Properties

Label 3249.2.a.bc.1.3
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,4,0,-8,0,0,0,10,0,0,0,0,-14,8,0,0,12,0,0,6,0,4,-10,0, 6,0,0,0,0,0,0,12,0,0,0,0,0,0,0,6,0,0,0,28,0,8,0,0,0,0,0,0,0,0,10,0,0,-20, 10,0,8,0,0,0,24,0,0,0,0,36,-10,0,0,-30,0,0,-24,0,30,4,0,48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 361)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.17557\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17557 q^{2} -0.618034 q^{4} -1.23607 q^{5} -4.23607 q^{7} -3.07768 q^{8} -1.45309 q^{10} +3.61803 q^{11} -3.07768 q^{13} -4.97980 q^{14} -2.38197 q^{16} -2.47214 q^{17} +0.763932 q^{20} +4.25325 q^{22} +2.61803 q^{23} -3.47214 q^{25} -3.61803 q^{26} +2.61803 q^{28} -2.62866 q^{29} +1.17557 q^{31} +3.35520 q^{32} -2.90617 q^{34} +5.23607 q^{35} +6.43288 q^{37} +3.80423 q^{40} +9.23305 q^{41} -6.32624 q^{43} -2.23607 q^{44} +3.07768 q^{46} +2.52786 q^{47} +10.9443 q^{49} -4.08174 q^{50} +1.90211 q^{52} +0.449028 q^{53} -4.47214 q^{55} +13.0373 q^{56} -3.09017 q^{58} -2.80017 q^{59} -0.527864 q^{61} +1.38197 q^{62} +8.70820 q^{64} +3.80423 q^{65} +0.171513 q^{67} +1.52786 q^{68} +6.15537 q^{70} +12.1392 q^{71} +9.00000 q^{73} +7.56231 q^{74} -15.3262 q^{77} +7.60845 q^{79} +2.94427 q^{80} +10.8541 q^{82} -1.23607 q^{83} +3.05573 q^{85} -7.43694 q^{86} -11.1352 q^{88} -17.7396 q^{89} +13.0373 q^{91} -1.61803 q^{92} +2.97168 q^{94} +15.6659 q^{97} +12.8658 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 4 q^{5} - 8 q^{7} + 10 q^{11} - 14 q^{16} + 8 q^{17} + 12 q^{20} + 6 q^{23} + 4 q^{25} - 10 q^{26} + 6 q^{28} + 12 q^{35} + 6 q^{43} + 28 q^{47} + 8 q^{49} + 10 q^{58} - 20 q^{61} + 10 q^{62}+ \cdots - 2 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17557 0.831254 0.415627 0.909535i \(-0.363562\pi\)
0.415627 + 0.909535i \(0.363562\pi\)
\(3\) 0 0
\(4\) −0.618034 −0.309017
\(5\) −1.23607 −0.552786 −0.276393 0.961045i \(-0.589139\pi\)
−0.276393 + 0.961045i \(0.589139\pi\)
\(6\) 0 0
\(7\) −4.23607 −1.60108 −0.800542 0.599277i \(-0.795455\pi\)
−0.800542 + 0.599277i \(0.795455\pi\)
\(8\) −3.07768 −1.08813
\(9\) 0 0
\(10\) −1.45309 −0.459506
\(11\) 3.61803 1.09088 0.545439 0.838150i \(-0.316363\pi\)
0.545439 + 0.838150i \(0.316363\pi\)
\(12\) 0 0
\(13\) −3.07768 −0.853596 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(14\) −4.97980 −1.33091
\(15\) 0 0
\(16\) −2.38197 −0.595492
\(17\) −2.47214 −0.599581 −0.299791 0.954005i \(-0.596917\pi\)
−0.299791 + 0.954005i \(0.596917\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0.763932 0.170820
\(21\) 0 0
\(22\) 4.25325 0.906797
\(23\) 2.61803 0.545898 0.272949 0.962029i \(-0.412001\pi\)
0.272949 + 0.962029i \(0.412001\pi\)
\(24\) 0 0
\(25\) −3.47214 −0.694427
\(26\) −3.61803 −0.709555
\(27\) 0 0
\(28\) 2.61803 0.494762
\(29\) −2.62866 −0.488129 −0.244065 0.969759i \(-0.578481\pi\)
−0.244065 + 0.969759i \(0.578481\pi\)
\(30\) 0 0
\(31\) 1.17557 0.211139 0.105569 0.994412i \(-0.466333\pi\)
0.105569 + 0.994412i \(0.466333\pi\)
\(32\) 3.35520 0.593121
\(33\) 0 0
\(34\) −2.90617 −0.498404
\(35\) 5.23607 0.885057
\(36\) 0 0
\(37\) 6.43288 1.05756 0.528780 0.848759i \(-0.322650\pi\)
0.528780 + 0.848759i \(0.322650\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 3.80423 0.601501
\(41\) 9.23305 1.44196 0.720980 0.692956i \(-0.243692\pi\)
0.720980 + 0.692956i \(0.243692\pi\)
\(42\) 0 0
\(43\) −6.32624 −0.964742 −0.482371 0.875967i \(-0.660224\pi\)
−0.482371 + 0.875967i \(0.660224\pi\)
\(44\) −2.23607 −0.337100
\(45\) 0 0
\(46\) 3.07768 0.453780
\(47\) 2.52786 0.368727 0.184363 0.982858i \(-0.440978\pi\)
0.184363 + 0.982858i \(0.440978\pi\)
\(48\) 0 0
\(49\) 10.9443 1.56347
\(50\) −4.08174 −0.577245
\(51\) 0 0
\(52\) 1.90211 0.263776
\(53\) 0.449028 0.0616787 0.0308394 0.999524i \(-0.490182\pi\)
0.0308394 + 0.999524i \(0.490182\pi\)
\(54\) 0 0
\(55\) −4.47214 −0.603023
\(56\) 13.0373 1.74218
\(57\) 0 0
\(58\) −3.09017 −0.405759
\(59\) −2.80017 −0.364551 −0.182275 0.983248i \(-0.558346\pi\)
−0.182275 + 0.983248i \(0.558346\pi\)
\(60\) 0 0
\(61\) −0.527864 −0.0675861 −0.0337930 0.999429i \(-0.510759\pi\)
−0.0337930 + 0.999429i \(0.510759\pi\)
\(62\) 1.38197 0.175510
\(63\) 0 0
\(64\) 8.70820 1.08853
\(65\) 3.80423 0.471856
\(66\) 0 0
\(67\) 0.171513 0.0209537 0.0104768 0.999945i \(-0.496665\pi\)
0.0104768 + 0.999945i \(0.496665\pi\)
\(68\) 1.52786 0.185281
\(69\) 0 0
\(70\) 6.15537 0.735707
\(71\) 12.1392 1.44066 0.720330 0.693631i \(-0.243990\pi\)
0.720330 + 0.693631i \(0.243990\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) 7.56231 0.879100
