i \(0.133000\pi\)
\(32\) −3.15285 + 1.14755i −0.557351 + 0.202859i
\(33\) 0.738570 + 4.18864i 0.128569 + 0.729148i
\(34\) 0.504651 2.86202i 0.0865470 0.490832i
\(35\) 4.92029 + 1.79084i 0.831682 + 0.302707i
\(36\) 0.766044 0.642788i 0.127674 0.107131i
\(37\) −6.43288 −1.05756 −0.528780 0.848759i \(-0.677350\pi\)
−0.528780 + 0.848759i \(0.677350\pi\)
\(38\) 0 0
\(39\) −3.61803 −0.579349
\(40\) −2.91421 + 2.44531i −0.460776 + 0.386637i
\(41\) −8.67623 3.15789i −1.35500 0.493179i −0.440495 0.897755i \(-0.645197\pi\)
−0.914505 + 0.404576i \(0.867419\pi\)
\(42\) 1.01655 5.76517i 0.156858 0.889584i
\(43\) −1.09854 6.23013i −0.167526 0.950086i −0.946422 0.322933i \(-0.895331\pi\)
0.778896 0.627153i \(-0.215780\pi\)
\(44\) −2.10122 + 0.764780i −0.316770 + 0.115295i
\(45\) 1.00000 1.73205i 0.149071 0.258199i
\(46\) 1.53884 + 2.66535i 0.226890 + 0.392985i
\(47\) −1.93646 1.62488i −0.282461 0.237013i 0.490538 0.871420i \(-0.336800\pi\)
−0.773000 + 0.634406i \(0.781245\pi\)
\(48\) 2.14505 + 1.79991i 0.309612 + 0.259795i
\(49\) −5.47214 9.47802i −0.781734 1.35400i
\(50\) 2.04087 3.53489i 0.288623 0.499909i
\(51\) 2.73091 0.993969i 0.382403 0.139183i
\(52\) −0.330298 1.87322i −0.0458042 0.259768i
\(53\) 0.0779729 0.442206i 0.0107104 0.0607417i −0.978984 0.203936i \(-0.934626\pi\)
0.989695 + 0.143195i \(0.0457375\pi\)
\(54\) −5.99709 2.18276i −0.816100 0.297036i
\(55\) −3.42585 + 2.87463i −0.461942 + 0.387616i
\(56\) 13.0373 1.74218
\(57\) 0 0
\(58\) −3.09017 −0.405759
\(59\) −2.14505 + 1.79991i −0.279262 + 0.234329i −0.771650 0.636047i \(-0.780568\pi\)
0.492388 + 0.870376i \(0.336124\pi\)
\(60\) −0.843897 0.307153i −0.108947 0.0396533i
\(61\) −0.0916626 + 0.519845i −0.0117362 + 0.0665593i −0.990113 0.140269i \(-0.955203\pi\)
0.978377 + 0.206829i \(0.0663143\pi\)
\(62\) −0.239976 1.36097i −0.0304770 0.172843i
\(63\) −6.44075 + 2.34424i −0.811458 + 0.295347i
\(64\) −4.35410 + 7.54153i −0.544263 + 0.942691i
\(65\) −1.90211 3.29456i −0.235928 0.408639i
\(66\) 3.83022 + 3.21394i 0.471468 + 0.395608i
\(67\) −0.131387 0.110247i −0.0160515 0.0134688i 0.634727 0.772737i \(-0.281113\pi\)
−0.650778 + 0.759268i \(0.725557\pi\)
\(68\) 0.763932 + 1.32317i 0.0926404 + 0.160458i
\(69\) −1.53884 + 2.66535i −0.185255 + 0.320871i
\(70\) 5.78415 2.10526i 0.691339 0.251627i
\(71\) 2.10795 + 11.9548i 0.250168 + 1.41877i 0.808178 + 0.588939i \(0.200454\pi\)
−0.558009 + 0.829835i \(0.688435\pi\)
\(72\) 0.864733 4.90414i 0.101910 0.577959i
\(73\) −8.45723 3.07818i −0.989844 0.360274i −0.204184 0.978932i \(-0.565454\pi\)
−0.785660 + 0.618659i \(0.787676\pi\)
\(74\) −5.79306 + 4.86096i −0.673430 + 0.565075i
\(75\) 4.08174 0.471319
\(76\) 0 0
\(77\) 15.3262 1.74659
\(78\) −3.25818 + 2.73394i −0.368916 + 0.309558i
\(79\) 7.14961 + 2.60224i 0.804394 + 0.292775i 0.711306 0.702883i \(-0.248104\pi\)
0.0930877 + 0.995658i \(0.470326\pi\)
\(80\) −0.511267 + 2.89954i −0.0571614 + 0.324179i
\(81\) −0.265311 1.50465i −0.0294790 0.167184i
\(82\) −10.1995 + 3.71232i −1.12635 + 0.409957i
\(83\) −0.618034 + 1.07047i −0.0678380 + 0.117499i −0.897949 0.440099i \(-0.854943\pi\)
0.830111 + 0.557598i \(0.188277\pi\)
\(84\) 1.53884 + 2.66535i 0.167901 + 0.290814i
\(85\) 2.34082 + 1.96418i 0.253898 + 0.213046i
\(86\) −5.69703 4.78037i −0.614326 0.515481i
\(87\) −1.54508 2.67617i −0.165650 0.286915i
\(88\) −5.56758 + 9.64333i −0.593506 + 1.02798i
\(89\) 16.6697 6.06729i 1.76699 0.643131i 0.766989 0.641660i \(-0.221754\pi\)
0.999999 0.00147104i \(-0.000468248\pi\)
\(90\) −0.408271 2.31542i −0.0430356 0.244067i
\(91\) −2.26390 + 12.8392i −0.237321 + 1.34592i
\(92\) −1.52045 0.553400i −0.158518 0.0576960i
\(93\) 1.05865 0.888311i 0.109777 0.0921135i
\(94\) −2.97168 −0.306506
\(95\) 0 0
\(96\) −3.94427 −0.402561
\(97\) −12.0008 + 10.0699i −1.21850 + 1.02244i −0.219595 + 0.975591i \(0.570473\pi\)
−0.998902 + 0.0468489i \(0.985082\pi\)
\(98\) −12.0899 4.40035i −1.22126 0.444502i
\(99\) 1.01655 5.76517i 0.102168 0.579421i
\(100\) 0.372631 + 2.11330i 0.0372631 + 0.211330i
\(101\) 13.1033 4.76922i 1.30383 0.474555i 0.405588 0.914056i \(-0.367067\pi\)
0.898242 + 0.439501i \(0.144845\pi\)
\(102\) 1.70820 2.95870i 0.169137 0.292955i
\(103\) −0.502029 0.869539i −0.0494663 0.0856782i 0.840232 0.542227i \(-0.182419\pi\)
−0.889698 + 0.456549i \(0.849085\pi\)
\(104\) −7.25608 6.08857i −0.711517 0.597034i
\(105\) 4.71528 + 3.95659i 0.460165 + 0.386124i
\(106\) −0.263932 0.457144i −0.0256353 0.0444017i
\(107\) 5.79210 10.0322i 0.559943 0.969850i −0.437557 0.899190i \(-0.644156\pi\)
0.997501 0.0706593i \(-0.0225103\pi\)
\(108\) 3.15285 1.14755i 0.303384 0.110423i
\(109\) −0.126163 0.715505i −0.0120842 0.0685329i 0.978169 0.207809i \(-0.0666334\pi\)
−0.990254 + 0.139277i \(0.955522\pi\)
\(110\) −0.912922 + 5.17744i −0.0870437 + 0.493650i
\(111\) −7.10624 2.58646i −0.674495 0.245496i
\(112\) 7.72952 6.48584i 0.730371 0.612854i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −3.23607 −0.301765
\(116\) 1.24451 1.04427i 0.115550 0.0969582i
\(117\) 4.67948 + 1.70319i 0.432618 + 0.157460i
\(118\) −0.571614 + 3.24179i −0.0526214 + 0.298431i
\(119\) −1.81847 10.3130i −0.166699 0.945395i
\(120\) −4.20243 + 1.52956i −0.383628 + 0.139629i
\(121\) −1.04508 + 1.81014i −0.0950077 + 0.164558i
\(122\) 0.310271 + 0.537405i 0.0280906 + 0.0486543i
\(123\) −8.31472 6.97688i −0.749713 0.629084i
\(124\) 0.556564 + 0.467013i 0.0499809 + 0.0419390i
\(125\) 5.23607 + 9.06914i 0.468328 + 0.811168i
\(126\) −4.02874 + 6.97798i −0.358909 + 0.621648i
\(127\) −14.9819 + 5.45298i −1.32943 + 0.483874i −0.906469 0.422273i \(-0.861232\pi\)
−0.422963 + 0.906147i \(0.639010\pi\)
\(128\) 0.612407 + 3.47313i 0.0541296 + 0.306984i
\(129\) 1.29141 7.32395i 0.113702 0.644838i
\(130\) −4.20243 1.52956i −0.368578 0.134151i
\(131\) −3.89930 + 3.27190i −0.340683 + 0.285867i −0.797036 0.603932i \(-0.793600\pi\)
0.456353 + 0.889799i \(0.349155\pi\)
\(132\) −2.62866 −0.228795
\(133\) 0 0
\(134\) −0.201626 −0.0174178
\(135\) 5.14046 4.31336i 0.442421 0.371235i
\(136\) 7.14961 + 2.60224i 0.613074 + 0.223141i
\(137\) −0.817571 + 4.63668i −0.0698498 + 0.396138i 0.929759 + 0.368169i \(0.120015\pi\)
−0.999609 + 0.0279692i \(0.991096\pi\)
\(138\) 0.628265 + 3.56307i 0.0534815 + 0.303308i
\(139\) 0.854961 0.311180i 0.0725168 0.0263940i −0.305507 0.952190i \(-0.598826\pi\)
0.378024 + 0.925796i \(0.376604\pi\)
\(140\) −1.61803 + 2.80252i −0.136749 + 0.236856i
\(141\) −1.48584 2.57355i −0.125130 0.216732i
\(142\) 10.9318 + 9.17291i 0.917380 + 0.769773i
\(143\) −8.53003 7.15755i −0.713317 0.598544i
\(144\) −1.92705 3.33775i −0.160588 0.278146i
\(145\) 1.62460 2.81389i 0.134916 0.233681i
\(146\) −9.94207 + 3.61862i −0.822812 + 0.299479i
\(147\) −2.23412 12.6703i −0.184267 1.04503i
\(148\) 0.690380 3.91534i 0.0567489 0.321839i
\(149\) 21.6453 + 7.87824i 1.77325 + 0.645411i 0.999935 + 0.0113907i \(0.00362585\pi\)
0.773317 + 0.634020i \(0.218596\pi\)
\(150\) 3.67577 3.08434i 0.300125 0.251835i
