Properties

Label 361.2.c.j.292.3
Level $361$
Weight $2$
Character 361.292
Analytic conductor $2.883$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,2,Mod(68,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.88259951297\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.324000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 20x^{4} + 25x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 292.3
Root \(0.951057 + 1.64728i\) of defining polynomial
Character \(\chi\) \(=\) 361.292
Dual form 361.2.c.j.68.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.587785 + 1.01807i) q^{2} +(-0.587785 - 1.01807i) q^{3} +(0.309017 - 0.535233i) q^{4} +(-0.618034 - 1.07047i) q^{5} +(0.690983 - 1.19682i) q^{6} -4.23607 q^{7} +3.07768 q^{8} +(0.809017 - 1.40126i) q^{9} +(0.726543 - 1.25841i) q^{10} -3.61803 q^{11} -0.726543 q^{12} +(1.53884 - 2.66535i) q^{13} +(-2.48990 - 4.31263i) q^{14} +(-0.726543 + 1.25841i) q^{15} +(1.19098 + 2.06284i) q^{16} +(-1.23607 - 2.14093i) q^{17} +1.90211 q^{18} -0.763932 q^{20} +(2.48990 + 4.31263i) q^{21} +(-2.12663 - 3.68343i) q^{22} +(1.30902 - 2.26728i) q^{23} +(-1.80902 - 3.13331i) q^{24} +(1.73607 - 3.00696i) q^{25} +3.61803 q^{26} -5.42882 q^{27} +(-1.30902 + 2.26728i) q^{28} +(-1.31433 + 2.27648i) q^{29} -1.70820 q^{30} +1.17557 q^{31} +(1.67760 - 2.90569i) q^{32} +(2.12663 + 3.68343i) q^{33} +(1.45309 - 2.51682i) q^{34} +(2.61803 + 4.53457i) q^{35} +(-0.500000 - 0.866025i) q^{36} +6.43288 q^{37} -3.61803 q^{39} +(-1.90211 - 3.29456i) q^{40} +(4.61653 + 7.99606i) q^{41} +(-2.92705 + 5.06980i) q^{42} +(3.16312 + 5.47868i) q^{43} +(-1.11803 + 1.93649i) q^{44} -2.00000 q^{45} +3.07768 q^{46} +(1.26393 - 2.18919i) q^{47} +(1.40008 - 2.42502i) q^{48} +10.9443 q^{49} +4.08174 q^{50} +(-1.45309 + 2.51682i) q^{51} +(-0.951057 - 1.64728i) q^{52} +(0.224514 - 0.388870i) q^{53} +(-3.19098 - 5.52694i) q^{54} +(2.23607 + 3.87298i) q^{55} -13.0373 q^{56} -3.09017 q^{58} +(-1.40008 - 2.42502i) q^{59} +(0.449028 + 0.777739i) q^{60} +(0.263932 - 0.457144i) q^{61} +(0.690983 + 1.19682i) q^{62} +(-3.42705 + 5.93583i) q^{63} +8.70820 q^{64} -3.80423 q^{65} +(-2.50000 + 4.33013i) q^{66} +(-0.0857567 + 0.148535i) q^{67} -1.52786 q^{68} -3.07768 q^{69} +(-3.07768 + 5.33070i) q^{70} +(6.06961 + 10.5129i) q^{71} +(2.48990 - 4.31263i) q^{72} +(-4.50000 - 7.79423i) q^{73} +(3.78115 + 6.54915i) q^{74} -4.08174 q^{75} +15.3262 q^{77} +(-2.12663 - 3.68343i) q^{78} +(-3.80423 - 6.58911i) q^{79} +(1.47214 - 2.54981i) q^{80} +(0.763932 + 1.32317i) q^{81} +(-5.42705 + 9.39993i) q^{82} +1.23607 q^{83} +3.07768 q^{84} +(-1.52786 + 2.64634i) q^{85} +(-3.71847 + 6.44058i) q^{86} +3.09017 q^{87} -11.1352 q^{88} +(-8.86978 + 15.3629i) q^{89} +(-1.17557 - 2.03615i) q^{90} +(-6.51864 + 11.2906i) q^{91} +(-0.809017 - 1.40126i) q^{92} +(-0.690983 - 1.19682i) q^{93} +2.97168 q^{94} -3.94427 q^{96} +(-7.83297 - 13.5671i) q^{97} +(6.43288 + 11.1421i) q^{98} +(-2.92705 + 5.06980i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} + 4 q^{5} + 10 q^{6} - 16 q^{7} + 2 q^{9} - 20 q^{11} + 14 q^{16} + 8 q^{17} - 24 q^{20} + 6 q^{23} - 10 q^{24} - 4 q^{25} + 20 q^{26} - 6 q^{28} + 40 q^{30} + 12 q^{35} - 4 q^{36} - 20 q^{39}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/361\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.587785 + 1.01807i 0.415627 + 0.719887i 0.995494 0.0948241i \(-0.0302289\pi\)
−0.579867 + 0.814711i \(0.696896\pi\)
\(3\) −0.587785 1.01807i −0.339358 0.587785i 0.644954 0.764221i \(-0.276876\pi\)
−0.984312 + 0.176436i \(0.943543\pi\)
\(4\) 0.309017 0.535233i 0.154508 0.267617i
\(5\) −0.618034 1.07047i −0.276393 0.478727i 0.694092 0.719886i \(-0.255806\pi\)
−0.970486 + 0.241159i \(0.922473\pi\)
\(6\) 0.690983 1.19682i 0.282093 0.488599i
\(7\) −4.23607 −1.60108 −0.800542 0.599277i \(-0.795455\pi\)
−0.800542 + 0.599277i \(0.795455\pi\)
\(8\) 3.07768 1.08813
