Defining parameters
Level: | \( N \) | = | \( 361 = 19^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 35 \) | ||
Sturm bound: | \(21660\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(361))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5667 | 5619 | 48 |
Cusp forms | 5164 | 5150 | 14 |
Eisenstein series | 503 | 469 | 34 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(361))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
361.2.a | \(\chi_{361}(1, \cdot)\) | 361.2.a.a | 1 | 1 |
361.2.a.b | 1 | |||
361.2.a.c | 2 | |||
361.2.a.d | 2 | |||
361.2.a.e | 2 | |||
361.2.a.f | 2 | |||
361.2.a.g | 3 | |||
361.2.a.h | 3 | |||
361.2.a.i | 4 | |||
361.2.c | \(\chi_{361}(68, \cdot)\) | 361.2.c.a | 2 | 2 |
361.2.c.b | 2 | |||
361.2.c.c | 2 | |||
361.2.c.d | 4 | |||
361.2.c.e | 4 | |||
361.2.c.f | 4 | |||
361.2.c.g | 4 | |||
361.2.c.h | 6 | |||
361.2.c.i | 6 | |||
361.2.c.j | 8 | |||
361.2.e | \(\chi_{361}(28, \cdot)\) | 361.2.e.a | 6 | 6 |
361.2.e.b | 6 | |||
361.2.e.c | 6 | |||
361.2.e.d | 6 | |||
361.2.e.e | 6 | |||
361.2.e.f | 6 | |||
361.2.e.g | 6 | |||
361.2.e.h | 6 | |||
361.2.e.i | 12 | |||
361.2.e.j | 12 | |||
361.2.e.k | 12 | |||
361.2.e.l | 12 | |||
361.2.e.m | 24 | |||
361.2.g | \(\chi_{361}(20, \cdot)\) | 361.2.g.a | 540 | 18 |
361.2.i | \(\chi_{361}(7, \cdot)\) | 361.2.i.a | 1080 | 36 |
361.2.k | \(\chi_{361}(4, \cdot)\) | 361.2.k.a | 3348 | 108 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(361))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(361)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)