\(151\) −2.45714 −0.199959 −0.0999797 0.994989i \(-0.531878\pi\)
−0.0999797 + 0.994989i \(0.531878\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 13.8019 11.5812i 1.11219 0.933236i
\(155\) 1.36545 + 0.496984i 0.109676 + 0.0399187i
\(156\) 0.388289 2.20210i 0.0310880 0.176309i
\(157\) 2.70237 + 15.3259i 0.215672 + 1.22314i 0.879736 + 0.475462i \(0.157719\pi\)
−0.664064 + 0.747676i \(0.731170\pi\)
\(158\) 8.40487 3.05912i 0.668655 0.243371i
\(159\) 0.263932 0.457144i 0.0209312 0.0362539i
\(160\) −2.07363 3.59163i −0.163935 0.283943i
\(161\) 8.49556 + 7.12862i 0.669544 + 0.561814i
\(162\) −1.37590 1.15452i −0.108101 0.0907075i
\(163\) −3.26393 5.65330i −0.255651 0.442800i 0.709421 0.704785i \(-0.248956\pi\)
−0.965072 + 0.261984i \(0.915623\pi\)
\(164\) 2.85317 4.94183i 0.222795 0.385892i
\(165\) −4.94026 + 1.79811i −0.384598 + 0.139982i
\(166\) 0.252326 + 1.43101i 0.0195843 + 0.111068i
\(167\) 1.19503 6.77736i 0.0924743 0.524448i −0.903018 0.429603i \(-0.858653\pi\)
0.995492 0.0948446i \(-0.0302354\pi\)
\(168\) 14.4020 + 5.24188i 1.11113 + 0.404420i
\(169\) −2.70250 + 2.26767i −0.207885 + 0.174436i
\(170\) 3.59222 0.275511
\(171\) 0 0
\(172\) 3.90983 0.298122
\(173\) 11.9196 10.0017i 0.906230 0.760418i −0.0651678 0.997874i \(-0.520758\pi\)
0.971398 + 0.237457i \(0.0763138\pi\)
\(174\) −3.41363 1.24246i −0.258787 0.0941907i
\(175\) 2.55405 14.4848i 0.193068 1.09494i
\(176\) 1.49651 + 8.48711i 0.112803 + 0.639740i
\(177\) −3.09328 + 1.12586i −0.232505 + 0.0846249i
\(178\) 10.4271 18.0602i 0.781541 1.35367i
\(179\) 9.14729 + 15.8436i 0.683701 + 1.18420i 0.973843 + 0.227221i \(0.0729640\pi\)
−0.290142 + 0.956983i \(0.593703\pi\)
\(180\) 0.946883 + 0.794529i 0.0705765 + 0.0592207i
\(181\) 18.8611 + 15.8264i 1.40194 + 1.17637i 0.960231 + 0.279205i \(0.0900710\pi\)
0.441706 + 0.897160i \(0.354373\pi\)
\(182\) 7.66312 + 13.2729i 0.568028 + 0.983854i
\(183\) −0.310271 + 0.537405i −0.0229359 + 0.0397261i
\(184\) −7.57155 + 2.75582i −0.558182 + 0.203162i
\(185\) −1.38076 7.83068i −0.101515 0.575723i
\(186\) 0.282109 1.59992i 0.0206852 0.117312i
\(187\) 8.40487 + 3.05912i 0.614625 + 0.223705i
\(188\) 1.19680 1.00423i 0.0872853 0.0732411i
\(189\) −22.9969 −1.67278
\(190\) 0 0
\(191\) −17.0000 −1.23008 −0.615038 0.788497i \(-0.710860\pi\)
−0.615038 + 0.788497i \(0.710860\pi\)
\(192\) −7.84208 + 6.58029i −0.565953 + 0.474891i
\(193\) −4.94026 1.79811i −0.355607 0.129431i 0.158038 0.987433i \(-0.449483\pi\)
−0.513646 + 0.858002i \(0.671705\pi\)
\(194\) −3.19798 + 18.1366i −0.229601 + 1.30213i
\(195\) −0.776578 4.40419i −0.0556119 0.315391i
\(196\) 6.35602 2.31340i 0.454001 0.165243i
\(197\) −1.26393 + 2.18919i −0.0900514 + 0.155974i −0.907533 0.419982i \(-0.862036\pi\)
0.817481 + 0.575955i \(0.195370\pi\)
\(198\) −3.44095 5.95991i −0.244538 0.423552i
\(199\) −14.5122 12.1771i −1.02874 0.863215i −0.0380389 0.999276i \(-0.512111\pi\)
−0.990700 + 0.136061i \(0.956556\pi\)
\(200\) 8.18605 + 6.86892i 0.578841 + 0.485706i
\(201\) −0.100813 0.174613i −0.00711081 0.0123163i
\(202\) 8.19624 14.1963i 0.576685 0.998848i
\(203\) −10.4636 + 3.80845i −0.734403 + 0.267301i
\(204\) 0.311892 + 1.76882i 0.0218368 + 0.123843i
\(205\) 1.98179 11.2393i 0.138414 0.784986i
\(206\) −1.10916 0.403700i −0.0772786 0.0281271i
\(207\) 3.24502 2.72289i 0.225544 0.189254i
\(208\) −7.33094 −0.508309
\(209\) 0 0
\(210\) 7.23607 0.499336
\(211\) 13.8019 11.5812i 0.950161 0.797279i −0.0291640 0.999575i \(-0.509285\pi\)
0.979325 + 0.202295i \(0.0648401\pi\)
\(212\) 0.260778 + 0.0949156i 0.0179103 + 0.00651883i
\(213\) −2.47805 + 14.0537i −0.169793 + 0.962944i
\(214\) −2.36475 13.4111i −0.161651 0.916767i
\(215\) 7.34808 2.67448i 0.501135 0.182398i
\(216\) 8.35410 14.4697i 0.568425 0.984540i
\(217\) −2.48990 4.31263i −0.169025 0.292760i
\(218\) −0.654280 0.549006i −0.0443134 0.0371834i
\(219\) −8.10485 6.80078i −0.547675 0.459554i
\(220\) −1.38197 2.39364i −0.0931721 0.161379i
\(221\) −3.80423 + 6.58911i −0.255900 + 0.443232i
\(222\) −8.35389 + 3.04057i −0.560676 + 0.204070i
\(223\) −2.36028 13.3858i −0.158056 0.896380i −0.955938 0.293567i \(-0.905158\pi\)
0.797883 0.602813i \(-0.205953\pi\)
\(224\) −2.46804 + 13.9969i −0.164903 + 0.935209i
\(225\) −5.27923 1.92148i −0.351948 0.128099i
\(226\) 0 0
\(227\) 29.7073 1.97174 0.985870 0.167511i \(-0.0535729\pi\)
0.985870 + 0.167511i \(0.0535729\pi\)
\(228\) 0 0
\(229\) 4.09017 0.270286 0.135143 0.990826i \(-0.456851\pi\)
0.135143 + 0.990826i \(0.456851\pi\)
\(230\) −2.91421 + 2.44531i −0.192157 + 0.161239i
\(231\) 16.9305 + 6.16220i 1.11395 + 0.405443i
\(232\) 1.40484 7.96726i 0.0922325 0.523076i
\(233\) 2.33941 + 13.2675i 0.153260 + 0.869180i 0.960359 + 0.278765i \(0.0899250\pi\)
−0.807099 + 0.590416i \(0.798964\pi\)
\(234\) 5.50106 2.00222i 0.359615 0.130889i
\(235\) 1.56231 2.70599i 0.101914 0.176520i
\(236\) −0.865300 1.49874i −0.0563262 0.0975599i
\(237\) 6.85171 + 5.74927i 0.445066 + 0.373455i
\(238\) −9.43057 7.91319i −0.611293 0.512936i
\(239\) 7.92705 + 13.7301i 0.512758 + 0.888123i 0.999891 + 0.0147952i \(0.00470963\pi\)
−0.487132 + 0.873328i \(0.661957\pi\)
\(240\) −1.73060 + 2.99749i −0.111710 + 0.193487i
\(241\) 21.2876 7.74807i 1.37126 0.499097i 0.451742 0.892149i \(-0.350803\pi\)
0.919516 + 0.393052i \(0.128581\pi\)
\(242\) 0.426678 + 2.41981i 0.0274279 + 0.155551i
\(243\) −2.51622 + 14.2702i −0.161416 + 0.915435i
\(244\) −0.306563 0.111580i −0.0196257 0.00714317i
\(245\) 10.3629 8.69554i 0.662064 0.555538i
\(246\) −12.7598 −0.813533
\(247\) 0 0
\(248\) 3.61803 0.229745
\(249\) −1.11313 + 0.934025i −0.0705416 + 0.0591914i
\(250\) 11.5683 + 4.21052i 0.731644 + 0.266297i
\(251\) 1.80879 10.2582i 0.114170 0.647489i −0.872988 0.487742i \(-0.837821\pi\)
0.987158 0.159748i \(-0.0510681\pi\)
\(252\) −0.735585 4.17171i −0.0463375 0.262793i
\(253\) −8.90090 + 3.23966i −0.559595 + 0.203676i
\(254\) −9.37132 + 16.2316i −0.588009 + 1.01846i
\(255\) 1.79611 + 3.11096i 0.112477 + 0.194816i
\(256\) −10.1658 8.53012i −0.635363 0.533132i
\(257\) −6.94154 5.82464i −0.433001 0.363331i 0.400081 0.916480i \(-0.368982\pi\)
−0.833083 + 0.553148i \(0.813426\pi\)
\(258\) −4.37132 7.57135i −0.272147 0.471372i
\(259\) −13.6251 + 23.5993i −0.846620 + 1.46639i
\(260\) 2.20935 0.804138i 0.137018 0.0498705i
\(261\) 0.738570 + 4.18864i 0.0457163 + 0.259270i
\(262\) −1.03909 + 5.89295i −0.0641949 + 0.364067i
\(263\) −11.1716 4.06612i −0.688869 0.250728i −0.0262181 0.999656i \(-0.508346\pi\)
−0.662651 + 0.748928i \(0.730569\pi\)
\(264\) −10.0277 + 8.41420i −0.617159 + 0.517858i
\(265\) 0.555029 0.0340952
\(266\) 0 0
\(267\) 20.8541 1.27625
\(268\) 0.0812016 0.0681362i 0.00496018 0.00416208i
\(269\) −7.24921 2.63850i −0.441992 0.160872i 0.111431 0.993772i \(-0.464457\pi\)
−0.553423 + 0.832900i \(0.686679\pi\)
\(270\) 1.36983 7.76870i 0.0833653 0.472788i
\(271\) 2.47805 + 14.0537i 0.150531 + 0.853702i 0.962759 + 0.270362i \(0.0871434\pi\)
−0.812228 + 0.583340i \(0.801746\pi\)