\(9\) 0.809017 1.40126i 0.269672 0.467086i
\(10\) 0.726543 1.25841i 0.229753 0.397944i
\(11\) −3.61803 −1.09088 −0.545439 0.838150i \(-0.683637\pi\)
−0.545439 + 0.838150i \(0.683637\pi\)
\(12\) −0.726543 −0.209735
\(13\) 1.53884 2.66535i 0.426798 0.739236i −0.569789 0.821791i \(-0.692975\pi\)
0.996586 + 0.0825557i \(0.0263082\pi\)
\(14\) −2.48990 4.31263i −0.665453 1.15260i
\(15\) −0.726543 + 1.25841i −0.187592 + 0.324920i
\(16\) 1.19098 + 2.06284i 0.297746 + 0.515711i
\(17\) −1.23607 2.14093i −0.299791 0.519252i 0.676297 0.736629i \(-0.263583\pi\)
−0.976088 + 0.217376i \(0.930250\pi\)
\(18\) 1.90211 0.448332
\(19\) 0 0
\(20\) −0.763932 −0.170820
\(21\) 2.48990 + 4.31263i 0.543340 + 0.941093i
\(22\) −2.12663 3.68343i −0.453398 0.785309i
\(23\) 1.30902 2.26728i 0.272949 0.472761i −0.696667 0.717395i \(-0.745334\pi\)
0.969616 + 0.244634i \(0.0786677\pi\)
\(24\) −1.80902 3.13331i −0.369264 0.639584i
\(25\) 1.73607 3.00696i 0.347214 0.601392i
\(26\) 3.61803 0.709555
\(27\) −5.42882 −1.04478
\(28\) −1.30902 + 2.26728i −0.247381 + 0.428476i
\(29\) −1.31433 + 2.27648i −0.244065 + 0.422732i −0.961868 0.273513i \(-0.911814\pi\)
0.717804 + 0.696246i \(0.245148\pi\)
\(30\) −1.70820 −0.311874
\(31\) 1.17557 0.211139 0.105569 0.994412i \(-0.466333\pi\)
0.105569 + 0.994412i \(0.466333\pi\)
\(32\) 1.67760 2.90569i 0.296560 0.513658i
\(33\) 2.12663 + 3.68343i 0.370198 + 0.641202i
\(34\) 1.45309 2.51682i 0.249202 0.431631i
\(35\) 2.61803 + 4.53457i 0.442529 + 0.766482i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 6.43288 1.05756 0.528780 0.848759i \(-0.322650\pi\)
0.528780 + 0.848759i \(0.322650\pi\)
\(38\) 0 0
\(39\) −3.61803 −0.579349
\(40\) −1.90211 3.29456i −0.300750 0.520915i
\(41\) 4.61653 + 7.99606i 0.720980 + 1.24877i 0.960607 + 0.277909i \(0.0896414\pi\)
−0.239627 + 0.970865i \(0.577025\pi\)
\(42\) −2.92705 + 5.06980i −0.451654 + 0.782287i
\(43\) 3.16312 + 5.47868i 0.482371 + 0.835491i 0.999795 0.0202378i \(-0.00644234\pi\)
−0.517424 + 0.855729i \(0.673109\pi\)
\(44\) −1.11803 + 1.93649i −0.168550 + 0.291937i
\(45\) −2.00000 −0.298142
\(46\) 3.07768 0.453780
\(47\) 1.26393 2.18919i 0.184363 0.319327i −0.758998 0.651092i \(-0.774311\pi\)
0.943362 + 0.331766i \(0.107644\pi\)
\(48\) 1.40008 2.42502i 0.202085 0.350021i
\(49\) 10.9443 1.56347
\(50\) 4.08174 0.577245
\(51\) −1.45309 + 2.51682i −0.203473 + 0.352425i
\(52\) −0.951057 1.64728i −0.131888 0.228436i
\(53\) 0.224514 0.388870i 0.0308394 0.0534154i −0.850194 0.526470i \(-0.823515\pi\)
0.881033 + 0.473055i \(0.156849\pi\)
\(54\) −3.19098 5.52694i −0.434238 0.752122i
\(55\) 2.23607 + 3.87298i 0.301511 + 0.522233i
\(56\) −13.0373 −1.74218
\(57\) 0 0
\(58\) −3.09017 −0.405759
\(59\) −1.40008 2.42502i −0.182275 0.315710i 0.760380 0.649479i \(-0.225013\pi\)
−0.942655 + 0.333769i \(0.891680\pi\)
\(60\) 0.449028 + 0.777739i 0.0579693 + 0.100406i
\(61\) 0.263932 0.457144i 0.0337930 0.0585312i −0.848634 0.528980i \(-0.822575\pi\)
0.882427 + 0.470449i \(0.155908\pi\)
\(62\) 0.690983 + 1.19682i 0.0877549 + 0.151996i
\(63\) −3.42705 + 5.93583i −0.431768 + 0.747844i
\(64\) 8.70820 1.08853
\(65\) −3.80423 −0.471856
\(66\) −2.50000 + 4.33013i −0.307729 + 0.533002i
\(67\) −0.0857567 + 0.148535i −0.0104768 + 0.0181464i −0.871216 0.490899i \(-0.836668\pi\)
0.860739 + 0.509046i \(0.170002\pi\)
\(68\) −1.52786 −0.185281
\(69\) −3.07768 −0.370510
\(70\) −3.07768 + 5.33070i −0.367854 + 0.637141i
\(71\) 6.06961 + 10.5129i 0.720330 + 1.24765i 0.960867 + 0.277009i \(0.0893431\pi\)
−0.240537 + 0.970640i \(0.577324\pi\)
\(72\) 2.48990 4.31263i 0.293437 0.508248i
\(73\) −4.50000 7.79423i −0.526685 0.912245i −0.999517 0.0310925i \(-0.990101\pi\)
0.472831 0.881153i \(-0.343232\pi\)
\(74\) 3.78115 + 6.54915i 0.439550 + 0.761323i
\(75\) −4.08174 −0.471319
\(76\) 0 0
\(77\) 15.3262 1.74659
\(78\) −2.12663 3.68343i −0.240793 0.417066i