\(75\) 0 0
\(76\) 0 0
\(77\) −15.3262 −1.74659
\(78\) 0 0
\(79\) 7.60845 0.856018 0.428009 0.903775i \(-0.359215\pi\)
0.428009 + 0.903775i \(0.359215\pi\)
\(80\) 2.94427 0.329180
\(81\) 0 0
\(82\) 10.8541 1.19864
\(83\) −1.23607 −0.135676 −0.0678380 0.997696i \(-0.521610\pi\)
−0.0678380 + 0.997696i \(0.521610\pi\)
\(84\) 0 0
\(85\) 3.05573 0.331440
\(86\) −7.43694 −0.801946
\(87\) 0 0
\(88\) −11.1352 −1.18701
\(89\) −17.7396 −1.88039 −0.940195 0.340637i \(-0.889357\pi\)
−0.940195 + 0.340637i \(0.889357\pi\)
\(90\) 0 0
\(91\) 13.0373 1.36668
\(92\) −1.61803 −0.168692
\(93\) 0 0
\(94\) 2.97168 0.306506
\(95\) 0 0
\(96\) 0 0
\(97\) 15.6659 1.59063 0.795317 0.606193i \(-0.207304\pi\)
0.795317 + 0.606193i \(0.207304\pi\)
\(98\) 12.8658 1.29964
\(99\) 0 0
\(100\) 2.14590 0.214590
\(101\) 13.9443 1.38751 0.693753 0.720213i \(-0.255956\pi\)
0.693753 + 0.720213i \(0.255956\pi\)
\(102\) 0 0
\(103\) −1.00406 −0.0989327 −0.0494663 0.998776i \(-0.515752\pi\)
−0.0494663 + 0.998776i \(0.515752\pi\)
\(104\) 9.47214 0.928819
\(105\) 0 0
\(106\) 0.527864 0.0512707
\(107\) −11.5842 −1.11989 −0.559943 0.828531i \(-0.689177\pi\)
−0.559943 + 0.828531i \(0.689177\pi\)
\(108\) 0 0
\(109\) 0.726543 0.0695902 0.0347951 0.999394i \(-0.488922\pi\)
0.0347951 + 0.999394i \(0.488922\pi\)
\(110\) −5.25731 −0.501265
\(111\) 0 0
\(112\) 10.0902 0.953431
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −3.23607 −0.301765
\(116\) 1.62460 0.150840
\(117\) 0 0
\(118\) −3.29180 −0.303034
\(119\) 10.4721 0.959979
\(120\) 0 0
\(121\) 2.09017 0.190015
\(122\) −0.620541 −0.0561812
\(123\) 0 0
\(124\) −0.726543 −0.0652454
\(125\) 10.4721 0.936656
\(126\) 0 0
\(127\) −15.9434 −1.41475 −0.707376 0.706837i \(-0.750121\pi\)
−0.707376 + 0.706837i \(0.750121\pi\)
\(128\) 3.52671 0.311720
\(129\) 0 0
\(130\) 4.47214 0.392232
\(131\) 5.09017 0.444730 0.222365 0.974963i \(-0.428622\pi\)
0.222365 + 0.974963i \(0.428622\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.201626 0.0174178
\(135\) 0 0
\(136\) 7.60845 0.652419
\(137\) 4.70820 0.402249 0.201125 0.979566i \(-0.435540\pi\)
0.201125 + 0.979566i \(0.435540\pi\)
\(138\) 0 0
\(139\) −0.909830 −0.0771708 −0.0385854 0.999255i \(-0.512285\pi\)
−0.0385854 + 0.999255i \(0.512285\pi\)
\(140\) −3.23607 −0.273498
\(141\) 0 0
\(142\) 14.2705 1.19755
\(143\) −11.1352 −0.931169
\(144\) 0 0
\(145\) 3.24920 0.269831
\(146\) 10.5801 0.875618
\(147\) 0 0
\(148\) −3.97574 −0.326804
\(149\) 23.0344 1.88706 0.943528 0.331294i \(-0.107485\pi\)
0.943528 + 0.331294i \(0.107485\pi\)
\(150\) 0 0
\(151\) 2.45714 0.199959 0.0999797 0.994989i \(-0.468122\pi\)
0.0999797 + 0.994989i \(0.468122\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −18.0171 −1.45186
\(155\) −1.45309 −0.116715
\(156\) 0 0
\(157\) 15.5623 1.24201 0.621004 0.783808i \(-0.286725\pi\)
0.621004 + 0.783808i \(0.286725\pi\)
\(158\) 8.94427 0.711568
\(159\) 0 0
\(160\) −4.14725 −0.327869
\(161\) −11.0902 −0.874028
\(162\) 0 0
\(163\) 6.52786 0.511302 0.255651 0.966769i \(-0.417710\pi\)
0.255651 + 0.966769i \(0.417710\pi\)
\(164\) −5.70634 −0.445590
\(165\) 0 0
\(166\) −1.45309 −0.112781
\(167\) 6.88191 0.532538 0.266269 0.963899i \(-0.414209\pi\)
0.266269 + 0.963899i \(0.414209\pi\)
\(168\) 0 0
\(169\) −3.52786 −0.271374
\(170\) 3.59222 0.275511
\(171\) 0 0
\(172\) 3.90983 0.298122
\(173\) 15.5599 1.18300 0.591500 0.806305i \(-0.298536\pi\)
0.591500 + 0.806305i \(0.298536\pi\)
\(174\) 0 0
\(175\) 14.7082 1.11184
\(176\) −8.61803 −0.649609
\(177\) 0 0
\(178\) −20.8541 −1.56308
\(179\) −18.2946 −1.36740 −0.683701 0.729762i \(-0.739631\pi\)
−0.683701 + 0.729762i \(0.739631\pi\)
\(180\) 0 0
\(181\) −24.6215 −1.83010 −0.915050 0.403341i \(-0.867849\pi\)
−0.915050 + 0.403341i \(0.867849\pi\)
\(182\) 15.3262 1.13606
\(183\) 0 0
\(184\) −8.05748 −0.594005
\(185\) −7.95148 −0.584604
\(186\) 0 0
\(187\) −8.94427 −0.654070
\(188\) −1.56231 −0.113943
\(189\) 0 0
\(190\) 0 0
\(191\) 17.0000 1.23008 0.615038 0.788497i \(-0.289140\pi\)
0.615038 + 0.788497i \(0.289140\pi\)
\(192\) 0 0
\(193\) −5.25731 −0.378430 −0.189215 0.981936i \(-0.560594\pi\)
−0.189215 + 0.981936i \(0.560594\pi\)
\(194\) 18.4164 1.32222
\(195\) 0 0
\(196\) −6.76393 −0.483138
\(197\) −2.52786 −0.180103 −0.0900514 0.995937i \(-0.528703\pi\)
−0.0900514 + 0.995937i \(0.528703\pi\)
\(198\) 0 0
\(199\) −18.9443 −1.34292 −0.671462 0.741039i \(-0.734333\pi\)
−0.671462 + 0.741039i \(0.734333\pi\)
\(200\) 10.6861 0.755624
\(201\) 0 0
\(202\) 16.3925 1.15337
\(203\) 11.1352 0.781535
\(204\) 0 0
\(205\) −11.4127 −0.797096
\(206\) −1.18034 −0.0822382