\(272\) 5.53342 2.01400i 0.335513 0.122117i
\(273\) −7.66312 + 13.2729i −0.463793 + 0.803313i
\(274\) 2.76741 + 4.79330i 0.167186 + 0.289574i
\(275\) 9.62328 + 8.07489i 0.580306 + 0.486934i
\(276\) −1.45710 1.22265i −0.0877073 0.0735952i
\(277\) 9.61803 + 16.6589i 0.577892 + 1.00094i 0.995721 + 0.0924121i \(0.0294577\pi\)
−0.417829 + 0.908526i \(0.637209\pi\)
\(278\) 0.534785 0.926274i 0.0320743 0.0555542i
\(279\) −1.78740 + 0.650561i −0.107009 + 0.0389481i
\(280\) 2.79833 + 15.8701i 0.167232 + 0.948422i
\(281\) 0.768353 4.35755i 0.0458361 0.259949i −0.953275 0.302104i \(-0.902311\pi\)
0.999111 + 0.0421545i \(0.0134222\pi\)
\(282\) −3.28274 1.19482i −0.195485 0.0711505i
\(283\) −0.696970 + 0.584827i −0.0414306 + 0.0347644i −0.663268 0.748382i \(-0.730831\pi\)
0.621837 + 0.783146i \(0.286387\pi\)
\(284\) −7.50245 −0.445189
\(285\) 0 0
\(286\) −13.0902 −0.774038
\(287\) −29.9614 + 25.1406i −1.76857 + 1.48400i
\(288\) 5.10143 + 1.85677i 0.300604 + 0.109411i
\(289\) −1.89078 + 10.7231i −0.111222 + 0.630772i
\(290\) −0.663277 3.76163i −0.0389490 0.220891i
\(291\) −17.3058 + 6.29878i −1.01448 + 0.369241i
\(292\) 2.78115 4.81710i 0.162755 0.281899i
\(293\) 12.3637 + 21.4146i 0.722297 + 1.25106i 0.960077 + 0.279736i \(0.0902470\pi\)
−0.237780 + 0.971319i \(0.576420\pi\)
\(294\) −11.5861 9.72191i −0.675717 0.566993i
\(295\) −2.65143 2.22482i −0.154372 0.129534i
\(296\) −9.89919 17.1459i −0.575379 0.996585i
\(297\) 9.82084 17.0102i 0.569863 0.987031i
\(298\) 25.4456 9.26143i 1.47402 0.536500i
\(299\) −1.39917 7.93507i −0.0809159 0.458897i
\(300\) −0.438054 + 2.48433i −0.0252911 + 0.143433i
\(301\) −25.1822 9.16558i −1.45148 0.528295i
\(302\) −2.21275 + 1.85672i −0.127330 + 0.106842i
\(303\) 16.3925 0.941723
\(304\) 0 0
\(305\) −0.652476 −0.0373607
\(306\) −3.60216 + 3.02257i −0.205922 + 0.172789i
\(307\) −25.9291 9.43741i −1.47985 0.538622i −0.529095 0.848563i \(-0.677468\pi\)
−0.950756 + 0.309941i \(0.899691\pi\)
\(308\) −1.64482 + 9.32823i −0.0937223 + 0.531525i
\(309\) −0.204964 1.16241i −0.0116600 0.0661271i
\(310\) 1.60519 0.584240i 0.0911685 0.0331826i
\(311\) 2.76393 4.78727i 0.156728 0.271461i −0.776959 0.629551i \(-0.783239\pi\)
0.933687 + 0.358090i \(0.116572\pi\)
\(312\) −5.56758 9.64333i −0.315202 0.545946i
\(313\) 5.83575 + 4.89678i 0.329856 + 0.276782i 0.792641 0.609688i \(-0.208705\pi\)
−0.462785 + 0.886471i \(0.653150\pi\)
\(314\) 14.0145 + 11.7595i 0.790882 + 0.663629i
\(315\) −4.23607 7.33708i −0.238675 0.413398i
\(316\) −2.35114 + 4.07230i −0.132262 + 0.229085i
\(317\) 8.31584 3.02672i 0.467064 0.169997i −0.0977578 0.995210i \(-0.531167\pi\)
0.564822 + 0.825213i \(0.308945\pi\)
\(318\) −0.107756 0.611114i −0.00604265 0.0342696i
\(319\) 1.65149 9.36608i 0.0924658 0.524400i
\(320\) −10.1148 3.68148i −0.565434 0.205801i
\(321\) 10.4320 8.75350i 0.582259 0.488573i
\(322\) 13.0373 0.726539
\(323\) 0 0
\(324\) 0.944272 0.0524596
\(325\) −8.18605 + 6.86892i −0.454081 + 0.381019i
\(326\) −7.21117 2.62465i −0.399390 0.145366i
\(327\) 0.148313 0.841126i 0.00820174 0.0465144i
\(328\) −4.93446 27.9847i −0.272460 1.54520i
\(329\) −10.0624 + 3.66242i −0.554759 + 0.201916i
\(330\) −3.09017 + 5.35233i −0.170108 + 0.294636i
\(331\) −12.1392 21.0257i −0.667232 1.15568i −0.978675 0.205415i \(-0.934146\pi\)
0.311443 0.950265i \(-0.399188\pi\)
\(332\) −0.585206 0.491046i −0.0321173 0.0269497i
\(333\) 7.97347 + 6.69053i 0.436943 + 0.366639i
\(334\) −4.04508 7.00629i −0.221337 0.383367i
\(335\) 0.106001 0.183599i 0.00579146 0.0100311i
\(336\) 11.1464 4.05694i 0.608084 0.221324i
\(337\) 2.79833 + 15.8701i 0.152435 + 0.864501i 0.961094 + 0.276223i \(0.0890829\pi\)
−0.808659 + 0.588278i \(0.799806\pi\)
\(338\) −0.720163 + 4.08425i −0.0391717 + 0.222154i
\(339\) 0 0
\(340\) −1.44671 + 1.21393i −0.0784588 + 0.0658347i
\(341\) 4.25325 0.230327
\(342\) 0 0
\(343\) −16.7082 −0.902158
\(344\) 14.9150 12.5152i 0.804163 0.674773i
\(345\) −3.57480 1.30112i −0.192461 0.0700501i
\(346\) 3.17634 18.0139i 0.170761 0.968433i
\(347\) −4.31217 24.4555i −0.231490 1.31284i −0.849882 0.526973i \(-0.823327\pi\)
0.618392 0.785870i \(-0.287784\pi\)
\(348\) 1.79465 0.653200i 0.0962035 0.0350152i
\(349\) −5.69098 + 9.85707i −0.304631 + 0.527637i −0.977179 0.212417i \(-0.931867\pi\)
0.672548 + 0.740054i \(0.265200\pi\)
\(350\) −8.64527 14.9740i −0.462109 0.800396i
\(351\) 12.7992 + 10.7398i 0.683172 + 0.573250i
\(352\) −9.29918 7.80294i −0.495648 0.415898i
\(353\) −13.8090 23.9179i −0.734980 1.27302i −0.954732 0.297467i \(-0.903858\pi\)
0.219752 0.975556i \(-0.429475\pi\)
\(354\) −1.93487 + 3.35129i −0.102837 + 0.178119i
\(355\) −14.1000 + 5.13198i −0.748350 + 0.272377i
\(356\) 1.90382 + 10.7971i 0.100902 + 0.572245i
\(357\) 2.13774 12.1237i 0.113141 0.641655i
\(358\) 20.2096 + 7.35568i 1.06811 + 0.388760i
\(359\) −28.8171 + 24.1804i −1.52091 + 1.27619i −0.682938 + 0.730477i \(0.739298\pi\)
−0.837970 + 0.545716i \(0.816258\pi\)
\(360\) 6.15537 0.324416
\(361\) 0 0
\(362\) 28.9443 1.52128
\(363\) −1.88228 + 1.57942i −0.0987941 + 0.0828981i
\(364\) −7.57155 2.75582i −0.396857 0.144444i
\(365\) 1.93177 10.9556i 0.101113 0.573443i
\(366\) 0.126675 + 0.718408i 0.00662139 + 0.0375518i
\(367\) −20.1772 + 7.34390i −1.05324 + 0.383349i −0.809885 0.586588i \(-0.800471\pi\)
−0.243356 + 0.969937i \(0.578248\pi\)
\(368\) −3.11803 + 5.40059i −0.162539 + 0.281525i
\(369\) 7.46969 + 12.9379i 0.388857 + 0.673520i
\(370\) −7.16062 6.00847i −0.372263 0.312366i
\(371\) −1.45710 1.22265i −0.0756490 0.0634771i
\(372\) 0.427051 + 0.739674i 0.0221416 + 0.0383503i
\(373\) −2.15938 + 3.74016i −0.111809 + 0.193658i −0.916500 0.400036i \(-0.868998\pi\)
0.804691 + 0.593694i \(0.202331\pi\)
\(374\) 9.88051 3.59621i 0.510909 0.185956i
\(375\) 2.13774 + 12.1237i 0.110392 + 0.626066i
\(376\) 1.35098 7.66177i 0.0696713 0.395126i
\(377\) 7.60227 + 2.76700i 0.391537 + 0.142508i
\(378\) −20.7096 + 17.3774i −1.06519 + 0.893797i
\(379\) 7.95148 0.408440 0.204220 0.978925i \(-0.434534\pi\)
0.204220 + 0.978925i \(0.434534\pi\)
\(380\) 0 0
\(381\) −18.7426 −0.960215
\(382\) −15.3092 + 12.8459i −0.783285 + 0.657254i
\(383\) 13.1945 + 4.80242i 0.674209 + 0.245392i 0.656359 0.754449i \(-0.272096\pi\)
0.0178502 + 0.999841i \(0.494318\pi\)
\(384\) −0.719928 + 4.08291i −0.0367387 + 0.208355i
\(385\) 3.28964 + 18.6565i 0.167655 + 0.950822i
\(386\) −5.80762 + 2.11380i −0.295600 + 0.107590i
\(387\) −5.11803 + 8.86469i −0.260164 + 0.450618i
\(388\) −4.84104 8.38493i −0.245767 0.425680i
\(389\) 10.0277 + 8.41420i 0.508422 + 0.426617i 0.860574 0.509326i \(-0.170105\pi\)
−0.352151 + 0.935943i \(0.614550\pi\)
\(390\) −4.02733 3.37933i −0.203932 0.171119i
\(391\) 3.23607 + 5.60503i 0.163655 + 0.283459i
\(392\) 16.8415 29.1703i 0.850624 1.47332i
\(393\) −5.62298 + 2.04660i −0.283642 + 0.103237i
\(394\) 0.516027 + 2.92654i 0.0259971 + 0.147437i
\(395\) −1.63309 + 9.26169i −0.0821694 + 0.466006i
\(396\) 3.39984 + 1.23744i 0.170848 + 0.0621837i