\(79\) −3.80423 6.58911i −0.428009 0.741333i 0.568687 0.822554i \(-0.307451\pi\)
−0.996696 + 0.0812207i \(0.974118\pi\)
\(80\) 1.47214 2.54981i 0.164590 0.285078i
\(81\) 0.763932 + 1.32317i 0.0848813 + 0.147019i
\(82\) −5.42705 + 9.39993i −0.599318 + 1.03805i
\(83\) 1.23607 0.135676 0.0678380 0.997696i \(-0.478390\pi\)
0.0678380 + 0.997696i \(0.478390\pi\)
\(84\) 3.07768 0.335803
\(85\) −1.52786 + 2.64634i −0.165720 + 0.287036i
\(86\) −3.71847 + 6.44058i −0.400973 + 0.694505i
\(87\) 3.09017 0.331301
\(88\) −11.1352 −1.18701
\(89\) −8.86978 + 15.3629i −0.940195 + 1.62847i −0.175097 + 0.984551i \(0.556024\pi\)
−0.765098 + 0.643914i \(0.777310\pi\)
\(90\) −1.17557 2.03615i −0.123916 0.214629i
\(91\) −6.51864 + 11.2906i −0.683339 + 1.18358i
\(92\) −0.809017 1.40126i −0.0843459 0.146091i
\(93\) −0.690983 1.19682i −0.0716516 0.124104i
\(94\) 2.97168 0.306506
\(95\) 0 0
\(96\) −3.94427 −0.402561
\(97\) −7.83297 13.5671i −0.795317 1.37753i −0.922638 0.385668i \(-0.873971\pi\)
0.127320 0.991862i \(-0.459362\pi\)
\(98\) 6.43288 + 11.1421i 0.649819 + 1.12552i
\(99\) −2.92705 + 5.06980i −0.294180 + 0.509534i
\(100\) −1.07295 1.85840i −0.107295 0.185840i
\(101\) 6.97214 12.0761i 0.693753 1.20162i −0.276846 0.960914i \(-0.589289\pi\)
0.970599 0.240702i \(-0.0773776\pi\)
\(102\) −3.41641 −0.338275
\(103\) −1.00406 −0.0989327 −0.0494663 0.998776i \(-0.515752\pi\)
−0.0494663 + 0.998776i \(0.515752\pi\)
\(104\) 4.73607 8.20311i 0.464410 0.804381i
\(105\) 3.07768 5.33070i 0.300351 0.520223i
\(106\) 0.527864 0.0512707
\(107\) 11.5842 1.11989 0.559943 0.828531i \(-0.310823\pi\)
0.559943 + 0.828531i \(0.310823\pi\)
\(108\) −1.67760 + 2.90569i −0.161427 + 0.279600i
\(109\) −0.363271 0.629204i −0.0347951 0.0602668i 0.848103 0.529831i \(-0.177745\pi\)
−0.882899 + 0.469564i \(0.844411\pi\)
\(110\) −2.62866 + 4.55296i −0.250632 + 0.434108i
\(111\) −3.78115 6.54915i −0.358891 0.621618i
\(112\) −5.04508 8.73834i −0.476716 0.825696i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −3.23607 −0.301765
\(116\) 0.812299 + 1.40694i 0.0754201 + 0.130631i
\(117\) −2.48990 4.31263i −0.230191 0.398703i
\(118\) 1.64590 2.85078i 0.151517 0.262435i
\(119\) 5.23607 + 9.06914i 0.479990 + 0.831366i
\(120\) −2.23607 + 3.87298i −0.204124 + 0.353553i
\(121\) 2.09017 0.190015
\(122\) 0.620541 0.0561812
\(123\) 5.42705 9.39993i 0.489341 0.847563i
\(124\) 0.363271 0.629204i 0.0326227 0.0565042i
\(125\) −10.4721 −0.936656
\(126\) −8.05748 −0.717817
\(127\) 7.97172 13.8074i 0.707376 1.22521i −0.258451 0.966024i \(-0.583212\pi\)
0.965827 0.259187i \(-0.0834546\pi\)
\(128\) 1.76336 + 3.05422i 0.155860 + 0.269958i
\(129\) 3.71847 6.44058i 0.327393 0.567061i
\(130\) −2.23607 3.87298i −0.196116 0.339683i
\(131\) 2.54508 + 4.40822i 0.222365 + 0.385148i 0.955526 0.294908i \(-0.0952890\pi\)
−0.733161 + 0.680056i \(0.761956\pi\)
\(132\) 2.62866 0.228795
\(133\) 0 0
\(134\) −0.201626 −0.0174178
\(135\) 3.35520 + 5.81137i 0.288769 + 0.500163i
\(136\) −3.80423 6.58911i −0.326210 0.565012i
\(137\) 2.35410 4.07742i 0.201125 0.348358i −0.747767 0.663962i \(-0.768874\pi\)
0.948891 + 0.315604i \(0.102207\pi\)
\(138\) −1.80902 3.13331i −0.153994 0.266725i
\(139\) 0.454915 0.787936i 0.0385854 0.0668319i −0.846088 0.533044i \(-0.821048\pi\)
0.884673 + 0.466212i \(0.154382\pi\)
\(140\) 3.23607 0.273498
\(141\) −2.97168 −0.250261
\(142\) −7.13525 + 12.3586i −0.598777 + 1.03711i
\(143\) −5.56758 + 9.64333i −0.465585 + 0.806416i
\(144\) 3.85410 0.321175
\(145\) 3.24920 0.269831
\(146\) 5.29007 9.16267i 0.437809 0.758308i
\(147\) −6.43288 11.1421i −0.530575 0.918983i
\(148\) 1.98787 3.44309i 0.163402 0.283020i
\(149\) 11.5172 + 19.9484i 0.943528 + 1.63424i 0.758673 + 0.651472i \(0.225848\pi\)
0.184855 + 0.982766i \(0.440819\pi\)
\(150\) −2.39919 4.15551i −0.195893 0.339296i
\(151\) 2.45714 0.199959 0.0999797 0.994989i \(-0.468122\pi\)