\(207\) 0 0
\(208\) 7.33094 0.508309
\(209\) 0 0
\(210\) 0 0
\(211\) −18.0171 −1.24035 −0.620173 0.784465i \(-0.712938\pi\)
−0.620173 + 0.784465i \(0.712938\pi\)
\(212\) −0.277515 −0.0190598
\(213\) 0 0
\(214\) −13.6180 −0.930910
\(215\) 7.81966 0.533296
\(216\) 0 0
\(217\) −4.97980 −0.338051
\(218\) 0.854102 0.0578471
\(219\) 0 0
\(220\) 2.76393 0.186344
\(221\) 7.60845 0.511800
\(222\) 0 0
\(223\) 13.5923 0.910208 0.455104 0.890438i \(-0.349602\pi\)
0.455104 + 0.890438i \(0.349602\pi\)
\(224\) −14.2128 −0.949636
\(225\) 0 0
\(226\) 0 0
\(227\) 29.7073 1.97174 0.985870 0.167511i \(-0.0535729\pi\)
0.985870 + 0.167511i \(0.0535729\pi\)
\(228\) 0 0
\(229\) 4.09017 0.270286 0.135143 0.990826i \(-0.456851\pi\)
0.135143 + 0.990826i \(0.456851\pi\)
\(230\) −3.80423 −0.250843
\(231\) 0 0
\(232\) 8.09017 0.531146
\(233\) −13.4721 −0.882589 −0.441294 0.897362i \(-0.645481\pi\)
−0.441294 + 0.897362i \(0.645481\pi\)
\(234\) 0 0
\(235\) −3.12461 −0.203827
\(236\) 1.73060 0.112652
\(237\) 0 0
\(238\) 12.3107 0.797986
\(239\) 15.8541 1.02552 0.512758 0.858533i \(-0.328624\pi\)
0.512758 + 0.858533i \(0.328624\pi\)
\(240\) 0 0
\(241\) 22.6538 1.45926 0.729631 0.683841i \(-0.239692\pi\)
0.729631 + 0.683841i \(0.239692\pi\)
\(242\) 2.45714 0.157951
\(243\) 0 0
\(244\) 0.326238 0.0208852
\(245\) −13.5279 −0.864264
\(246\) 0 0
\(247\) 0 0
\(248\) −3.61803 −0.229745
\(249\) 0 0
\(250\) 12.3107 0.778599
\(251\) −10.4164 −0.657478 −0.328739 0.944421i \(-0.606624\pi\)
−0.328739 + 0.944421i \(0.606624\pi\)
\(252\) 0 0
\(253\) 9.47214 0.595508
\(254\) −18.7426 −1.17602
\(255\) 0 0
\(256\) −13.2705 −0.829407
\(257\) −9.06154 −0.565243 −0.282622 0.959231i \(-0.591204\pi\)
−0.282622 + 0.959231i \(0.591204\pi\)
\(258\) 0 0
\(259\) −27.2501 −1.69324
\(260\) −2.35114 −0.145812
\(261\) 0 0
\(262\) 5.98385 0.369684
\(263\) −11.8885 −0.733079 −0.366540 0.930402i \(-0.619458\pi\)
−0.366540 + 0.930402i \(0.619458\pi\)
\(264\) 0 0
\(265\) −0.555029 −0.0340952
\(266\) 0 0
\(267\) 0 0
\(268\) −0.106001 −0.00647505
\(269\) 7.71445 0.470359 0.235179 0.971952i \(-0.424432\pi\)
0.235179 + 0.971952i \(0.424432\pi\)
\(270\) 0 0
\(271\) 14.2705 0.866872 0.433436 0.901184i \(-0.357301\pi\)
0.433436 + 0.901184i \(0.357301\pi\)
\(272\) 5.88854 0.357045
\(273\) 0 0
\(274\) 5.53483 0.334371
\(275\) −12.5623 −0.757536
\(276\) 0 0
\(277\) −19.2361 −1.15578 −0.577892 0.816113i \(-0.696124\pi\)
−0.577892 + 0.816113i \(0.696124\pi\)
\(278\) −1.06957 −0.0641485
\(279\) 0 0
\(280\) −16.1150 −0.963053
\(281\) 4.42477 0.263959 0.131980 0.991252i \(-0.457867\pi\)
0.131980 + 0.991252i \(0.457867\pi\)
\(282\) 0 0
\(283\) −0.909830 −0.0540838 −0.0270419 0.999634i \(-0.508609\pi\)
−0.0270419 + 0.999634i \(0.508609\pi\)
\(284\) −7.50245 −0.445189
\(285\) 0 0
\(286\) −13.0902 −0.774038
\(287\) −39.1118 −2.30870
\(288\) 0 0
\(289\) −10.8885 −0.640503
\(290\) 3.81966 0.224298
\(291\) 0 0
\(292\) −5.56231 −0.325509
\(293\) −24.7275 −1.44459 −0.722297 0.691583i \(-0.756914\pi\)
−0.722297 + 0.691583i \(0.756914\pi\)
\(294\) 0 0
\(295\) 3.46120 0.201519
\(296\) −19.7984 −1.15076
\(297\) 0 0
\(298\) 27.0786 1.56862
\(299\) −8.05748 −0.465976
\(300\) 0 0
\(301\) 26.7984 1.54463
\(302\) 2.88854 0.166217
\(303\) 0 0
\(304\) 0 0
\(305\) 0.652476 0.0373607
\(306\) 0 0
\(307\) −27.5932 −1.57482 −0.787412 0.616427i \(-0.788580\pi\)
−0.787412 + 0.616427i \(0.788580\pi\)
\(308\) 9.47214 0.539725
\(309\) 0 0
\(310\) −1.70820 −0.0970195
\(311\) 5.52786 0.313456 0.156728 0.987642i \(-0.449905\pi\)
0.156728 + 0.987642i \(0.449905\pi\)
\(312\) 0 0
\(313\) 7.61803 0.430597 0.215298 0.976548i \(-0.430928\pi\)
0.215298 + 0.976548i \(0.430928\pi\)
\(314\) 18.2946 1.03242
\(315\) 0 0
\(316\) −4.70228 −0.264524
\(317\) −8.84953 −0.497039 −0.248520 0.968627i \(-0.579944\pi\)
−0.248520 + 0.968627i \(0.579944\pi\)
\(318\) 0 0
\(319\) −9.51057 −0.532489
\(320\) −10.7639 −0.601722
\(321\) 0 0
\(322\) −13.0373 −0.726539
\(323\) 0 0
\(324\) 0 0
\(325\) 10.6861 0.592760
\(326\) 7.67396 0.425022
\(327\) 0 0
\(328\) −28.4164 −1.56903
\(329\) −10.7082 −0.590362
\(330\) 0 0
\(331\) −24.2784 −1.33446 −0.667232 0.744850i \(-0.732521\pi\)
−0.667232 + 0.744850i \(0.732521\pi\)
\(332\) 0.763932 0.0419262
\(333\) 0 0
\(334\) 8.09017 0.442674
\(335\) −0.212002 −0.0115829
\(336\) 0 0
\(337\) −16.1150 −0.877838 −0.438919 0.898527i \(-0.644638\pi\)
−0.438919 + 0.898527i \(0.644638\pi\)
\(338\) −4.14725 −0.225581
\(339\) 0 0
\(340\) −1.88854 −0.102421
\(341\) 4.25325 0.230327
\(342\) 0 0
\(343\) −16.7082 −0.902158
\(344\) 19.4702 1.04976