\(397\) 11.2671 9.45425i 0.565481 0.474495i −0.314662 0.949204i \(-0.601891\pi\)
0.880143 + 0.474709i \(0.157447\pi\)
\(398\) −22.2703 −1.11631
\(399\) 0 0
\(400\) 8.27051 0.413525
\(401\) 5.82841 4.89062i 0.291057 0.244226i −0.485553 0.874207i \(-0.661382\pi\)
0.776610 + 0.629981i \(0.216937\pi\)
\(402\) −0.222731 0.0810676i −0.0111088 0.00404328i
\(403\) −0.628265 + 3.56307i −0.0312961 + 0.177489i
\(404\) 1.49651 + 8.48711i 0.0744540 + 0.422249i
\(405\) 1.77465 0.645920i 0.0881831 0.0320960i
\(406\) −6.54508 + 11.3364i −0.324827 + 0.562617i
\(407\) −11.6372 20.1562i −0.576834 0.999106i
\(408\) 6.85171 + 5.74927i 0.339210 + 0.284631i
\(409\) −16.7973 14.0946i −0.830572 0.696933i 0.124850 0.992176i \(-0.460155\pi\)
−0.955422 + 0.295243i \(0.904600\pi\)
\(410\) −6.70820 11.6190i −0.331295 0.573819i
\(411\) −2.76741 + 4.79330i −0.136506 + 0.236436i
\(412\) 0.583118 0.212238i 0.0287282 0.0104562i
\(413\) 2.05976 + 11.6815i 0.101354 + 0.574809i
\(414\) 0.864733 4.90414i 0.0424993 0.241025i
\(415\) −1.43572 0.522560i −0.0704768 0.0256515i
\(416\) 7.91036 6.63758i 0.387837 0.325434i
\(417\) 1.06957 0.0523770
\(418\) 0 0
\(419\) −33.4164 −1.63250 −0.816249 0.577700i \(-0.803950\pi\)
−0.816249 + 0.577700i \(0.803950\pi\)
\(420\) −2.91421 + 2.44531i −0.142199 + 0.119319i
\(421\) −13.2941 4.83867i −0.647917 0.235823i −0.00290601 0.999996i \(-0.500925\pi\)
−0.645011 + 0.764173i \(0.723147\pi\)
\(422\) 3.67793 20.8586i 0.179039 1.01538i
\(423\) 0.710251 + 4.02803i 0.0345336 + 0.195850i
\(424\) 1.29862 0.472660i 0.0630667 0.0229544i
\(425\) 4.29180 7.43361i 0.208183 0.360583i
\(426\) 8.38800 + 14.5284i 0.406400 + 0.703905i
\(427\) 1.71293 + 1.43732i 0.0828944 + 0.0695566i
\(428\) 5.48444 + 4.60199i 0.265100 + 0.222446i
\(429\) −6.54508 11.3364i −0.316000 0.547328i
\(430\) 4.59628 7.96099i 0.221652 0.383913i
\(431\) −14.9819 + 5.45298i −0.721655 + 0.262661i −0.676628 0.736325i \(-0.736559\pi\)
−0.0450266 + 0.998986i \(0.514337\pi\)
\(432\) −2.24549 12.7348i −0.108036 0.612704i
\(433\) 1.62171 9.19717i 0.0779344 0.441988i −0.920724 0.390213i \(-0.872401\pi\)
0.998659 0.0517744i \(-0.0164877\pi\)
\(434\) −5.50106 2.00222i −0.264059 0.0961097i
\(435\) 2.92603 2.45523i 0.140292 0.117719i
\(436\) 0.449028 0.0215045
\(437\) 0 0
\(438\) −12.4377 −0.594296
\(439\) 8.87401 7.44617i 0.423533 0.355387i −0.405972 0.913885i \(-0.633067\pi\)
0.829505 + 0.558499i \(0.188623\pi\)
\(440\) −12.9338 4.70750i −0.616593 0.224421i
\(441\) −3.07500 + 17.4392i −0.146428 + 0.830437i
\(442\) 1.55316 + 8.80839i 0.0738761 + 0.418972i
\(443\) 6.74731 2.45582i 0.320574 0.116680i −0.176721 0.984261i \(-0.556549\pi\)
0.497295 + 0.867581i \(0.334327\pi\)
\(444\) 2.33688 4.04760i 0.110903 0.192090i
\(445\) 10.9637 + 18.9896i 0.519727 + 0.900193i
\(446\) −12.2404 10.2709i −0.579600 0.486342i
\(447\) 20.7434 + 17.4058i 0.981130 + 0.823266i
\(448\) 18.4443 + 31.9464i 0.871410 + 1.50933i
\(449\) −17.4823 + 30.2802i −0.825040 + 1.42901i 0.0768484 + 0.997043i \(0.475514\pi\)
−0.901889 + 0.431969i \(0.857819\pi\)
\(450\) −6.20610 + 2.25884i −0.292558 + 0.106483i
\(451\) −5.80080 32.8980i −0.273149 1.54911i
\(452\) 0 0
\(453\) −2.71434 0.987940i −0.127531 0.0464175i
\(454\) 26.7526 22.4481i 1.25556 1.05354i
\(455\) −16.1150 −0.755481
\(456\) 0 0
\(457\) 19.7082 0.921911 0.460955 0.887423i \(-0.347507\pi\)
0.460955 + 0.887423i \(0.347507\pi\)
\(458\) 3.68336 3.09070i 0.172112 0.144419i
\(459\) −12.6114 4.59018i −0.588651 0.214251i
\(460\) 0.347296 1.96962i 0.0161928 0.0918338i
\(461\) −5.93535 33.6611i −0.276437 1.56775i −0.734360 0.678760i \(-0.762518\pi\)
0.457923 0.888992i \(-0.348594\pi\)
\(462\) 19.9030 7.24410i 0.925972 0.337026i
\(463\) −8.42705 + 14.5961i −0.391638 + 0.678337i −0.992666 0.120891i \(-0.961425\pi\)
0.601028 + 0.799228i \(0.294758\pi\)
\(464\) −3.13068 5.42250i −0.145338 0.251733i
\(465\) 1.30856 + 1.09801i 0.0606830 + 0.0509191i
\(466\) 12.1322 + 10.1801i 0.562013 + 0.471585i
\(467\) 0.118034 + 0.204441i 0.00546196 + 0.00946040i 0.868743 0.495262i \(-0.164928\pi\)
−0.863282 + 0.504723i \(0.831595\pi\)
\(468\) −1.53884 + 2.66535i −0.0711330 + 0.123206i
\(469\) −0.682727 + 0.248492i −0.0315254 + 0.0114743i
\(470\) −0.637845 3.61740i −0.0294216 0.166858i
\(471\) −3.17682 + 18.0167i −0.146380 + 0.830163i
\(472\) −8.09830 2.94754i −0.372755 0.135672i
\(473\) 17.5336 14.7125i 0.806198 0.676480i
\(474\) 10.5146 0.482953
\(475\) 0 0
\(476\) 6.47214 0.296650
\(477\) −0.556564 + 0.467013i −0.0254833 + 0.0213830i
\(478\) 17.5136 + 6.37444i 0.801055 + 0.291560i
\(479\) −4.70416 + 26.6786i −0.214938 + 1.21898i 0.666075 + 0.745885i \(0.267973\pi\)
−0.881013 + 0.473092i \(0.843138\pi\)
\(480\) −0.846602 4.80132i −0.0386419 0.219149i
\(481\) 18.6044 6.77144i 0.848287 0.308751i
\(482\) 13.3156 23.0633i 0.606509 1.05050i
\(483\) 6.51864 + 11.2906i 0.296608 + 0.513741i
\(484\) −0.989573 0.830351i −0.0449806 0.0377432i
\(485\) −14.8338 12.4470i −0.673568 0.565191i
\(486\) 8.51722 + 14.7523i 0.386349 + 0.669176i
\(487\) 7.77997 13.4753i 0.352544 0.610624i −0.634151 0.773210i \(-0.718650\pi\)
0.986694 + 0.162586i \(0.0519834\pi\)
\(488\) −1.52662 + 0.555645i −0.0691070 + 0.0251529i
\(489\) −1.33257 7.55738i −0.0602609 0.341757i
\(490\) 2.76152 15.6614i 0.124753 0.707508i
\(491\) 15.2893 + 5.56484i 0.689995 + 0.251138i 0.663133 0.748501i \(-0.269226\pi\)
0.0268622 + 0.999639i \(0.491448\pi\)
\(492\) 5.13878 4.31195i 0.231674 0.194398i
\(493\) −6.49839 −0.292673
\(494\) 0 0
\(495\) 7.23607 0.325237
\(496\) 2.14505 1.79991i 0.0963158 0.0808185i
\(497\) 48.3214 + 17.5876i 2.16751 + 0.788910i
\(498\) −0.296626 + 1.68225i −0.0132922 + 0.0753835i
\(499\) 3.73827 + 21.2008i 0.167348 + 0.949078i 0.946610 + 0.322380i \(0.104483\pi\)
−0.779262 + 0.626698i \(0.784406\pi\)
\(500\) −6.08182 + 2.21360i −0.271987 + 0.0989952i
\(501\) 4.04508 7.00629i 0.180721 0.313018i
\(502\) −6.12261 10.6047i −0.273265 0.473310i
\(503\) −21.9064 18.3816i −0.976757 0.819597i 0.00683980 0.999977i \(-0.497823\pi\)
−0.983597 + 0.180380i \(0.942267\pi\)
\(504\) −16.1595 13.5594i −0.719802 0.603986i
\(505\) 8.61803 + 14.9269i 0.383497 + 0.664237i
\(506\) −5.56758 + 9.64333i −0.247509 + 0.428699i
\(507\) −3.89714 + 1.41844i −0.173078 + 0.0629953i
\(508\) −1.71106 9.70389i −0.0759159 0.430541i
\(509\) −2.15614 + 12.2281i −0.0955694 + 0.542001i 0.899002 + 0.437944i \(0.144293\pi\)
−0.994571 + 0.104056i \(0.966818\pi\)
\(510\) 3.96824 + 1.44432i 0.175717 + 0.0639556i
\(511\) −29.2051 + 24.5060i −1.29196 + 1.08408i
\(512\) −22.6538 −1.00117
\(513\) 0 0
\(514\) −10.6525 −0.469861
\(515\) 0.950725 0.797753i 0.0418939 0.0351532i
\(516\) 4.31909 + 1.57202i 0.190137 + 0.0692044i
\(517\) 1.58817 9.00695i 0.0698476 0.396125i
\(518\) 5.56272 + 31.5478i 0.244412 + 1.38613i
\(519\) 17.1887 6.25616i 0.754499 0.274615i
\(520\) 5.85410 10.1396i 0.256719 0.444651i
\(521\) 1.48584 + 2.57355i 0.0650959 + 0.112749i 0.896737 0.442565i \(-0.145931\pi\)