0.0999797 + 0.994989i \(0.468122\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 9.00854 + 15.6032i 0.725929 + 1.25735i
\(155\) −0.726543 1.25841i −0.0583573 0.101078i
\(156\) −1.11803 + 1.93649i −0.0895144 + 0.155043i
\(157\) −7.78115 13.4774i −0.621004 1.07561i −0.989299 0.145901i \(-0.953392\pi\)
0.368296 0.929709i \(-0.379941\pi\)
\(158\) 4.47214 7.74597i 0.355784 0.616236i
\(159\) −0.527864 −0.0418623
\(160\) −4.14725 −0.327869
\(161\) −5.54508 + 9.60437i −0.437014 + 0.756930i
\(162\) −0.898056 + 1.55548i −0.0705579 + 0.122210i
\(163\) 6.52786 0.511302 0.255651 0.966769i \(-0.417710\pi\)
0.255651 + 0.966769i \(0.417710\pi\)
\(164\) 5.70634 0.445590
\(165\) 2.62866 4.55296i 0.204641 0.354448i
\(166\) 0.726543 + 1.25841i 0.0563906 + 0.0976714i
\(167\) 3.44095 5.95991i 0.266269 0.461192i −0.701626 0.712545i \(-0.747542\pi\)
0.967895 + 0.251354i \(0.0808757\pi\)
\(168\) 7.66312 + 13.2729i 0.591222 + 1.02403i
\(169\) 1.76393 + 3.05522i 0.135687 + 0.235017i
\(170\) −3.59222 −0.275511
\(171\) 0 0
\(172\) 3.90983 0.298122
\(173\) 7.77997 + 13.4753i 0.591500 + 1.02451i 0.994031 + 0.109101i \(0.0347973\pi\)
−0.402531 + 0.915406i \(0.631869\pi\)
\(174\) 1.81636 + 3.14602i 0.137698 + 0.238499i
\(175\) −7.35410 + 12.7377i −0.555918 + 0.962878i
\(176\) −4.30902 7.46344i −0.324804 0.562578i
\(177\) −1.64590 + 2.85078i −0.123713 + 0.214278i
\(178\) −20.8541 −1.56308
\(179\) 18.2946 1.36740 0.683701 0.729762i \(-0.260369\pi\)
0.683701 + 0.729762i \(0.260369\pi\)
\(180\) −0.618034 + 1.07047i −0.0460655 + 0.0797878i
\(181\) 12.3107 21.3228i 0.915050 1.58491i 0.108221 0.994127i \(-0.465485\pi\)
0.806829 0.590786i \(-0.201182\pi\)
\(182\) −15.3262 −1.13606
\(183\) −0.620541 −0.0458717
\(184\) 4.02874 6.97798i 0.297003 0.514424i
\(185\) −3.97574 6.88618i −0.292302 0.506282i
\(186\) 0.812299 1.40694i 0.0595607 0.103162i
\(187\) 4.47214 + 7.74597i 0.327035 + 0.566441i
\(188\) −0.781153 1.35300i −0.0569714 0.0986774i
\(189\) 22.9969 1.67278
\(190\) 0 0
\(191\) −17.0000 −1.23008 −0.615038 0.788497i \(-0.710860\pi\)
−0.615038 + 0.788497i \(0.710860\pi\)
\(192\) −5.11855 8.86560i −0.369400 0.639819i
\(193\) 2.62866 + 4.55296i 0.189215 + 0.327730i 0.944989 0.327103i \(-0.106072\pi\)
−0.755774 + 0.654833i \(0.772739\pi\)
\(194\) 9.20820 15.9491i 0.661111 1.14508i
\(195\) 2.23607 + 3.87298i 0.160128 + 0.277350i
\(196\) 3.38197 5.85774i 0.241569 0.418410i
\(197\) 2.52786 0.180103 0.0900514 0.995937i \(-0.471297\pi\)
0.0900514 + 0.995937i \(0.471297\pi\)
\(198\) −6.88191 −0.489076
\(199\) 9.47214 16.4062i 0.671462 1.16301i −0.306028 0.952023i \(-0.599000\pi\)
0.977490 0.210984i \(-0.0676666\pi\)
\(200\) 5.34307 9.25446i 0.377812 0.654389i
\(201\) 0.201626 0.0142216
\(202\) 16.3925 1.15337
\(203\) 5.56758 9.64333i 0.390768 0.676829i
\(204\) 0.898056 + 1.55548i 0.0628765 + 0.108905i
\(205\) 5.70634 9.88367i 0.398548 0.690305i
\(206\) −0.590170 1.02220i −0.0411191 0.0712204i
\(207\) −2.11803 3.66854i −0.147214 0.254981i
\(208\) 7.33094 0.508309
\(209\) 0 0
\(210\) 7.23607 0.499336
\(211\) 9.00854 + 15.6032i 0.620173 + 1.07417i 0.989453 + 0.144853i \(0.0462710\pi\)
−0.369280 + 0.929318i \(0.620396\pi\)
\(212\) −0.138757 0.240335i −0.00952989 0.0165063i
\(213\) 7.13525 12.3586i 0.488900 0.846799i
\(214\) 6.80902 + 11.7936i 0.465455 + 0.806191i
\(215\) 3.90983 6.77202i 0.266648 0.461848i
\(216\) −16.7082 −1.13685
\(217\) −4.97980 −0.338051
\(218\) 0.427051 0.739674i 0.0289235 0.0500970i
\(219\) −5.29007 + 9.16267i −0.357470 + 0.619156i
\(220\) 2.76393 0.186344
\(221\) −7.60845 −0.511800
\(222\) 4.44501 7.69899i 0.298330 0.516722i
\(223\) −6.79615 11.7713i −0.455104 0.788263i 0.543590 0.839351i \(-0.317065\pi\)
−0.998694 + 0.0510875i \(0.983731\pi\)
\(224\) −7.10642 + 12.3087i −0.474818 + 0.822409i
\(225\) −2.80902 4.86536i −0.187268 0.324357i
\(226\) 0 0
\(227\) −29.7073 −1.97174 −0.985870 0.167511i \(-0.946427\pi\)
−0.985870 + 0.167511i \(0.946427\pi\)
\(228\) 0 0