\(345\) 0 0
\(346\) 18.2918 0.983373
\(347\) 24.8328 1.33310 0.666548 0.745462i \(-0.267771\pi\)
0.666548 + 0.745462i \(0.267771\pi\)
\(348\) 0 0
\(349\) 11.3820 0.609263 0.304631 0.952470i \(-0.401467\pi\)
0.304631 + 0.952470i \(0.401467\pi\)
\(350\) 17.2905 0.924218
\(351\) 0 0
\(352\) 12.1392 0.647023
\(353\) −27.6180 −1.46996 −0.734980 0.678089i \(-0.762808\pi\)
−0.734980 + 0.678089i \(0.762808\pi\)
\(354\) 0 0
\(355\) −15.0049 −0.796378
\(356\) 10.9637 0.581072
\(357\) 0 0
\(358\) −21.5066 −1.13666
\(359\) 37.6180 1.98540 0.992702 0.120594i \(-0.0384798\pi\)
0.992702 + 0.120594i \(0.0384798\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −28.9443 −1.52128
\(363\) 0 0
\(364\) −8.05748 −0.422327
\(365\) −11.1246 −0.582289
\(366\) 0 0
\(367\) 21.4721 1.12084 0.560418 0.828210i \(-0.310640\pi\)
0.560418 + 0.828210i \(0.310640\pi\)
\(368\) −6.23607 −0.325078
\(369\) 0 0
\(370\) −9.34752 −0.485955
\(371\) −1.90211 −0.0987528
\(372\) 0 0
\(373\) −4.31877 −0.223617 −0.111809 0.993730i \(-0.535664\pi\)
−0.111809 + 0.993730i \(0.535664\pi\)
\(374\) −10.5146 −0.543698
\(375\) 0 0
\(376\) −7.77997 −0.401221
\(377\) 8.09017 0.416665
\(378\) 0 0
\(379\) −7.95148 −0.408440 −0.204220 0.978925i \(-0.565466\pi\)
−0.204220 + 0.978925i \(0.565466\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19.9847 1.02251
\(383\) −14.0413 −0.717479 −0.358739 0.933438i \(-0.616793\pi\)
−0.358739 + 0.933438i \(0.616793\pi\)
\(384\) 0 0
\(385\) 18.9443 0.965489
\(386\) −6.18034 −0.314571
\(387\) 0 0
\(388\) −9.68208 −0.491533
\(389\) −13.0902 −0.663698 −0.331849 0.943333i \(-0.607672\pi\)
−0.331849 + 0.943333i \(0.607672\pi\)
\(390\) 0 0
\(391\) −6.47214 −0.327310
\(392\) −33.6830 −1.70125
\(393\) 0 0
\(394\) −2.97168 −0.149711
\(395\) −9.40456 −0.473195
\(396\) 0 0
\(397\) 14.7082 0.738184 0.369092 0.929393i \(-0.379669\pi\)
0.369092 + 0.929393i \(0.379669\pi\)
\(398\) −22.2703 −1.11631
\(399\) 0 0
\(400\) 8.27051 0.413525
\(401\) 7.60845 0.379948 0.189974 0.981789i \(-0.439160\pi\)
0.189974 + 0.981789i \(0.439160\pi\)
\(402\) 0 0
\(403\) −3.61803 −0.180227
\(404\) −8.61803 −0.428763
\(405\) 0 0
\(406\) 13.0902 0.649654
\(407\) 23.2744 1.15367
\(408\) 0 0
\(409\) 21.9273 1.08424 0.542118 0.840303i \(-0.317623\pi\)
0.542118 + 0.840303i \(0.317623\pi\)
\(410\) −13.4164 −0.662589
\(411\) 0 0
\(412\) 0.620541 0.0305719
\(413\) 11.8617 0.583676
\(414\) 0 0
\(415\) 1.52786 0.0749999
\(416\) −10.3262 −0.506285
\(417\) 0 0
\(418\) 0 0
\(419\) 33.4164 1.63250 0.816249 0.577700i \(-0.196050\pi\)
0.816249 + 0.577700i \(0.196050\pi\)
\(420\) 0 0
\(421\) −14.1473 −0.689499 −0.344749 0.938695i \(-0.612036\pi\)
−0.344749 + 0.938695i \(0.612036\pi\)
\(422\) −21.1803 −1.03104
\(423\) 0 0
\(424\) −1.38197 −0.0671142
\(425\) 8.58359 0.416365
\(426\) 0 0
\(427\) 2.23607 0.108211
\(428\) 7.15942 0.346064
\(429\) 0 0
\(430\) 9.19256 0.443305
\(431\) 15.9434 0.767969 0.383984 0.923340i \(-0.374552\pi\)
0.383984 + 0.923340i \(0.374552\pi\)
\(432\) 0 0
\(433\) −9.33905 −0.448806 −0.224403 0.974496i \(-0.572043\pi\)
−0.224403 + 0.974496i \(0.572043\pi\)
\(434\) −5.85410 −0.281006
\(435\) 0 0
\(436\) −0.449028 −0.0215045
\(437\) 0 0
\(438\) 0 0
\(439\) −11.5842 −0.552883 −0.276442 0.961031i \(-0.589155\pi\)
−0.276442 + 0.961031i \(0.589155\pi\)
\(440\) 13.7638 0.656164
\(441\) 0 0
\(442\) 8.94427 0.425436
\(443\) 7.18034 0.341148 0.170574 0.985345i \(-0.445438\pi\)
0.170574 + 0.985345i \(0.445438\pi\)
\(444\) 0 0
\(445\) 21.9273 1.03945
\(446\) 15.9787 0.756614
\(447\) 0 0
\(448\) −36.8885 −1.74282
\(449\) 34.9646 1.65008 0.825040 0.565074i \(-0.191152\pi\)
0.825040 + 0.565074i \(0.191152\pi\)
\(450\) 0 0
\(451\) 33.4055 1.57300
\(452\) 0 0
\(453\) 0 0
\(454\) 34.9230 1.63902
\(455\) −16.1150 −0.755481
\(456\) 0 0
\(457\) 19.7082 0.921911 0.460955 0.887423i \(-0.347507\pi\)
0.460955 + 0.887423i \(0.347507\pi\)
\(458\) 4.80828 0.224676
\(459\) 0 0
\(460\) 2.00000 0.0932505
\(461\) 34.1803 1.59194 0.795969 0.605338i \(-0.206962\pi\)
0.795969 + 0.605338i \(0.206962\pi\)
\(462\) 0 0
\(463\) 16.8541 0.783277 0.391638 0.920119i \(-0.371908\pi\)
0.391638 + 0.920119i \(0.371908\pi\)
\(464\) 6.26137 0.290677
\(465\) 0 0
\(466\) −15.8374 −0.733656
\(467\) 0.236068 0.0109239 0.00546196 0.999985i \(-0.498261\pi\)
0.00546196 + 0.999985i \(0.498261\pi\)
\(468\) 0 0
\(469\) −0.726543 −0.0335486
\(470\) −3.67320 −0.169432
\(471\) 0 0
\(472\) 8.61803 0.396677
\(473\) −22.8885 −1.05242
\(474\) 0 0
\(475\) 0 0
\(476\) −6.47214 −0.296650
\(477\) 0 0
\(478\) 18.6376 0.852465