−0.831641 + 0.555314i \(0.812598\pi\)
\(522\) 3.83022 + 3.21394i 0.167644 + 0.140670i
\(523\) −6.22257 5.22136i −0.272094 0.228314i 0.496522 0.868024i \(-0.334610\pi\)
−0.768616 + 0.639710i \(0.779055\pi\)
\(524\) −1.57295 2.72443i −0.0687146 0.119017i
\(525\) 8.64527 14.9740i 0.377310 0.653521i
\(526\) −13.1330 + 4.78001i −0.572625 + 0.208418i
\(527\) −0.504651 2.86202i −0.0219829 0.124671i
\(528\) −1.75925 + 9.97719i −0.0765615 + 0.434202i
\(529\) 15.1722 + 5.52222i 0.659660 + 0.240097i
\(530\) 0.499825 0.419403i 0.0217110 0.0182177i
\(531\) 4.53077 0.196619
\(532\) 0 0
\(533\) 28.4164 1.23085
\(534\) 18.7799 15.7582i 0.812687 0.681926i
\(535\) 13.4553 + 4.89733i 0.581724 + 0.211730i
\(536\) 0.0916626 0.519845i 0.00395922 0.0224539i
\(537\) 3.73458 + 21.1798i 0.161159 + 0.913978i
\(538\) −8.52196 + 3.10174i −0.367408 + 0.133726i
\(539\) 19.7984 34.2918i 0.852776 1.47705i
\(540\) 2.07363 + 3.59163i 0.0892347 + 0.154559i
\(541\) −5.13878 4.31195i −0.220934 0.185385i 0.525602 0.850730i \(-0.323840\pi\)
−0.746536 + 0.665345i \(0.768284\pi\)
\(542\) 12.8512 + 10.7834i 0.552004 + 0.463187i
\(543\) 14.4721 + 25.0665i 0.621059 + 1.07571i
\(544\) −4.14725 + 7.18325i −0.177812 + 0.307979i
\(545\) 0.843897 0.307153i 0.0361486 0.0131570i
\(546\) 3.12863 + 17.7434i 0.133893 + 0.759345i
\(547\) −5.08064 + 28.8137i −0.217232 + 1.23199i 0.659758 + 0.751478i \(0.270659\pi\)
−0.876990 + 0.480508i \(0.840452\pi\)
\(548\) −2.73435 0.995220i −0.116805 0.0425137i
\(549\) 0.654280 0.549006i 0.0279240 0.0234310i
\(550\) 14.7679 0.629704
\(551\) 0 0
\(552\) −9.47214 −0.403161
\(553\) 24.6896 20.7170i 1.04991 0.880976i
\(554\) 21.2496 + 7.73422i 0.902809 + 0.328596i
\(555\) 1.62318 9.20551i 0.0689002 0.390752i
\(556\) 0.0976434 + 0.553763i 0.00414100 + 0.0234848i
\(557\) −5.03739 + 1.83346i −0.213441 + 0.0776862i −0.446528 0.894770i \(-0.647340\pi\)
0.233087 + 0.972456i \(0.425117\pi\)
\(558\) −1.11803 + 1.93649i −0.0473302 + 0.0819782i
\(559\) 9.73508 + 16.8617i 0.411750 + 0.713172i
\(560\) 9.55421 + 8.01693i 0.403739 + 0.338777i
\(561\) 8.05467 + 6.75867i 0.340068 + 0.285351i
\(562\) −2.60081 4.50474i −0.109709 0.190021i
\(563\) −9.06154 + 15.6950i −0.381898 + 0.661467i −0.991334 0.131369i \(-0.958063\pi\)
0.609435 + 0.792836i \(0.291396\pi\)
\(564\) 1.72584 0.628154i 0.0726710 0.0264501i
\(565\) 0 0
\(566\) −0.185729 + 1.05332i −0.00780676 + 0.0442744i
\(567\) −6.08182 2.21360i −0.255412 0.0929625i
\(568\) −28.6199 + 24.0150i −1.20087 + 1.00765i
\(569\) −18.3601 −0.769695 −0.384848 0.922980i \(-0.625746\pi\)
−0.384848 + 0.922980i \(0.625746\pi\)
\(570\) 0 0
\(571\) 41.1033 1.72012 0.860060 0.510192i \(-0.170426\pi\)
0.860060 + 0.510192i \(0.170426\pi\)
\(572\) 5.27185 4.42361i 0.220427 0.184960i
\(573\) −18.7795 6.83517i −0.784524 0.285543i
\(574\) −7.98412 + 45.2802i −0.333251 + 1.88996i
\(575\) 1.57849 + 8.95207i 0.0658276 + 0.373327i
\(576\) 13.2404 4.81912i 0.551685 0.200797i
\(577\) 14.3541 24.8620i 0.597569 1.03502i −0.395610 0.918419i \(-0.629467\pi\)
0.993179 0.116601i \(-0.0372000\pi\)
\(578\) 6.40013 + 11.0853i 0.266210 + 0.461089i
\(579\) −4.73442 3.97265i −0.196756 0.165098i
\(580\) 1.53830 + 1.29079i 0.0638746 + 0.0535972i
\(581\) 2.61803 + 4.53457i 0.108614 + 0.188126i
\(582\) −10.8249 + 18.7493i −0.448706 + 0.777182i
\(583\) 1.52662 0.555645i 0.0632263 0.0230125i
\(584\) −4.80991 27.2783i −0.199035 1.12879i
\(585\) −1.06887 + 6.06185i −0.0441923 + 0.250627i
\(586\) 27.3158 + 9.94214i 1.12841 + 0.410706i
\(587\) 30.0139 25.1846i 1.23881 1.03948i 0.241189 0.970478i \(-0.422463\pi\)
0.997616 0.0690031i \(-0.0219818\pi\)
\(588\) 7.95148 0.327913
\(589\) 0 0
\(590\) −4.06888 −0.167513
\(591\) −2.27644 + 1.91016i −0.0936403 + 0.0785735i
\(592\) −14.3988 5.24074i −0.591788 0.215393i
\(593\) 5.33242 30.2417i 0.218976 1.24188i −0.654895 0.755720i \(-0.727287\pi\)
0.873871 0.486157i \(-0.161602\pi\)
\(594\) −4.00957 22.7394i −0.164514 0.933008i
\(595\) 12.1636 4.42720i 0.498660 0.181498i
\(596\) −7.11803 + 12.3288i −0.291566 + 0.505007i
\(597\) −11.1352 19.2867i −0.455732 0.789351i
\(598\) −7.25608 6.08857i −0.296723 0.248980i
\(599\) 15.8155 + 13.2708i 0.646206 + 0.542231i 0.905917 0.423455i \(-0.139183\pi\)
−0.259711 + 0.965686i \(0.583627\pi\)
\(600\) 6.28115 + 10.8793i 0.256427 + 0.444145i
\(601\) 20.6457 35.7595i 0.842157 1.45866i −0.0459108 0.998946i \(-0.514619\pi\)
0.888068 0.459713i \(-0.152048\pi\)
\(602\) −29.6035 + 10.7748i −1.20655 + 0.439148i
\(603\) 0.0481899 + 0.273298i 0.00196244 + 0.0111296i
\(604\) 0.263702 1.49553i 0.0107299 0.0608521i
\(605\) −2.42778 0.883641i −0.0987034 0.0359251i
\(606\) 14.7621 12.3868i 0.599668 0.503181i
\(607\) 1.51860 0.0616380 0.0308190 0.999525i \(-0.490188\pi\)
0.0308190 + 0.999525i \(0.490188\pi\)
\(608\) 0 0
\(609\) −13.0902 −0.530440
\(610\) −0.587580 + 0.493038i −0.0237904 + 0.0199625i
\(611\) 7.31078 + 2.66090i 0.295762 + 0.107649i
\(612\) 0.429282 2.43458i 0.0173527 0.0984120i
\(613\) −4.25922 24.1552i −0.172028 0.975621i −0.941518 0.336962i \(-0.890601\pi\)
0.769490 0.638659i \(-0.220510\pi\)
\(614\) −30.4815 + 11.0943i −1.23013 + 0.447731i
\(615\) 6.70820 11.6190i 0.270501 0.468521i
\(616\) 23.5847 + 40.8498i 0.950253 + 1.64589i
\(617\) 13.2300 + 11.1013i 0.532619 + 0.446920i 0.869005 0.494804i \(-0.164760\pi\)
−0.336386 + 0.941724i \(0.609205\pi\)
\(618\) −1.06294 0.891915i −0.0427578 0.0358781i
\(619\) −18.3885 31.8499i −0.739098 1.28016i −0.952902 0.303279i \(-0.901919\pi\)
0.213804 0.976877i \(-0.431415\pi\)
\(620\) −0.449028 + 0.777739i −0.0180334 + 0.0312348i
\(621\) 13.3557 4.86108i 0.535946 0.195068i
\(622\) −1.12843 6.39967i −0.0452461 0.256603i
\(623\) 13.0490 74.0043i 0.522796 2.96492i
\(624\) −8.09830 2.94754i −0.324192 0.117996i
\(625\) 3.38316 2.83881i 0.135327 0.113552i
\(626\) 8.95554 0.357935
\(627\) 0 0
\(628\) −9.61803 −0.383801
\(629\) −12.1824 + 10.2222i −0.485743 + 0.407587i
\(630\) −9.35896 3.40638i −0.372870 0.135713i
\(631\) −4.34120 + 24.6202i −0.172821 + 0.980114i 0.767809 + 0.640679i \(0.221347\pi\)
−0.940629 + 0.339435i \(0.889764\pi\)
\(632\) 4.06622 + 23.0607i 0.161745 + 0.917304i
\(633\) 19.9030 7.24410i 0.791074 0.287927i
\(634\) 5.20163 9.00948i 0.206583 0.357812i
\(635\) −9.85359 17.0669i −0.391028 0.677280i
\(636\) 0.249913 + 0.209702i 0.00990969 + 0.00831521i
\(637\) 25.8027 + 21.6510i 1.02234 + 0.857845i
\(638\) −5.59017 9.68246i −0.221317 0.383332i
\(639\) 9.82084 17.0102i 0.388506 0.672913i
\(640\) −4.09636 + 1.49095i −0.161923 + 0.0589351i
\(641\) −5.02107 28.4759i −0.198320 1.12473i −0.907610 0.419814i \(-0.862095\pi\)
0.709290 0.704917i \(-0.249016\pi\)
\(642\) 2.77993 15.7657i 0.109715 0.622224i
\(643\) −7.24334 2.63636i −0.285650 0.103968i 0.195222 0.980759i \(-0.437457\pi\)
−0.480871 + 0.876791i \(0.659680\pi\)
\(644\) −5.25055 + 4.40573i −0.206901 + 0.173610i
\(645\) 9.19256 0.361957
\(646\) 0 0
\(647\) −32.1246 −1.26295 −0.631474 0.775397i \(-0.717550\pi\)
−0.631474 + 0.775397i \(0.717550\pi\)