\(229\) 4.09017 0.270286 0.135143 0.990826i \(-0.456851\pi\)
0.135143 + 0.990826i \(0.456851\pi\)
\(230\) −1.90211 3.29456i −0.125422 0.217237i
\(231\) −9.00854 15.6032i −0.592718 1.02662i
\(232\) −4.04508 + 7.00629i −0.265573 + 0.459986i
\(233\) −6.73607 11.6672i −0.441294 0.764344i 0.556491 0.830853i \(-0.312147\pi\)
−0.997786 + 0.0665089i \(0.978814\pi\)
\(234\) 2.92705 5.06980i 0.191347 0.331423i
\(235\) −3.12461 −0.203827
\(236\) −1.73060 −0.112652
\(237\) −4.47214 + 7.74597i −0.290496 + 0.503155i
\(238\) −6.15537 + 10.6614i −0.398993 + 0.691076i
\(239\) −15.8541 −1.02552 −0.512758 0.858533i \(-0.671376\pi\)
−0.512758 + 0.858533i \(0.671376\pi\)
\(240\) −3.46120 −0.223419
\(241\) −11.3269 + 19.6188i −0.729631 + 1.26376i 0.227408 + 0.973800i \(0.426975\pi\)
−0.957039 + 0.289959i \(0.906358\pi\)
\(242\) 1.22857 + 2.12795i 0.0789755 + 0.136790i
\(243\) −7.24518 + 12.5490i −0.464779 + 0.805020i
\(244\) −0.163119 0.282530i −0.0104426 0.0180872i
\(245\) −6.76393 11.7155i −0.432132 0.748474i
\(246\) 12.7598 0.813533
\(247\) 0 0
\(248\) 3.61803 0.229745
\(249\) −0.726543 1.25841i −0.0460428 0.0797484i
\(250\) −6.15537 10.6614i −0.389300 0.674287i
\(251\) −5.20820 + 9.02087i −0.328739 + 0.569393i −0.982262 0.187514i \(-0.939957\pi\)
0.653523 + 0.756907i \(0.273290\pi\)
\(252\) 2.11803 + 3.66854i 0.133424 + 0.231096i
\(253\) −4.73607 + 8.20311i −0.297754 + 0.515725i
\(254\) 18.7426 1.17602
\(255\) 3.59222 0.224954
\(256\) 6.63525 11.4926i 0.414703 0.718287i
\(257\) −4.53077 + 7.84752i −0.282622 + 0.489515i −0.972030 0.234858i \(-0.924537\pi\)
0.689408 + 0.724373i \(0.257871\pi\)
\(258\) 8.74265 0.544293
\(259\) −27.2501 −1.69324
\(260\) −1.17557 + 2.03615i −0.0729058 + 0.126277i
\(261\) 2.12663 + 3.68343i 0.131635 + 0.227998i
\(262\) −2.99193 + 5.18217i −0.184842 + 0.320155i
\(263\) −5.94427 10.2958i −0.366540 0.634865i 0.622482 0.782634i \(-0.286124\pi\)
−0.989022 + 0.147769i \(0.952791\pi\)
\(264\) 6.54508 + 11.3364i 0.402822 + 0.697708i
\(265\) −0.555029 −0.0340952
\(266\) 0 0
\(267\) 20.8541 1.27625
\(268\) 0.0530006 + 0.0917997i 0.00323752 + 0.00560756i
\(269\) 3.85723 + 6.68091i 0.235179 + 0.407342i 0.959325 0.282305i \(-0.0910989\pi\)
−0.724146 + 0.689647i \(0.757766\pi\)
\(270\) −3.94427 + 6.83168i −0.240041 + 0.415763i
\(271\) −7.13525 12.3586i −0.433436 0.750733i 0.563731 0.825959i \(-0.309366\pi\)
−0.997167 + 0.0752257i \(0.976032\pi\)
\(272\) 2.94427 5.09963i 0.178523 0.309210i
\(273\) 15.3262 0.927586
\(274\) 5.53483 0.334371
\(275\) −6.28115 + 10.8793i −0.378768 + 0.656045i
\(276\) −0.951057 + 1.64728i −0.0572469 + 0.0991545i
\(277\) −19.2361 −1.15578 −0.577892 0.816113i \(-0.696124\pi\)
−0.577892 + 0.816113i \(0.696124\pi\)
\(278\) 1.06957 0.0641485
\(279\) 0.951057 1.64728i 0.0569383 0.0986200i
\(280\) 8.05748 + 13.9560i 0.481527 + 0.834028i
\(281\) 2.21238 3.83196i 0.131980 0.228596i −0.792460 0.609924i \(-0.791200\pi\)
0.924440 + 0.381328i \(0.124533\pi\)
\(282\) −1.74671 3.02539i −0.104015 0.180159i
\(283\) 0.454915 + 0.787936i 0.0270419 + 0.0468379i 0.879230 0.476398i \(-0.158058\pi\)
−0.852188 + 0.523236i \(0.824725\pi\)
\(284\) 7.50245 0.445189
\(285\) 0 0
\(286\) −13.0902 −0.774038
\(287\) −19.5559 33.8718i −1.15435 1.99939i
\(288\) −2.71441 4.70150i −0.159948 0.277039i
\(289\) 5.44427 9.42976i 0.320251 0.554692i
\(290\) 1.90983 + 3.30792i 0.112149 + 0.194248i
\(291\) −9.20820 + 15.9491i −0.539794 + 0.934951i
\(292\) −5.56231 −0.325509
\(293\) 24.7275 1.44459 0.722297 0.691583i \(-0.243086\pi\)
0.722297 + 0.691583i \(0.243086\pi\)
\(294\) 7.56231 13.0983i 0.441043 0.763908i
\(295\) −1.73060 + 2.99749i −0.100759 + 0.174520i
\(296\) 19.7984 1.15076
\(297\) 19.6417 1.13973
\(298\) −13.5393 + 23.4508i −0.784311 + 1.35847i
\(299\) −4.02874 6.97798i −0.232988 0.403547i
\(300\) −1.26133 + 2.18468i −0.0728228 + 0.126133i
\(301\) −13.3992 23.2081i −0.772316 1.33769i