\(479\) 27.0902 1.23778 0.618891 0.785477i \(-0.287582\pi\)
0.618891 + 0.785477i \(0.287582\pi\)
\(480\) 0 0
\(481\) −19.7984 −0.902728
\(482\) 26.6312 1.21302
\(483\) 0 0
\(484\) −1.29180 −0.0587180
\(485\) −19.3642 −0.879281
\(486\) 0 0
\(487\) 15.5599 0.705088 0.352544 0.935795i \(-0.385317\pi\)
0.352544 + 0.935795i \(0.385317\pi\)
\(488\) 1.62460 0.0735421
\(489\) 0 0
\(490\) −15.9030 −0.718422
\(491\) 16.2705 0.734278 0.367139 0.930166i \(-0.380337\pi\)
0.367139 + 0.930166i \(0.380337\pi\)
\(492\) 0 0
\(493\) 6.49839 0.292673
\(494\) 0 0
\(495\) 0 0
\(496\) −2.80017 −0.125731
\(497\) −51.4226 −2.30662
\(498\) 0 0
\(499\) 21.5279 0.963720 0.481860 0.876248i \(-0.339961\pi\)
0.481860 + 0.876248i \(0.339961\pi\)
\(500\) −6.47214 −0.289443
\(501\) 0 0
\(502\) −12.2452 −0.546531
\(503\) 28.5967 1.27507 0.637533 0.770423i \(-0.279955\pi\)
0.637533 + 0.770423i \(0.279955\pi\)
\(504\) 0 0
\(505\) −17.2361 −0.766995
\(506\) 11.1352 0.495018
\(507\) 0 0
\(508\) 9.85359 0.437182
\(509\) −12.4167 −0.550362 −0.275181 0.961392i \(-0.588738\pi\)
−0.275181 + 0.961392i \(0.588738\pi\)
\(510\) 0 0
\(511\) −38.1246 −1.68653
\(512\) −22.6538 −1.00117
\(513\) 0 0
\(514\) −10.6525 −0.469861
\(515\) 1.24108 0.0546886
\(516\) 0 0
\(517\) 9.14590 0.402236
\(518\) −32.0344 −1.40751
\(519\) 0 0
\(520\) −11.7082 −0.513439
\(521\) −2.97168 −0.130192 −0.0650959 0.997879i \(-0.520735\pi\)
−0.0650959 + 0.997879i \(0.520735\pi\)
\(522\) 0 0
\(523\) 8.12299 0.355194 0.177597 0.984103i \(-0.443168\pi\)
0.177597 + 0.984103i \(0.443168\pi\)
\(524\) −3.14590 −0.137429
\(525\) 0 0
\(526\) −13.9758 −0.609375
\(527\) −2.90617 −0.126595
\(528\) 0 0
\(529\) −16.1459 −0.701996
\(530\) −0.652476 −0.0283417
\(531\) 0 0
\(532\) 0 0
\(533\) −28.4164 −1.23085
\(534\) 0 0
\(535\) 14.3188 0.619058
\(536\) −0.527864 −0.0228003
\(537\) 0 0
\(538\) 9.06888 0.390987
\(539\) 39.5967 1.70555
\(540\) 0 0
\(541\) −6.70820 −0.288408 −0.144204 0.989548i \(-0.546062\pi\)
−0.144204 + 0.989548i \(0.546062\pi\)
\(542\) 16.7760 0.720590
\(543\) 0 0
\(544\) −8.29451 −0.355624
\(545\) −0.898056 −0.0384685
\(546\) 0 0
\(547\) 29.2582 1.25099 0.625496 0.780227i \(-0.284897\pi\)
0.625496 + 0.780227i \(0.284897\pi\)
\(548\) −2.90983 −0.124302
\(549\) 0 0
\(550\) −14.7679 −0.629704
\(551\) 0 0
\(552\) 0 0
\(553\) −32.2299 −1.37056
\(554\) −22.6134 −0.960749
\(555\) 0 0
\(556\) 0.562306 0.0238471
\(557\) −5.36068 −0.227139 −0.113570 0.993530i \(-0.536229\pi\)
−0.113570 + 0.993530i \(0.536229\pi\)
\(558\) 0 0
\(559\) 19.4702 0.823500
\(560\) −12.4721 −0.527044
\(561\) 0 0
\(562\) 5.20163 0.219417
\(563\) 18.1231 0.763797 0.381898 0.924204i \(-0.375270\pi\)
0.381898 + 0.924204i \(0.375270\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.06957 −0.0449574
\(567\) 0 0
\(568\) −37.3607 −1.56762
\(569\) −18.3601 −0.769695 −0.384848 0.922980i \(-0.625746\pi\)
−0.384848 + 0.922980i \(0.625746\pi\)
\(570\) 0 0
\(571\) 41.1033 1.72012 0.860060 0.510192i \(-0.170426\pi\)
0.860060 + 0.510192i \(0.170426\pi\)
\(572\) 6.88191 0.287747
\(573\) 0 0
\(574\) −45.9787 −1.91911
\(575\) −9.09017 −0.379086
\(576\) 0 0
\(577\) −28.7082 −1.19514 −0.597569 0.801817i \(-0.703867\pi\)
−0.597569 + 0.801817i \(0.703867\pi\)
\(578\) −12.8003 −0.532420
\(579\) 0 0
\(580\) −2.00811 −0.0833824
\(581\) 5.23607 0.217229
\(582\) 0 0
\(583\) 1.62460 0.0672840
\(584\) −27.6992 −1.14620
\(585\) 0 0
\(586\) −29.0689 −1.20082
\(587\) −39.1803 −1.61715 −0.808573 0.588396i \(-0.799760\pi\)
−0.808573 + 0.588396i \(0.799760\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 4.06888 0.167513
\(591\) 0 0
\(592\) −15.3229 −0.629768
\(593\) −30.7082 −1.26103 −0.630517 0.776175i \(-0.717157\pi\)
−0.630517 + 0.776175i \(0.717157\pi\)
\(594\) 0 0
\(595\) −12.9443 −0.530663
\(596\) −14.2361 −0.583132
\(597\) 0 0
\(598\) −9.47214 −0.387344
\(599\) 20.6457 0.843562 0.421781 0.906698i \(-0.361405\pi\)
0.421781 + 0.906698i \(0.361405\pi\)
\(600\) 0 0
\(601\) 41.2915 1.68431 0.842157 0.539233i \(-0.181286\pi\)
0.842157 + 0.539233i \(0.181286\pi\)
\(602\) 31.5034 1.28398
\(603\) 0 0
\(604\) −1.51860 −0.0617909
\(605\) −2.58359 −0.105038
\(606\) 0 0
\(607\) −1.51860 −0.0616380 −0.0308190 0.999525i \(-0.509812\pi\)
−0.0308190 + 0.999525i \(0.509812\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.767031 0.0310562
\(611\) −7.77997 −0.314744
\(612\) 0 0
\(613\) −24.5279 −0.990671 −0.495336 0.868702i \(-0.664955\pi\)
−0.495336 + 0.868702i \(0.664955\pi\)
\(614\) −32.4377 −1.30908
\(615\) 0 0
\(616\) 47.1693 1.90051
\(617\) −17.2705 −0.695285 −0.347642 0.937627i \(-0.613018\pi\)