\(648\) 3.60216 3.02257i 0.141506 0.118738i
\(649\) −9.52013 3.46504i −0.373698 0.136015i
\(650\) −2.18142 + 12.3715i −0.0855624 + 0.485248i
\(651\) −1.01655 5.76517i −0.0398419 0.225955i
\(652\) 3.79114 1.37986i 0.148472 0.0540395i
\(653\) −9.87132 + 17.0976i −0.386295 + 0.669082i −0.991948 0.126647i \(-0.959579\pi\)
0.605653 + 0.795729i \(0.292912\pi\)
\(654\) −0.502029 0.869539i −0.0196309 0.0340017i
\(655\) −4.81980 4.04429i −0.188325 0.158023i
\(656\) −16.8475 14.1367i −0.657783 0.551946i
\(657\) 7.28115 + 12.6113i 0.284065 + 0.492015i
\(658\) −6.29412 + 10.9017i −0.245371 + 0.424994i
\(659\) 17.5517 6.38829i 0.683716 0.248852i 0.0232739 0.999729i \(-0.492591\pi\)
0.660442 + 0.750877i \(0.270369\pi\)
\(660\) −0.564217 3.19983i −0.0219621 0.124553i
\(661\) −0.876109 + 4.96866i −0.0340767 + 0.193258i −0.997094 0.0761810i \(-0.975727\pi\)
0.963017 + 0.269439i \(0.0868384\pi\)
\(662\) −26.8198 9.76160i −1.04238 0.379395i
\(663\) −6.85171 + 5.74927i −0.266098 + 0.223283i
\(664\) −3.80423 −0.147633
\(665\) 0 0
\(666\) 12.2361 0.474138
\(667\) 5.27185 4.42361i 0.204127 0.171283i
\(668\) 3.99675 + 1.45470i 0.154639 + 0.0562840i
\(669\) 2.77467 15.7360i 0.107275 0.608387i
\(670\) −0.0432772 0.245437i −0.00167194 0.00948207i
\(671\) −1.79465 + 0.653200i −0.0692818 + 0.0252165i
\(672\) −8.35410 + 14.4697i −0.322266 + 0.558182i
\(673\) −14.1271 24.4688i −0.544559 0.943204i −0.998635 0.0522410i \(-0.983364\pi\)
0.454075 0.890963i \(-0.349970\pi\)
\(674\) 14.5122 + 12.1771i 0.558987 + 0.469046i
\(675\) −14.4396 12.1163i −0.555782 0.466357i
\(676\) −1.09017 1.88823i −0.0419296 0.0726242i
\(677\) −5.84510 + 10.1240i −0.224645 + 0.389097i −0.956213 0.292672i \(-0.905456\pi\)
0.731568 + 0.681769i \(0.238789\pi\)
\(678\) 0 0
\(679\) 11.5236 + 65.3538i 0.442236 + 2.50805i
\(680\) −1.63309 + 9.26169i −0.0626260 + 0.355170i
\(681\) 32.8169 + 11.9444i 1.25755 + 0.457709i
\(682\) 3.83022 3.21394i 0.146667 0.123068i
\(683\) −32.7445 −1.25293 −0.626466 0.779449i \(-0.715499\pi\)
−0.626466 + 0.779449i \(0.715499\pi\)
\(684\) 0 0
\(685\) −5.81966 −0.222358
\(686\) −15.0464 + 12.6254i −0.574474 + 0.482041i
\(687\) 4.51831 + 1.64453i 0.172384 + 0.0627427i
\(688\) 2.61668 14.8400i 0.0997601 0.565768i
\(689\) 0.239976 + 1.36097i 0.00914235 + 0.0518489i
\(690\) −4.20243 + 1.52956i −0.159984 + 0.0582294i
\(691\) −23.1525 + 40.1013i −0.880762 + 1.52552i −0.0302661 + 0.999542i \(0.509635\pi\)
−0.850496 + 0.525982i \(0.823698\pi\)
\(692\) 4.80828 + 8.32819i 0.182783 + 0.316590i
\(693\) −18.9967 15.9401i −0.721623 0.605514i
\(694\) −22.3629 18.7647i −0.848885 0.712299i
\(695\) 0.562306 + 0.973942i 0.0213295 + 0.0369437i
\(696\) 4.75528 8.23639i 0.180249 0.312200i
\(697\) −21.4488 + 7.80673i −0.812432 + 0.295701i
\(698\) 2.32347 + 13.1770i 0.0879445 + 0.498758i
\(699\) −2.75014 + 15.5968i −0.104020 + 0.589927i
\(700\) 8.54197 + 3.10902i 0.322856 + 0.117510i
\(701\) −25.8484 + 21.6894i −0.976279 + 0.819196i −0.983524 0.180778i \(-0.942138\pi\)
0.00724458 + 0.999974i \(0.497694\pi\)
\(702\) 19.6417 0.741327
\(703\) 0 0
\(704\) −31.5066 −1.18745
\(705\) 2.81384 2.36109i 0.105975 0.0889237i
\(706\) −30.5089 11.1043i −1.14822 0.417918i
\(707\) 10.2572 58.1715i 0.385762 2.18776i
\(708\) −0.353277 2.00353i −0.0132770 0.0752974i
\(709\) −12.6073 + 4.58868i −0.473477 + 0.172332i −0.567727 0.823217i \(-0.692177\pi\)
0.0942497 + 0.995549i \(0.469955\pi\)
\(710\) −8.81966 + 15.2761i −0.330996 + 0.573302i
\(711\) −6.15537 10.6614i −0.230844 0.399834i
\(712\) 41.8235 + 35.0941i 1.56740 + 1.31521i
\(713\) 2.35764 + 1.97830i 0.0882944 + 0.0740878i
\(714\) −7.23607 12.5332i −0.270803 0.469045i
\(715\) 6.88191 11.9198i 0.257369 0.445776i
\(716\) −10.6248 + 3.86711i −0.397067 + 0.144521i
\(717\) 3.23639 + 18.3545i 0.120865 + 0.685460i
\(718\) −7.67918 + 43.5508i −0.286585 + 1.62530i
\(719\) −11.6352 4.23488i −0.433921 0.157934i 0.115818 0.993270i \(-0.463051\pi\)
−0.549740 + 0.835336i \(0.685273\pi\)
\(720\) 3.64938 3.06220i 0.136004 0.114121i
\(721\) −4.25325 −0.158399
\(722\) 0 0
\(723\) 26.6312 0.990425
\(724\) −11.6568 + 9.78124i −0.433222 + 0.363517i
\(725\) −8.57662 3.12163i −0.318528 0.115935i
\(726\) −0.501590 + 2.84466i −0.0186158 + 0.105575i
\(727\) −3.30899 18.7662i −0.122724 0.696001i −0.982634 0.185555i \(-0.940592\pi\)
0.859910 0.510446i \(-0.170520\pi\)
\(728\) −37.7048 + 13.7234i −1.39743 + 0.508624i
\(729\) −10.8090 + 18.7218i −0.400334 + 0.693399i
\(730\) −6.53888 11.3257i −0.242015 0.419182i
\(731\) −11.9804 10.0528i −0.443112 0.371815i
\(732\) −0.293790 0.246519i −0.0108588 0.00911161i
\(733\) −17.5902 30.4671i −0.649708 1.12533i −0.983193 0.182571i \(-0.941558\pi\)
0.333485 0.942755i \(-0.391775\pi\)
\(734\) −12.6210 + 21.8602i −0.465850 + 0.806876i
\(735\) 14.9439 5.43913i 0.551214 0.200625i
\(736\) −1.52533 8.65057i −0.0562244 0.318864i
\(737\) 0.107756 0.611114i 0.00396924 0.0225107i
\(738\) 16.5032 + 6.00666i 0.607490 + 0.221108i
\(739\) 8.06481 6.76718i 0.296669 0.248935i −0.482287 0.876013i \(-0.660194\pi\)
0.778956 + 0.627078i \(0.215749\pi\)
\(740\) 4.91428 0.180653
\(741\) 0 0
\(742\) −2.23607 −0.0820886
\(743\) −3.30837 + 2.77605i −0.121372 + 0.101843i −0.701454 0.712715i \(-0.747465\pi\)
0.580081 + 0.814559i \(0.303021\pi\)
\(744\) 3.99675 + 1.45470i 0.146528 + 0.0533318i
\(745\) −4.94413 + 28.0396i −0.181139 + 1.02729i
\(746\) 0.881614 + 4.99988i 0.0322782 + 0.183059i
\(747\) 1.87939 0.684040i 0.0687631 0.0250277i
\(748\) −2.76393 + 4.78727i −0.101059 + 0.175040i
\(749\) −24.5357 42.4971i −0.896515 1.55281i
\(750\) 11.0863 + 9.30251i 0.404814 + 0.339680i
\(751\) −33.9075 28.4518i −1.23730 1.03822i −0.997730 0.0673426i \(-0.978548\pi\)
−0.239574 0.970878i \(-0.577008\pi\)
\(752\) −3.01064 5.21459i −0.109787 0.190156i
\(753\) 6.12261 10.6047i 0.223120 0.386456i
\(754\) 8.93701 3.25280i 0.325467 0.118460i
\(755\) −0.527403 2.99105i −0.0191942 0.108856i
\(756\) 2.46804 13.9969i 0.0897616 0.509063i
\(757\) 3.50457 + 1.27556i 0.127376 + 0.0463610i 0.404922 0.914351i \(-0.367299\pi\)
−0.277546 + 0.960712i \(0.589521\pi\)
\(758\) 7.16062 6.00847i 0.260085 0.218238i
\(759\) −11.1352 −0.404181
\(760\) 0 0
\(761\) −6.05573 −0.219520 −0.109760 0.993958i \(-0.535008\pi\)
−0.109760 + 0.993958i \(0.535008\pi\)
\(762\) −16.8785 + 14.1627i −0.611443 + 0.513062i
\(763\) −2.89208 1.05263i −0.104700 0.0381078i
\(764\) 1.82445 10.3470i 0.0660062 0.374340i
\(765\) −0.858564 4.86916i −0.0310414 0.176045i
\(766\) 15.5111 5.64558i 0.560439 0.203983i
\(767\) 4.30902 7.46344i 0.155590 0.269489i
\(768\) −7.80021 13.5104i −0.281466 0.487513i
\(769\) −27.6994 23.2426i −0.998867 0.838149i −0.0120403 0.999928i \(-0.503833\pi\)
−0.986827 + 0.161778i \(0.948277\pi\)
\(770\) 17.0601 + 14.3151i 0.614802 + 0.515880i
\(771\) −5.32624 9.22531i −0.191820 0.332242i
\(772\) 1.62460 2.81389i 0.0584706 0.101274i
\(773\) 34.8045 12.6678i 1.25183 0.455630i 0.370812 0.928708i \(-0.379080\pi\)