\(302\) 1.44427 + 2.50155i 0.0831085 + 0.143948i
\(303\) −16.3925 −0.941723
\(304\) 0 0
\(305\) −0.652476 −0.0373607
\(306\) −2.35114 4.07230i −0.134406 0.232798i
\(307\) 13.7966 + 23.8964i 0.787412 + 1.36384i 0.927547 + 0.373705i \(0.121913\pi\)
−0.140135 + 0.990132i \(0.544754\pi\)
\(308\) 4.73607 8.20311i 0.269863 0.467416i
\(309\) 0.590170 + 1.02220i 0.0335736 + 0.0581512i
\(310\) 0.854102 1.47935i 0.0485097 0.0840213i
\(311\) −5.52786 −0.313456 −0.156728 0.987642i \(-0.550095\pi\)
−0.156728 + 0.987642i \(0.550095\pi\)
\(312\) −11.1352 −0.630405
\(313\) −3.80902 + 6.59741i −0.215298 + 0.372908i −0.953365 0.301820i \(-0.902406\pi\)
0.738066 + 0.674728i \(0.235739\pi\)
\(314\) 9.14729 15.8436i 0.516212 0.894105i
\(315\) 8.47214 0.477351
\(316\) −4.70228 −0.264524
\(317\) −4.42477 + 7.66392i −0.248520 + 0.430449i −0.963115 0.269089i \(-0.913277\pi\)
0.714596 + 0.699538i \(0.246611\pi\)
\(318\) −0.310271 0.537405i −0.0173991 0.0301362i
\(319\) 4.75528 8.23639i 0.266245 0.461149i
\(320\) −5.38197 9.32184i −0.300861 0.521107i
\(321\) −6.80902 11.7936i −0.380042 0.658253i
\(322\) −13.0373 −0.726539
\(323\) 0 0
\(324\) 0.944272 0.0524596
\(325\) −5.34307 9.25446i −0.296380 0.513345i
\(326\) 3.83698 + 6.64585i 0.212511 + 0.368079i
\(327\) −0.427051 + 0.739674i −0.0236160 + 0.0409041i
\(328\) 14.2082 + 24.6093i 0.784517 + 1.35882i
\(329\) −5.35410 + 9.27358i −0.295181 + 0.511269i
\(330\) 6.18034 0.340217
\(331\) −24.2784 −1.33446 −0.667232 0.744850i \(-0.732521\pi\)
−0.667232 + 0.744850i \(0.732521\pi\)
\(332\) 0.381966 0.661585i 0.0209631 0.0363092i
\(333\) 5.20431 9.01413i 0.285194 0.493971i
\(334\) 8.09017 0.442674
\(335\) 0.212002 0.0115829
\(336\) −5.93085 + 10.2725i −0.323555 + 0.560413i
\(337\) 8.05748 + 13.9560i 0.438919 + 0.760230i 0.997606 0.0691484i \(-0.0220282\pi\)
−0.558687 + 0.829378i \(0.688695\pi\)
\(338\) −2.07363 + 3.59163i −0.112790 + 0.195359i
\(339\) 0 0
\(340\) 0.944272 + 1.63553i 0.0512103 + 0.0886989i
\(341\) −4.25325 −0.230327
\(342\) 0 0
\(343\) −16.7082 −0.902158
\(344\) 9.73508 + 16.8617i 0.524880 + 0.909119i
\(345\) 1.90211 + 3.29456i 0.102406 + 0.177373i
\(346\) −9.14590 + 15.8412i −0.491687 + 0.851626i
\(347\) 12.4164 + 21.5058i 0.666548 + 1.15449i 0.978863 + 0.204516i \(0.0655621\pi\)
−0.312316 + 0.949978i \(0.601105\pi\)
\(348\) 0.954915 1.65396i 0.0511888 0.0886616i
\(349\) 11.3820 0.609263 0.304631 0.952470i \(-0.401467\pi\)
0.304631 + 0.952470i \(0.401467\pi\)
\(350\) −17.2905 −0.924218
\(351\) −8.35410 + 14.4697i −0.445909 + 0.772337i
\(352\) −6.06961 + 10.5129i −0.323511 + 0.560338i
\(353\) 27.6180 1.46996 0.734980 0.678089i \(-0.237192\pi\)
0.734980 + 0.678089i \(0.237192\pi\)
\(354\) −3.86974 −0.205674
\(355\) 7.50245 12.9946i 0.398189 0.689683i
\(356\) 5.48183 + 9.49480i 0.290536 + 0.503223i
\(357\) 6.15537 10.6614i 0.325777 0.564262i
\(358\) 10.7533 + 18.6252i 0.568329 + 0.984375i
\(359\) 18.8090 + 32.5782i 0.992702 + 1.71941i 0.600788 + 0.799408i \(0.294854\pi\)
0.391914 + 0.920002i \(0.371813\pi\)
\(360\) −6.15537 −0.324416
\(361\) 0 0
\(362\) 28.9443 1.52128
\(363\) −1.22857 2.12795i −0.0644833 0.111688i
\(364\) 4.02874 + 6.97798i 0.211163 + 0.365746i
\(365\) −5.56231 + 9.63420i −0.291144 + 0.504277i
\(366\) −0.364745 0.631757i −0.0190655 0.0330225i
\(367\) −10.7361 + 18.5954i −0.560418 + 0.970673i 0.437042 + 0.899441i \(0.356026\pi\)
−0.997460 + 0.0712315i \(0.977307\pi\)
\(368\) 6.23607 0.325078
\(369\) 14.9394 0.777714
\(370\) 4.67376 8.09519i 0.242977 0.420849i
\(371\) −0.951057 + 1.64728i −0.0493764 + 0.0855224i
\(372\) −0.854102 −0.0442831
\(373\) −4.31877 −0.223617 −0.111809 0.993730i \(-0.535664\pi\)
−0.111809 + 0.993730i \(0.535664\pi\)
\(374\) −5.25731 + 9.10593i −0.271849 + 0.470856i
\(375\) 6.15537 + 10.6614i 0.317862 + 0.550553i
\(376\) 3.88998 6.73765i 0.200611 0.347468i
\(377\) 4.04508 + 7.00629i 0.208332 + 0.360842i