−0.347642 + 0.937627i \(0.613018\pi\)
\(618\) 0 0
\(619\) 36.7771 1.47820 0.739098 0.673598i \(-0.235252\pi\)
0.739098 + 0.673598i \(0.235252\pi\)
\(620\) 0.898056 0.0360668
\(621\) 0 0
\(622\) 6.49839 0.260562
\(623\) 75.1460 3.01066
\(624\) 0 0
\(625\) 4.41641 0.176656
\(626\) 8.95554 0.357935
\(627\) 0 0
\(628\) −9.61803 −0.383801
\(629\) −15.9030 −0.634092
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) −23.4164 −0.931455
\(633\) 0 0
\(634\) −10.4033 −0.413166
\(635\) 19.7072 0.782056
\(636\) 0 0
\(637\) −33.6830 −1.33457
\(638\) −11.1803 −0.442634
\(639\) 0 0
\(640\) −4.35926 −0.172315
\(641\) −28.9152 −1.14208 −0.571041 0.820921i \(-0.693460\pi\)
−0.571041 + 0.820921i \(0.693460\pi\)
\(642\) 0 0
\(643\) 7.70820 0.303982 0.151991 0.988382i \(-0.451432\pi\)
0.151991 + 0.988382i \(0.451432\pi\)
\(644\) 6.85410 0.270089
\(645\) 0 0
\(646\) 0 0
\(647\) 32.1246 1.26295 0.631474 0.775397i \(-0.282450\pi\)
0.631474 + 0.775397i \(0.282450\pi\)
\(648\) 0 0
\(649\) −10.1311 −0.397681
\(650\) 12.5623 0.492734
\(651\) 0 0
\(652\) −4.03444 −0.158001
\(653\) −19.7426 −0.772589 −0.386295 0.922375i \(-0.626245\pi\)
−0.386295 + 0.922375i \(0.626245\pi\)
\(654\) 0 0
\(655\) −6.29180 −0.245841
\(656\) −21.9928 −0.858675
\(657\) 0 0
\(658\) −12.5882 −0.490741
\(659\) −18.6781 −0.727596 −0.363798 0.931478i \(-0.618520\pi\)
−0.363798 + 0.931478i \(0.618520\pi\)
\(660\) 0 0
\(661\) 5.04531 0.196240 0.0981199 0.995175i \(-0.468717\pi\)
0.0981199 + 0.995175i \(0.468717\pi\)
\(662\) −28.5410 −1.10928
\(663\) 0 0
\(664\) 3.80423 0.147633
\(665\) 0 0
\(666\) 0 0
\(667\) −6.88191 −0.266469
\(668\) −4.25325 −0.164563
\(669\) 0 0
\(670\) −0.249224 −0.00962835
\(671\) −1.90983 −0.0737282
\(672\) 0 0
\(673\) −28.2542 −1.08912 −0.544559 0.838722i \(-0.683303\pi\)
−0.544559 + 0.838722i \(0.683303\pi\)
\(674\) −18.9443 −0.729706
\(675\) 0 0
\(676\) 2.18034 0.0838592
\(677\) 11.6902 0.449291 0.224645 0.974441i \(-0.427878\pi\)
0.224645 + 0.974441i \(0.427878\pi\)
\(678\) 0 0
\(679\) −66.3620 −2.54674
\(680\) −9.40456 −0.360649
\(681\) 0 0
\(682\) 5.00000 0.191460
\(683\) −32.7445 −1.25293 −0.626466 0.779449i \(-0.715499\pi\)
−0.626466 + 0.779449i \(0.715499\pi\)
\(684\) 0 0
\(685\) −5.81966 −0.222358
\(686\) −19.6417 −0.749923
\(687\) 0 0
\(688\) 15.0689 0.574496
\(689\) −1.38197 −0.0526487
\(690\) 0 0
\(691\) 46.3050 1.76152 0.880762 0.473560i \(-0.157031\pi\)
0.880762 + 0.473560i \(0.157031\pi\)
\(692\) −9.61657 −0.365567
\(693\) 0 0
\(694\) 29.1927 1.10814
\(695\) 1.12461 0.0426590
\(696\) 0 0
\(697\) −22.8254 −0.864572
\(698\) 13.3803 0.506452
\(699\) 0 0
\(700\) −9.09017 −0.343576
\(701\) 33.7426 1.27444 0.637221 0.770681i \(-0.280084\pi\)
0.637221 + 0.770681i \(0.280084\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 31.5066 1.18745
\(705\) 0 0
\(706\) −32.4669 −1.22191
\(707\) −59.0689 −2.22151
\(708\) 0 0
\(709\) 13.4164 0.503864 0.251932 0.967745i \(-0.418934\pi\)
0.251932 + 0.967745i \(0.418934\pi\)
\(710\) −17.6393 −0.661992
\(711\) 0 0
\(712\) 54.5967 2.04610
\(713\) 3.07768 0.115260
\(714\) 0 0
\(715\) 13.7638 0.514738
\(716\) 11.3067 0.422550
\(717\) 0 0
\(718\) 44.2227 1.65037
\(719\) −12.3820 −0.461769 −0.230885 0.972981i \(-0.574162\pi\)
−0.230885 + 0.972981i \(0.574162\pi\)
\(720\) 0 0
\(721\) 4.25325 0.158399
\(722\) 0 0
\(723\) 0 0
\(724\) 15.2169 0.565532
\(725\) 9.12705 0.338970
\(726\) 0 0
\(727\) −19.0557 −0.706738 −0.353369 0.935484i \(-0.614964\pi\)
−0.353369 + 0.935484i \(0.614964\pi\)
\(728\) −40.1246 −1.48712
\(729\) 0 0
\(730\) −13.0778 −0.484030
\(731\) 15.6393 0.578441
\(732\) 0 0
\(733\) 35.1803 1.29942 0.649708 0.760184i \(-0.274891\pi\)
0.649708 + 0.760184i \(0.274891\pi\)
\(734\) 25.2420 0.931700
\(735\) 0 0
\(736\) 8.78402 0.323783
\(737\) 0.620541 0.0228579
\(738\) 0 0
\(739\) 10.5279 0.387274 0.193637 0.981073i \(-0.437972\pi\)
0.193637 + 0.981073i \(0.437972\pi\)
\(740\) 4.91428 0.180653
\(741\) 0 0
\(742\) −2.23607 −0.0820886
\(743\) −4.31877 −0.158440 −0.0792201 0.996857i \(-0.525243\pi\)
−0.0792201 + 0.996857i \(0.525243\pi\)
\(744\) 0 0
\(745\) −28.4721 −1.04314
\(746\) −5.07701 −0.185883
\(747\) 0 0
\(748\) 5.52786 0.202119
\(749\) 49.0714 1.79303
\(750\) 0 0
\(751\) 44.2631 1.61518 0.807592 0.589741i \(-0.200770\pi\)
0.807592 + 0.589741i \(0.200770\pi\)
\(752\) −6.02129 −0.219574
\(753\) 0 0
\(754\) 9.51057 0.346354
\(755\) −3.03719 −0.110535
\(756\) 0 0
\(757\) −3.72949 −0.135551 −0.0677753 0.997701i \(-0.521590\pi\)
−0.0677753 + 0.997701i \(0.521590\pi\)
\(758\) −9.34752 −0.339517
\(759\) 0 0
\(760\) 0 0