0.881020 + 0.473079i \(0.156857\pi\)
\(774\) 2.08955 + 11.8504i 0.0751072 + 0.425954i
\(775\) 0.708787 4.01973i 0.0254604 0.144393i
\(776\) −45.3071 16.4904i −1.62643 0.591972i
\(777\) −24.5398 + 20.5913i −0.880361 + 0.738710i
\(778\) 15.3884 0.551702
\(779\) 0 0
\(780\) 2.76393 0.0989646
\(781\) −33.6448 + 28.2313i −1.20390 + 1.01020i
\(782\) 7.14961 + 2.60224i 0.255669 + 0.0930561i
\(783\) −2.47805 + 14.0537i −0.0885582 + 0.502239i
\(784\) −4.52681 25.6728i −0.161672 0.916887i
\(785\) −18.0760 + 6.57912i −0.645160 + 0.234819i
\(786\) −3.51722 + 6.09201i −0.125455 + 0.217295i
\(787\) 7.15942 + 12.4005i 0.255206 + 0.442030i 0.964951 0.262429i \(-0.0845234\pi\)
−0.709746 + 0.704458i \(0.751190\pi\)
\(788\) −1.19680 1.00423i −0.0426341 0.0357742i
\(789\) −10.7061 8.98348i −0.381147 0.319821i
\(790\) 5.52786 + 9.57454i 0.196673 + 0.340647i
\(791\) 0 0
\(792\) 16.9305 6.16220i 0.601600 0.218964i
\(793\) −0.282109 1.59992i −0.0100180 0.0568147i
\(794\) 3.00247 17.0278i 0.106554 0.604296i
\(795\) 0.613127 + 0.223160i 0.0217454 + 0.00791467i
\(796\) 8.96900 7.52589i 0.317898 0.266748i
\(797\) 12.8658 0.455729 0.227864 0.973693i \(-0.426826\pi\)
0.227864 + 0.973693i \(0.426826\pi\)
\(798\) 0 0
\(799\) −6.24922 −0.221082
\(800\) −8.92419 + 7.48829i −0.315518 + 0.264751i
\(801\) −26.9722 9.81708i −0.953016 0.346869i
\(802\) 1.55316 8.80839i 0.0548439 0.311035i
\(803\) −5.65439 32.0676i −0.199539 1.13164i
\(804\) 0.117097 0.0426197i 0.00412969 0.00150308i
\(805\) −6.85410 + 11.8717i −0.241575 + 0.418421i
\(806\) 2.12663 + 3.68343i 0.0749072 + 0.129743i
\(807\) −6.94717 5.82937i −0.244552 0.205203i
\(808\) 32.8756 + 27.5859i 1.15656 + 0.970469i
\(809\) 0.364745 + 0.631757i 0.0128238 + 0.0222114i 0.872366 0.488853i \(-0.162585\pi\)
−0.859542 + 0.511065i \(0.829251\pi\)
\(810\) 1.11006 1.92268i 0.0390035 0.0675560i
\(811\) 30.1866 10.9870i 1.06000 0.385807i 0.247569 0.968870i \(-0.420368\pi\)
0.812427 + 0.583064i \(0.198146\pi\)
\(812\) −1.19503 6.77736i −0.0419374 0.237839i
\(813\) −2.91312 + 16.5211i −0.102168 + 0.579421i
\(814\) −25.7106 9.35790i −0.901157 0.327994i
\(815\) 6.18112 5.18658i 0.216515 0.181678i
\(816\) 6.92240 0.242332
\(817\) 0 0
\(818\) −25.7771 −0.901275
\(819\) 16.1595 13.5594i 0.564659 0.473805i
\(820\) 6.62805 + 2.41241i 0.231462 + 0.0842451i
\(821\) −3.30530 + 18.7453i −0.115356 + 0.654214i 0.871218 + 0.490897i \(0.163331\pi\)
−0.986574 + 0.163318i \(0.947780\pi\)
\(822\) 1.12986 + 6.40773i 0.0394082 + 0.223495i
\(823\) 36.3862 13.2435i 1.26834 0.461639i 0.381782 0.924252i \(-0.375310\pi\)
0.886560 + 0.462613i \(0.153088\pi\)
\(824\) 1.54508 2.67617i 0.0538256 0.0932286i
\(825\) 7.38394 + 12.7894i 0.257076 + 0.445268i
\(826\) 10.6819 + 8.96321i 0.371672 + 0.311870i
\(827\) 12.0510 + 10.1120i 0.419054 + 0.351628i 0.827803 0.561019i \(-0.189590\pi\)
−0.408749 + 0.912647i \(0.634035\pi\)
\(828\) 1.30902 + 2.26728i 0.0454915 + 0.0787936i
\(829\) −5.84510 + 10.1240i −0.203009 + 0.351621i −0.949496 0.313778i \(-0.898405\pi\)
0.746488 + 0.665399i \(0.231739\pi\)
\(830\) −1.68779 + 0.614306i −0.0585842 + 0.0213229i
\(831\) 3.92677 + 22.2698i 0.136218 + 0.772531i
\(832\) 4.65396 26.3939i 0.161347 0.915045i
\(833\) −25.4241 9.25360i −0.880892 0.320618i
\(834\) 0.963189 0.808212i 0.0333525 0.0279861i
\(835\) 8.50651 0.294380
\(836\) 0 0
\(837\) −6.38197 −0.220593
\(838\) −30.0928 + 25.2508i −1.03954 + 0.872276i
\(839\) −22.1931 8.07763i −0.766191 0.278871i −0.0707887 0.997491i \(-0.522552\pi\)
−0.695402 + 0.718621i \(0.744774\pi\)
\(840\) −3.28964 + 18.6565i −0.113503 + 0.643709i
\(841\) −3.83592 21.7546i −0.132273 0.750158i
\(842\) −15.6282 + 5.68820i −0.538584 + 0.196028i
\(843\) 2.60081 4.50474i 0.0895768 0.155151i
\(844\) 5.56758 + 9.64333i 0.191644 + 0.331937i
\(845\) −3.34047 2.80299i −0.114916 0.0964258i
\(846\) 3.68336 + 3.09070i 0.126636 + 0.106261i
\(847\) 4.42705 + 7.66788i 0.152115 + 0.263471i
\(848\) 0.534785 0.926274i 0.0183646 0.0318084i
\(849\) −1.00507 + 0.365814i −0.0344938 + 0.0125547i
\(850\) −1.75222 9.93732i −0.0601006 0.340847i
\(851\) 2.92450 16.5856i 0.100250 0.568549i
\(852\) −8.28777 3.01650i −0.283934 0.103344i
\(853\) −17.0866 + 14.3373i −0.585034 + 0.490901i −0.886596 0.462545i \(-0.846936\pi\)
0.301562 + 0.953446i \(0.402492\pi\)
\(854\) 2.62866 0.0899507
\(855\) 0 0
\(856\) 35.6525 1.21858
\(857\) 16.1285 13.5334i 0.550939 0.462293i −0.324320 0.945948i \(-0.605135\pi\)
0.875259 + 0.483655i \(0.160691\pi\)
\(858\) −14.4604 5.26315i −0.493669 0.179681i
\(859\) 3.65629 20.7358i 0.124751 0.707498i −0.856704 0.515808i \(-0.827492\pi\)
0.981455 0.191690i \(-0.0613969\pi\)
\(860\) 0.839210 + 4.75939i 0.0286168 + 0.162294i
\(861\) −43.2059 + 15.7256i −1.47245 + 0.535929i
\(862\) −9.37132 + 16.2316i −0.319189 + 0.552851i
\(863\) 13.5923 + 23.5426i 0.462687 + 0.801398i 0.999094 0.0425616i \(-0.0135519\pi\)
−0.536406 + 0.843960i \(0.680219\pi\)
\(864\) 13.9533 + 11.7082i 0.474702 + 0.398322i
\(865\) 14.7334 + 12.3628i 0.500952 + 0.420348i
\(866\) −5.48936 9.50785i −0.186536 0.323090i
\(867\) −6.40013 + 11.0853i −0.217360 + 0.376478i
\(868\) 2.89208 1.05263i 0.0981635 0.0357286i
\(869\) 4.78012 + 27.1094i 0.162155 + 0.919624i
\(870\) 0.779729 4.42206i 0.0264353 0.149922i
\(871\) 0.496030 + 0.180540i 0.0168073 + 0.00611737i
\(872\) 1.71293 1.43732i 0.0580070 0.0486737i
\(873\) 25.3480 0.857900
\(874\) 0 0
\(875\) 44.3607 1.49966
\(876\) 5.00907 4.20311i 0.169241 0.142010i
\(877\) 38.8013 + 14.1225i 1.31023 + 0.476883i 0.900314 0.435242i \(-0.143337\pi\)
0.409912 + 0.912125i \(0.365559\pi\)
\(878\) 2.36475 13.4111i 0.0798063 0.452604i
\(879\) 5.04776 + 28.6273i 0.170257 + 0.965574i
\(880\) −10.0101 + 3.64336i −0.337439 + 0.122818i
\(881\) 27.7877 48.1298i 0.936192 1.62153i 0.163699 0.986510i \(-0.447657\pi\)
0.772494 0.635022i \(-0.219009\pi\)
\(882\) 10.4086 + 18.0283i 0.350477 + 0.607043i
\(883\) 32.9663 + 27.6620i 1.10940 + 0.930901i 0.998021 0.0628769i \(-0.0200276\pi\)
0.111383 + 0.993778i \(0.464472\pi\)
\(884\) −3.60216 3.02257i −0.121154 0.101660i
\(885\) −2.03444 3.52376i −0.0683870 0.118450i
\(886\) 4.22050 7.31012i 0.141790 0.245588i
\(887\) 25.0236 9.10785i 0.840211 0.305812i 0.114168 0.993461i \(-0.463580\pi\)
0.726043 + 0.687650i \(0.241357\pi\)
\(888\) −4.04155 22.9208i −0.135626 0.769171i
\(889\) −11.7278 + 66.5115i −0.393337 + 2.23072i
\(890\) 24.2225 + 8.81628i 0.811941 + 0.295522i
\(891\) 4.23459 3.55324i 0.141864 0.119038i
\(892\) 8.40051 0.281270
\(893\) 0 0
\(894\) 31.8328 1.06465
\(895\) −17.3228 + 14.5356i −0.579038 + 0.485871i
\(896\) 14.0384 + 5.10957i 0.468991 + 0.170699i
\(897\) 1.64482 9.32823i 0.0549189 0.311461i
\(898\) 7.13752 + 40.4789i 0.238182 + 1.35080i
\(899\) −2.90381 + 1.05690i −0.0968475 + 0.0352496i
\(900\) 1.73607 3.00696i 0.0578689 0.100232i
\(901\) −0.555029 0.961339i −0.0184907 0.0320268i
\(902\) −30.0830 25.2426i −1.00165 0.840487i
\(903\) −24.1330 20.2500i −0.803096 0.673877i
\(904\) 0 0