\(378\) 13.5172 + 23.4125i 0.695251 + 1.20421i
\(379\) −7.95148 −0.408440 −0.204220 0.978925i \(-0.565466\pi\)
−0.204220 + 0.978925i \(0.565466\pi\)
\(380\) 0 0
\(381\) −18.7426 −0.960215
\(382\) −9.99235 17.3073i −0.511253 0.885516i
\(383\) −7.02067 12.1602i −0.358739 0.621355i 0.629011 0.777396i \(-0.283460\pi\)
−0.987750 + 0.156042i \(0.950127\pi\)
\(384\) 2.07295 3.59045i 0.105785 0.183225i
\(385\) −9.47214 16.4062i −0.482745 0.836138i
\(386\) −3.09017 + 5.35233i −0.157286 + 0.272426i
\(387\) 10.2361 0.520329
\(388\) −9.68208 −0.491533
\(389\) −6.54508 + 11.3364i −0.331849 + 0.574779i −0.982874 0.184277i \(-0.941006\pi\)
0.651025 + 0.759056i \(0.274339\pi\)
\(390\) −2.62866 + 4.55296i −0.133107 + 0.230548i
\(391\) −6.47214 −0.327310
\(392\) 33.6830 1.70125
\(393\) 2.99193 5.18217i 0.150923 0.261406i
\(394\) 1.48584 + 2.57355i 0.0748556 + 0.129654i
\(395\) −4.70228 + 8.14459i −0.236597 + 0.409799i
\(396\) 1.80902 + 3.13331i 0.0909065 + 0.157455i
\(397\) −7.35410 12.7377i −0.369092 0.639286i 0.620332 0.784339i \(-0.286998\pi\)
−0.989424 + 0.145054i \(0.953665\pi\)
\(398\) 22.2703 1.11631
\(399\) 0 0
\(400\) 8.27051 0.413525
\(401\) 3.80423 + 6.58911i 0.189974 + 0.329045i 0.945241 0.326372i \(-0.105826\pi\)
−0.755267 + 0.655417i \(0.772493\pi\)
\(402\) 0.118513 + 0.205270i 0.00591088 + 0.0102380i
\(403\) 1.80902 3.13331i 0.0901136 0.156081i
\(404\) −4.30902 7.46344i −0.214382 0.371320i
\(405\) 0.944272 1.63553i 0.0469212 0.0812700i
\(406\) 13.0902 0.649654
\(407\) −23.2744 −1.15367
\(408\) −4.47214 + 7.74597i −0.221404 + 0.383482i
\(409\) −10.9637 + 18.9896i −0.542118 + 0.938975i 0.456665 + 0.889639i \(0.349044\pi\)
−0.998782 + 0.0493363i \(0.984289\pi\)
\(410\) 13.4164 0.662589
\(411\) −5.53483 −0.273013
\(412\) −0.310271 + 0.537405i −0.0152859 + 0.0264760i
\(413\) 5.93085 + 10.2725i 0.291838 + 0.505479i
\(414\) 2.48990 4.31263i 0.122372 0.211954i
\(415\) −0.763932 1.32317i −0.0374999 0.0649518i
\(416\) −5.16312 8.94278i −0.253143 0.438456i
\(417\) −1.06957 −0.0523770
\(418\) 0 0
\(419\) −33.4164 −1.63250 −0.816249 0.577700i \(-0.803950\pi\)
−0.816249 + 0.577700i \(0.803950\pi\)
\(420\) −1.90211 3.29456i −0.0928136 0.160758i
\(421\) 7.07367 + 12.2520i 0.344749 + 0.597124i 0.985308 0.170786i \(-0.0546305\pi\)
−0.640559 + 0.767909i \(0.721297\pi\)
\(422\) −10.5902 + 18.3427i −0.515521 + 0.892909i
\(423\) −2.04508 3.54219i −0.0994354 0.172227i
\(424\) 0.690983 1.19682i 0.0335571 0.0581226i
\(425\) −8.58359 −0.416365
\(426\) 16.7760 0.812799
\(427\) −1.11803 + 1.93649i −0.0541055 + 0.0937134i
\(428\) 3.57971 6.20024i 0.173032 0.299700i
\(429\) 13.0902 0.631999
\(430\) 9.19256 0.443305
\(431\) 7.97172 13.8074i 0.383984 0.665080i −0.607643 0.794210i \(-0.707885\pi\)
0.991628 + 0.129130i \(0.0412183\pi\)
\(432\) −6.46564 11.1988i −0.311078 0.538803i
\(433\) 4.66953 8.08786i 0.224403 0.388678i −0.731737 0.681587i \(-0.761290\pi\)
0.956140 + 0.292909i \(0.0946234\pi\)
\(434\) −2.92705 5.06980i −0.140503 0.243358i
\(435\) −1.90983 3.30792i −0.0915693 0.158603i
\(436\) −0.449028 −0.0215045
\(437\) 0 0
\(438\) −12.4377 −0.594296
\(439\) 5.79210 + 10.0322i 0.276442 + 0.478811i 0.970498 0.241110i \(-0.0775114\pi\)
−0.694056 + 0.719921i \(0.744178\pi\)
\(440\) 6.88191 + 11.9198i 0.328082 + 0.568255i
\(441\) 8.85410 15.3358i 0.421624 0.730274i
\(442\) −4.47214 7.74597i −0.212718 0.368438i
\(443\) 3.59017 6.21836i 0.170574 0.295443i −0.768047 0.640394i \(-0.778771\pi\)
0.938621 + 0.344951i \(0.112104\pi\)
\(444\) −4.67376 −0.221807
\(445\) 21.9273 1.03945
\(446\) 7.98936 13.8380i 0.378307 0.655247i
\(447\) 13.5393 23.4508i 0.640387 1.10918i
\(448\) −36.8885 −1.74282
\(449\) −34.9646 −1.65008 −0.825040 0.565074i \(-0.808848\pi\)
−0.825040 + 0.565074i \(0.808848\pi\)
\(450\) 3.30220 5.71957i 0.155667 0.269623i
\(451\) −16.7027 28.9300i −0.786502 1.36226i
\(452\) 0 0
\(453\) −1.44427 2.50155i −0.0678578 0.117533i