\(761\) 6.05573 0.219520 0.109760 0.993958i \(-0.464992\pi\)
0.109760 + 0.993958i \(0.464992\pi\)
\(762\) 0 0
\(763\) −3.07768 −0.111420
\(764\) −10.5066 −0.380115
\(765\) 0 0
\(766\) −16.5066 −0.596407
\(767\) 8.61803 0.311179
\(768\) 0 0
\(769\) −36.1591 −1.30393 −0.651964 0.758250i \(-0.726055\pi\)
−0.651964 + 0.758250i \(0.726055\pi\)
\(770\) 22.2703 0.802567
\(771\) 0 0
\(772\) 3.24920 0.116941
\(773\) −37.0382 −1.33217 −0.666086 0.745875i \(-0.732032\pi\)
−0.666086 + 0.745875i \(0.732032\pi\)
\(774\) 0 0
\(775\) −4.08174 −0.146620
\(776\) −48.2148 −1.73081
\(777\) 0 0
\(778\) −15.3884 −0.551702
\(779\) 0 0
\(780\) 0 0
\(781\) 43.9201 1.57159
\(782\) −7.60845 −0.272078
\(783\) 0 0
\(784\) −26.0689 −0.931032
\(785\) −19.2361 −0.686565
\(786\) 0 0
\(787\) 14.3188 0.510412 0.255206 0.966887i \(-0.417857\pi\)
0.255206 + 0.966887i \(0.417857\pi\)
\(788\) 1.56231 0.0556548
\(789\) 0 0
\(790\) −11.0557 −0.393345
\(791\) 0 0
\(792\) 0 0
\(793\) 1.62460 0.0576912
\(794\) 17.2905 0.613618
\(795\) 0 0
\(796\) 11.7082 0.414986
\(797\) 12.8658 0.455729 0.227864 0.973693i \(-0.426826\pi\)
0.227864 + 0.973693i \(0.426826\pi\)
\(798\) 0 0
\(799\) −6.24922 −0.221082
\(800\) −11.6497 −0.411879
\(801\) 0 0
\(802\) 8.94427 0.315833
\(803\) 32.5623 1.14910
\(804\) 0 0
\(805\) 13.7082 0.483151
\(806\) −4.25325 −0.149814
\(807\) 0 0
\(808\) −42.9161 −1.50978
\(809\) 0.729490 0.0256475 0.0128238 0.999918i \(-0.495918\pi\)
0.0128238 + 0.999918i \(0.495918\pi\)
\(810\) 0 0
\(811\) 32.1239 1.12802 0.564012 0.825767i \(-0.309257\pi\)
0.564012 + 0.825767i \(0.309257\pi\)
\(812\) −6.88191 −0.241508
\(813\) 0 0
\(814\) 27.3607 0.958991
\(815\) −8.06888 −0.282641
\(816\) 0 0
\(817\) 0 0
\(818\) 25.7771 0.901275
\(819\) 0 0
\(820\) 7.05342 0.246316
\(821\) 19.0344 0.664307 0.332153 0.943225i \(-0.392225\pi\)
0.332153 + 0.943225i \(0.392225\pi\)
\(822\) 0 0
\(823\) −38.7214 −1.34974 −0.674871 0.737936i \(-0.735801\pi\)
−0.674871 + 0.737936i \(0.735801\pi\)
\(824\) 3.09017 0.107651
\(825\) 0 0
\(826\) 13.9443 0.485183
\(827\) 15.7314 0.547036 0.273518 0.961867i \(-0.411813\pi\)
0.273518 + 0.961867i \(0.411813\pi\)
\(828\) 0 0
\(829\) −11.6902 −0.406017 −0.203009 0.979177i \(-0.565072\pi\)
−0.203009 + 0.979177i \(0.565072\pi\)
\(830\) 1.79611 0.0623440
\(831\) 0 0
\(832\) −26.8011 −0.929161
\(833\) −27.0557 −0.937425
\(834\) 0 0
\(835\) −8.50651 −0.294380
\(836\) 0 0
\(837\) 0 0
\(838\) 39.2833 1.35702
\(839\) 23.6174 0.815364 0.407682 0.913124i \(-0.366337\pi\)
0.407682 + 0.913124i \(0.366337\pi\)
\(840\) 0 0
\(841\) −22.0902 −0.761730
\(842\) −16.6312 −0.573149
\(843\) 0 0
\(844\) 11.1352 0.383288
\(845\) 4.36068 0.150012
\(846\) 0 0
\(847\) −8.85410 −0.304231
\(848\) −1.06957 −0.0367292
\(849\) 0 0
\(850\) 10.0906 0.346105
\(851\) 16.8415 0.577319
\(852\) 0 0
\(853\) −22.3050 −0.763707 −0.381853 0.924223i \(-0.624714\pi\)
−0.381853 + 0.924223i \(0.624714\pi\)
\(854\) 2.62866 0.0899507
\(855\) 0 0
\(856\) 35.6525 1.21858
\(857\) 21.0543 0.719200 0.359600 0.933107i \(-0.382913\pi\)
0.359600 + 0.933107i \(0.382913\pi\)
\(858\) 0 0
\(859\) 21.0557 0.718412 0.359206 0.933258i \(-0.383048\pi\)
0.359206 + 0.933258i \(0.383048\pi\)
\(860\) −4.83282 −0.164798
\(861\) 0 0
\(862\) 18.7426 0.638377
\(863\) −27.1846 −0.925375 −0.462687 0.886521i \(-0.653115\pi\)
−0.462687 + 0.886521i \(0.653115\pi\)
\(864\) 0 0
\(865\) −19.2331 −0.653946
\(866\) −10.9787 −0.373072
\(867\) 0 0
\(868\) 3.07768 0.104463
\(869\) 27.5276 0.933811
\(870\) 0 0
\(871\) −0.527864 −0.0178860
\(872\) −2.23607 −0.0757228
\(873\) 0 0
\(874\) 0 0
\(875\) −44.3607 −1.49966
\(876\) 0 0
\(877\) 41.2915 1.39431 0.697157 0.716919i \(-0.254448\pi\)
0.697157 + 0.716919i \(0.254448\pi\)
\(878\) −13.6180 −0.459586
\(879\) 0 0
\(880\) 10.6525 0.359095
\(881\) 55.5755 1.87238 0.936192 0.351488i \(-0.114324\pi\)
0.936192 + 0.351488i \(0.114324\pi\)
\(882\) 0 0
\(883\) 43.0344 1.44822 0.724112 0.689682i \(-0.242250\pi\)
0.724112 + 0.689682i \(0.242250\pi\)
\(884\) −4.70228 −0.158155
\(885\) 0 0
\(886\) 8.44100 0.283581
\(887\) −26.6296 −0.894134 −0.447067 0.894501i \(-0.647531\pi\)
−0.447067 + 0.894501i \(0.647531\pi\)
\(888\) 0 0
\(889\) 67.5375 2.26514
\(890\) 25.7771 0.864050
\(891\) 0 0
\(892\) −8.40051 −0.281270
\(893\) 0 0
\(894\) 0 0
\(895\) 22.6134 0.755881
\(896\) −14.9394 −0.499090
\(897\) 0 0
\(898\) 41.1033 1.37164
\(899\) −3.09017 −0.103063
\(900\) 0 0
\(901\) −1.11006 −0.0369814
\(902\) 39.2705 1.30756
\(903\) 0 0
\(904\) 0 0
\(905\) 30.4338 1.01165
\(906\) 0 0
\(907\) 12.6538 0.420161 0.210081 0.977684i \(-0.432627\pi\)