\(905\) −15.2169 + 26.3565i −0.505827 + 0.876118i
\(906\) −3.19090 + 1.16139i −0.106011 + 0.0385847i
\(907\) −2.19730 12.4615i −0.0729602 0.413778i −0.999311 0.0371160i \(-0.988183\pi\)
0.926351 0.376662i \(-0.122928\pi\)
\(908\) −3.18820 + 18.0812i −0.105804 + 0.600045i
\(909\) −21.2016 7.71676i −0.703214 0.255949i
\(910\) −14.5122 + 12.1771i −0.481073 + 0.403668i
\(911\) −18.3601 −0.608297 −0.304149 0.952625i \(-0.598372\pi\)
−0.304149 + 0.952625i \(0.598372\pi\)
\(912\) 0 0
\(913\) −4.47214 −0.148006
\(914\) 17.7480 14.8923i 0.587052 0.492595i
\(915\) −0.720774 0.262340i −0.0238280 0.00867270i
\(916\) −0.438959 + 2.48946i −0.0145036 + 0.0822541i
\(917\) 3.74426 + 21.2347i 0.123646 + 0.701232i
\(918\) −14.8256 + 5.39608i −0.489318 + 0.178097i
\(919\) 1.31966 2.28572i 0.0435316 0.0753989i −0.843439 0.537225i \(-0.819472\pi\)
0.886970 + 0.461827i \(0.152806\pi\)
\(920\) −4.97980 8.62526i −0.164179 0.284366i
\(921\) −24.8487 20.8505i −0.818793 0.687049i
\(922\) −30.7807 25.8281i −1.01371 0.850603i
\(923\) −18.6803 32.3553i −0.614871 1.06499i
\(924\) −5.56758 + 9.64333i −0.183160 + 0.317242i
\(925\) −20.9888 + 7.63931i −0.690108 + 0.251179i
\(926\) 3.44052 + 19.5122i 0.113063 + 0.641210i
\(927\) −0.282109 + 1.59992i −0.00926566 + 0.0525482i
\(928\) 8.28777 + 3.01650i 0.272059 + 0.0990215i
\(929\) −16.4750 + 13.8242i −0.540527 + 0.453556i −0.871718 0.490008i \(-0.836994\pi\)
0.331191 + 0.943564i \(0.392550\pi\)
\(930\) 2.00811 0.0658487
\(931\) 0 0
\(932\) −8.32624 −0.272735
\(933\) 4.97806 4.17709i 0.162974 0.136752i
\(934\) 0.260778 + 0.0949156i 0.00853293 + 0.00310573i
\(935\) −1.91981 + 10.8878i −0.0627844 + 0.356068i
\(936\) 2.66137 + 15.0934i 0.0869897 + 0.493343i
\(937\) 39.2776 14.2959i 1.28314 0.467026i 0.391673 0.920104i \(-0.371896\pi\)
0.891471 + 0.453078i \(0.149674\pi\)
\(938\) −0.427051 + 0.739674i −0.0139437 + 0.0241512i
\(939\) 4.47777 + 7.75572i 0.146126 + 0.253098i
\(940\) 1.47932 + 1.24130i 0.0482501 + 0.0404867i
\(941\) −11.1504 9.35634i −0.363494 0.305008i 0.442687 0.896676i \(-0.354025\pi\)
−0.806182 + 0.591668i \(0.798470\pi\)
\(942\) 10.7533 + 18.6252i 0.350361 + 0.606843i
\(943\) 12.0862 20.9339i 0.393581 0.681703i
\(944\) −6.26766 + 2.28124i −0.203995 + 0.0742481i
\(945\) −4.93607 27.9938i −0.160570 0.910640i
\(946\) 4.67237 26.4983i 0.151912 0.861535i
\(947\) 5.46869 + 1.99044i 0.177709 + 0.0646806i 0.429342 0.903142i \(-0.358746\pi\)
−0.251633 + 0.967823i \(0.580968\pi\)
\(948\) −4.23459 + 3.55324i −0.137533 + 0.115404i
\(949\) 27.6992 0.899153
\(950\) 0 0
\(951\) 10.4033 0.337349
\(952\) 24.6896 20.7170i 0.800193 0.671442i
\(953\) 35.0653 + 12.7627i 1.13588 + 0.413425i 0.840423 0.541932i \(-0.182307\pi\)
0.295454 + 0.955357i \(0.404529\pi\)
\(954\) −0.148313 + 0.841126i −0.00480182 + 0.0272325i
\(955\) −3.64890 20.6939i −0.118076 0.669639i
\(956\) −9.20746 + 3.35124i −0.297791 + 0.108387i
\(957\) 5.59017 9.68246i 0.180705 0.312989i
\(958\) 15.9232 + 27.5798i 0.514455 + 0.891063i
\(959\) 15.2782 + 12.8199i 0.493359 + 0.413977i
\(960\) −9.69334 8.13368i −0.312851 0.262513i
\(961\) 14.8090 + 25.6500i 0.477710 + 0.827418i
\(962\) 11.6372 20.1562i 0.375198 0.649862i
\(963\) −17.6132 + 6.41069i −0.567579 + 0.206582i
\(964\) 2.43122 + 13.7881i 0.0783044 + 0.444086i
\(965\) 1.12843 6.39967i 0.0363256 0.206013i
\(966\) 14.4020 + 5.24188i 0.463375 + 0.168655i
\(967\) 25.8220 21.6672i 0.830379 0.696771i −0.124999 0.992157i \(-0.539893\pi\)
0.955378 + 0.295386i \(0.0954483\pi\)
\(968\) −6.43288 −0.206761
\(969\) 0 0
\(970\) −22.7639 −0.730906
\(971\) 13.0829 10.9779i 0.419851 0.352297i −0.408256 0.912868i \(-0.633863\pi\)
0.828106 + 0.560571i \(0.189418\pi\)
\(972\) −8.41545 3.06297i −0.269926 0.0982449i
\(973\) 0.669258 3.79555i 0.0214554 0.121680i
\(974\) −3.17634 18.0139i −0.101776 0.577203i
\(975\) −11.8047 + 4.29656i −0.378053 + 0.137600i
\(976\) −0.628677 + 1.08890i −0.0201235 + 0.0348549i
\(977\) −14.1271 24.4688i −0.451966 0.782827i 0.546542 0.837431i \(-0.315944\pi\)
−0.998508 + 0.0546039i \(0.982610\pi\)
\(978\) −6.91071 5.79877i −0.220980 0.185424i
\(979\) 49.1665 + 41.2556i 1.57137 + 1.31853i
\(980\) 4.18034 + 7.24056i 0.133536 + 0.231291i
\(981\) −0.587785 + 1.01807i −0.0187665 + 0.0325046i
\(982\) 17.9736 6.54186i 0.573561 0.208759i
\(983\) 3.75242 + 21.2810i 0.119683 + 0.678759i 0.984324 + 0.176368i \(0.0564349\pi\)
−0.864641 + 0.502391i \(0.832454\pi\)
\(984\) 5.80080 32.8980i 0.184923 1.04875i
\(985\) −2.93617 1.06868i −0.0935543 0.0340510i
\(986\) −5.85206 + 4.91046i −0.186368 + 0.156381i
\(987\) −12.5882 −0.400688
\(988\) 0 0
\(989\) 16.5623 0.526651
\(990\) 6.51636 5.46788i 0.207104 0.173781i
\(991\) 19.7845 + 7.20098i 0.628477 + 0.228747i 0.636568 0.771220i \(-0.280353\pi\)
−0.00809149 + 0.999967i \(0.502576\pi\)
\(992\) −0.684916 + 3.88435i −0.0217461 + 0.123328i
\(993\) −4.95610 28.1074i −0.157277 0.891962i
\(994\) 56.8052 20.6754i 1.80175 0.655784i
\(995\) 11.7082 20.2792i 0.371175 0.642894i
\(996\) −0.449028 0.777739i −0.0142280 0.0246436i
\(997\) 5.45777 + 4.57961i 0.172849 + 0.145038i 0.725108 0.688635i \(-0.241790\pi\)
−0.552259 + 0.833673i \(0.686234\pi\)
\(998\) 19.3867 + 16.2674i 0.613675 + 0.514934i
\(999\) 17.4615 + 30.2442i 0.552457 + 0.956884i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.2.e.m.234.3 24
19.2 odd 18 inner 361.2.e.m.62.3 24
19.3 odd 18 inner 361.2.e.m.54.2 24
19.4 even 9 361.2.a.i.1.3 yes 4
19.5 even 9 inner 361.2.e.m.245.3 24
19.6 even 9 361.2.c.j.292.2 8
19.7 even 3 inner 361.2.e.m.28.3 24
19.8 odd 6 inner 361.2.e.m.99.3 24
19.9 even 9 361.2.c.j.68.2 8
19.10 odd 18 361.2.c.j.68.3 8
19.11 even 3 inner 361.2.e.m.99.2 24
19.12 odd 6 inner 361.2.e.m.28.2 24
19.13 odd 18 361.2.c.j.292.3 8
19.14 odd 18 inner 361.2.e.m.245.2 24
19.15 odd 18 361.2.a.i.1.2 4
19.16 even 9 inner 361.2.e.m.54.3 24
19.17 even 9 inner 361.2.e.m.62.2 24
19.18 odd 2 inner 361.2.e.m.234.2 24
57.23 odd 18 3249.2.a.bc.1.2 4
57.53 even 18 3249.2.a.bc.1.3 4
76.15 even 18 5776.2.a.bu.1.2 4
76.23 odd 18 5776.2.a.bu.1.3 4
95.4 even 18 9025.2.a.bj.1.2 4
95.34 odd 18 9025.2.a.bj.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
361.2.a.i.1.2 4 19.15 odd 18
361.2.a.i.1.3 yes 4 19.4 even 9
361.2.c.j.68.2 8 19.9 even 9
361.2.c.j.68.3 8 19.10 odd 18
361.2.c.j.292.2 8 19.6 even 9
361.2.c.j.292.3 8 19.13 odd 18
361.2.e.m.28.2 24 19.12 odd 6 inner
361.2.e.m.28.3 24 19.7 even 3 inner
361.2.e.m.54.2 24 19.3 odd 18 inner
361.2.e.m.54.3 24 19.16 even 9 inner
361.2.e.m.62.2 24 19.17 even 9 inner
361.2.e.m.62.3 24 19.2 odd 18 inner
361.2.e.m.99.2 24 19.11 even 3 inner
361.2.e.m.99.3 24 19.8 odd 6 inner
361.2.e.m.234.2 24 19.18 odd 2 inner
361.2.e.m.234.3 24 1.1 even 1 trivial
361.2.e.m.245.2 24 19.14 odd 18 inner
361.2.e.m.245.3 24 19.5 even 9 inner
3249.2.a.bc.1.2 4 57.23 odd 18
3249.2.a.bc.1.3 4 57.53 even 18
5776.2.a.bu.1.2 4 76.15 even 18
5776.2.a.bu.1.3 4 76.23 odd 18
9025.2.a.bj.1.2 4 95.4 even 18
9025.2.a.bj.1.3 4 95.34 odd 18