0.210081 + 0.977684i \(0.432627\pi\)
\(908\) −18.3601 −0.609301
\(909\) 0 0
\(910\) −18.9443 −0.627996
\(911\) −18.3601 −0.608297 −0.304149 0.952625i \(-0.598372\pi\)
−0.304149 + 0.952625i \(0.598372\pi\)
\(912\) 0 0
\(913\) −4.47214 −0.148006
\(914\) 23.1684 0.766342
\(915\) 0 0
\(916\) −2.52786 −0.0835230
\(917\) −21.5623 −0.712050
\(918\) 0 0
\(919\) −2.63932 −0.0870631 −0.0435316 0.999052i \(-0.513861\pi\)
−0.0435316 + 0.999052i \(0.513861\pi\)
\(920\) 9.95959 0.328358
\(921\) 0 0
\(922\) 40.1814 1.32330
\(923\) −37.3607 −1.22974
\(924\) 0 0
\(925\) −22.3358 −0.734398
\(926\) 19.8132 0.651102
\(927\) 0 0
\(928\) −8.81966 −0.289520
\(929\) 21.5066 0.705608 0.352804 0.935697i \(-0.385228\pi\)
0.352804 + 0.935697i \(0.385228\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 8.32624 0.272735
\(933\) 0 0
\(934\) 0.277515 0.00908055
\(935\) 11.0557 0.361561
\(936\) 0 0
\(937\) −41.7984 −1.36549 −0.682747 0.730655i \(-0.739215\pi\)
−0.682747 + 0.730655i \(0.739215\pi\)
\(938\) −0.854102 −0.0278874
\(939\) 0 0
\(940\) 1.93112 0.0629861
\(941\) −14.5559 −0.474508 −0.237254 0.971448i \(-0.576247\pi\)
−0.237254 + 0.971448i \(0.576247\pi\)
\(942\) 0 0
\(943\) 24.1724 0.787163
\(944\) 6.66991 0.217087
\(945\) 0 0
\(946\) −26.9071 −0.874825
\(947\) 5.81966 0.189114 0.0945568 0.995519i \(-0.469857\pi\)
0.0945568 + 0.995519i \(0.469857\pi\)
\(948\) 0 0
\(949\) −27.6992 −0.899153
\(950\) 0 0
\(951\) 0 0
\(952\) −32.2299 −1.04458
\(953\) −37.3157 −1.20877 −0.604387 0.796691i \(-0.706582\pi\)
−0.604387 + 0.796691i \(0.706582\pi\)
\(954\) 0 0
\(955\) −21.0132 −0.679970
\(956\) −9.79837 −0.316902
\(957\) 0 0
\(958\) 31.8464 1.02891
\(959\) −19.9443 −0.644034
\(960\) 0 0
\(961\) −29.6180 −0.955420
\(962\) −23.2744 −0.750396
\(963\) 0 0
\(964\) −14.0008 −0.450937
\(965\) 6.49839 0.209191
\(966\) 0 0
\(967\) 33.7082 1.08398 0.541991 0.840384i \(-0.317671\pi\)
0.541991 + 0.840384i \(0.317671\pi\)
\(968\) −6.43288 −0.206761
\(969\) 0 0
\(970\) −22.7639 −0.730906
\(971\) 17.0785 0.548076 0.274038 0.961719i \(-0.411641\pi\)
0.274038 + 0.961719i \(0.411641\pi\)
\(972\) 0 0
\(973\) 3.85410 0.123557
\(974\) 18.2918 0.586107
\(975\) 0 0
\(976\) 1.25735 0.0402469
\(977\) 28.2542 0.903931 0.451966 0.892035i \(-0.350723\pi\)
0.451966 + 0.892035i \(0.350723\pi\)
\(978\) 0 0
\(979\) −64.1823 −2.05128
\(980\) 8.36068 0.267072
\(981\) 0 0
\(982\) 19.1271 0.610371
\(983\) 21.6093 0.689230 0.344615 0.938744i \(-0.388010\pi\)
0.344615 + 0.938744i \(0.388010\pi\)
\(984\) 0 0
\(985\) 3.12461 0.0995584
\(986\) 7.63932 0.243286
\(987\) 0 0
\(988\) 0 0
\(989\) −16.5623 −0.526651
\(990\) 0 0
\(991\) 21.0543 0.668811 0.334405 0.942429i \(-0.391465\pi\)
0.334405 + 0.942429i \(0.391465\pi\)
\(992\) 3.94427 0.125231
\(993\) 0 0
\(994\) −60.4508 −1.91738
\(995\) 23.4164 0.742350
\(996\) 0 0
\(997\) 7.12461 0.225639 0.112819 0.993616i \(-0.464012\pi\)
0.112819 + 0.993616i \(0.464012\pi\)
\(998\) 25.3075 0.801096
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.bc.1.3 4
3.2 odd 2 361.2.a.i.1.2 4
12.11 even 2 5776.2.a.bu.1.2 4
15.14 odd 2 9025.2.a.bj.1.3 4
19.18 odd 2 inner 3249.2.a.bc.1.2 4
57.2 even 18 361.2.e.m.99.2 24
57.5 odd 18 361.2.e.m.234.2 24
57.8 even 6 361.2.c.j.292.2 8
57.11 odd 6 361.2.c.j.292.3 8
57.14 even 18 361.2.e.m.234.3 24
57.17 odd 18 361.2.e.m.99.3 24
57.23 odd 18 361.2.e.m.54.2 24
57.26 odd 6 361.2.c.j.68.3 8
57.29 even 18 361.2.e.m.62.2 24
57.32 even 18 361.2.e.m.245.3 24
57.35 odd 18 361.2.e.m.28.2 24
57.41 even 18 361.2.e.m.28.3 24
57.44 odd 18 361.2.e.m.245.2 24
57.47 odd 18 361.2.e.m.62.3 24
57.50 even 6 361.2.c.j.68.2 8
57.53 even 18 361.2.e.m.54.3 24
57.56 even 2 361.2.a.i.1.3 yes 4
228.227 odd 2 5776.2.a.bu.1.3 4
285.284 even 2 9025.2.a.bj.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
361.2.a.i.1.2 4 3.2 odd 2
361.2.a.i.1.3 yes 4 57.56 even 2
361.2.c.j.68.2 8 57.50 even 6
361.2.c.j.68.3 8 57.26 odd 6
361.2.c.j.292.2 8 57.8 even 6
361.2.c.j.292.3 8 57.11 odd 6
361.2.e.m.28.2 24 57.35 odd 18
361.2.e.m.28.3 24 57.41 even 18
361.2.e.m.54.2 24 57.23 odd 18
361.2.e.m.54.3 24 57.53 even 18
361.2.e.m.62.2 24 57.29 even 18
361.2.e.m.62.3 24 57.47 odd 18
361.2.e.m.99.2 24 57.2 even 18
361.2.e.m.99.3 24 57.17 odd 18
361.2.e.m.234.2 24 57.5 odd 18
361.2.e.m.234.3 24 57.14 even 18
361.2.e.m.245.2 24 57.44 odd 18
361.2.e.m.245.3 24 57.32 even 18
3249.2.a.bc.1.2 4 19.18 odd 2 inner
3249.2.a.bc.1.3 4 1.1 even 1 trivial
5776.2.a.bu.1.2 4 12.11 even 2
5776.2.a.bu.1.3 4 228.227 odd 2
9025.2.a.bj.1.2 4 285.284 even 2
9025.2.a.bj.1.3 4 15.14 odd 2