\(454\) −17.4615 30.2442i −0.819508 1.41943i
\(455\) 16.1150 0.755481
\(456\) 0 0
\(457\) 19.7082 0.921911 0.460955 0.887423i \(-0.347507\pi\)
0.460955 + 0.887423i \(0.347507\pi\)
\(458\) 2.40414 + 4.16410i 0.112338 + 0.194575i
\(459\) 6.71040 + 11.6227i 0.313214 + 0.542503i
\(460\) −1.00000 + 1.73205i −0.0466252 + 0.0807573i
\(461\) 17.0902 + 29.6010i 0.795969 + 1.37866i 0.922222 + 0.386660i \(0.126371\pi\)
−0.126254 + 0.991998i \(0.540295\pi\)
\(462\) 10.5902 18.3427i 0.492699 0.853380i
\(463\) 16.8541 0.783277 0.391638 0.920119i \(-0.371908\pi\)
0.391638 + 0.920119i \(0.371908\pi\)
\(464\) −6.26137 −0.290677
\(465\) −0.854102 + 1.47935i −0.0396080 + 0.0686031i
\(466\) 7.91872 13.7156i 0.366828 0.635364i
\(467\) −0.236068 −0.0109239 −0.00546196 0.999985i \(-0.501739\pi\)
−0.00546196 + 0.999985i \(0.501739\pi\)
\(468\) −3.07768 −0.142266
\(469\) 0.363271 0.629204i 0.0167743 0.0290540i
\(470\) −1.83660 3.18109i −0.0847161 0.146733i
\(471\) −9.14729 + 15.8436i −0.421485 + 0.730034i
\(472\) −4.30902 7.46344i −0.198339 0.343533i
\(473\) −11.4443 19.8221i −0.526208 0.911419i
\(474\) −10.5146 −0.482953
\(475\) 0 0
\(476\) 6.47214 0.296650
\(477\) −0.363271 0.629204i −0.0166330 0.0288093i
\(478\) −9.31881 16.1406i −0.426232 0.738256i
\(479\) 13.5451 23.4608i 0.618891 1.07195i −0.370798 0.928714i \(-0.620916\pi\)
0.989688 0.143237i \(-0.0457510\pi\)
\(480\) 2.43769 + 4.22221i 0.111265 + 0.192717i
\(481\) 9.89919 17.1459i 0.451364 0.781786i
\(482\) −26.6312 −1.21302
\(483\) 13.0373 0.593217
\(484\) 0.645898 1.11873i 0.0293590 0.0508513i
\(485\) −9.68208 + 16.7699i −0.439641 + 0.761480i
\(486\) −17.0344 −0.772698
\(487\) 15.5599 0.705088 0.352544 0.935795i \(-0.385317\pi\)
0.352544 + 0.935795i \(0.385317\pi\)
\(488\) 0.812299 1.40694i 0.0367711 0.0636893i
\(489\) −3.83698 6.64585i −0.173514 0.300536i
\(490\) 7.95148 13.7724i 0.359211 0.622172i
\(491\) 8.13525 + 14.0907i 0.367139 + 0.635903i 0.989117 0.147131i \(-0.0470040\pi\)
−0.621978 + 0.783035i \(0.713671\pi\)
\(492\) −3.35410 5.80948i −0.151215 0.261911i
\(493\) 6.49839 0.292673
\(494\) 0 0
\(495\) 7.23607 0.325237
\(496\) 1.40008 + 2.42502i 0.0628656 + 0.108886i
\(497\) −25.7113 44.5332i −1.15331 1.99759i
\(498\) 0.854102 1.47935i 0.0382732 0.0662912i
\(499\) −10.7639 18.6437i −0.481860 0.834606i 0.517923 0.855427i \(-0.326705\pi\)
−0.999783 + 0.0208214i \(0.993372\pi\)
\(500\) −3.23607 + 5.60503i −0.144721 + 0.250665i
\(501\) −8.09017 −0.361442
\(502\) −12.2452 −0.546531
\(503\) 14.2984 24.7655i 0.637533 1.10424i −0.348439 0.937331i \(-0.613288\pi\)
0.985972 0.166908i \(-0.0533784\pi\)
\(504\) −10.5474 + 18.2686i −0.469818 + 0.813748i
\(505\) −17.2361 −0.766995
\(506\) −11.1352 −0.495018
\(507\) 2.07363 3.59163i 0.0920930 0.159510i
\(508\) −4.92680 8.53346i −0.218591 0.378611i
\(509\) −6.20837 + 10.7532i −0.275181 + 0.476628i −0.970181 0.242382i \(-0.922071\pi\)
0.695000 + 0.719010i \(0.255404\pi\)
\(510\) 2.11146 + 3.65715i 0.0934969 + 0.161941i
\(511\) 19.0623 + 33.0169i 0.843267 + 1.46058i
\(512\) 22.6538 1.00117
\(513\) 0 0
\(514\) −10.6525 −0.469861
\(515\) 0.620541 + 1.07481i 0.0273443 + 0.0473618i
\(516\) −2.29814 3.98050i −0.101170 0.175232i
\(517\) −4.57295 + 7.92058i −0.201118 + 0.348347i
\(518\) −16.0172 27.7426i −0.703756 1.21894i
\(519\) 9.14590 15.8412i 0.401460 0.695350i
\(520\) −11.7082 −0.513439
\(521\) 2.97168 0.130192 0.0650959 0.997879i \(-0.479265\pi\)
0.0650959 + 0.997879i \(0.479265\pi\)
\(522\) −2.50000 + 4.33013i −0.109422 + 0.189525i
\(523\) −4.06150 + 7.03472i −0.177597 + 0.307607i −0.941057 0.338248i \(-0.890166\pi\)
0.763460 + 0.645855i \(0.223499\pi\)
\(524\) 3.14590 0.137429
\(525\) 17.2905 0.754621
\(526\) 6.98791 12.1034i 0.304687 0.527734i
\(527\) −1.45309 2.51682i −0.0632974 0.109634i
\(528\) −5.06555 + 8.77380i −0.220450 + 0.381830i
\(529\) 8.07295 + 13.9828i 0.350998 + 0.607946i
\(530\) −0.326238 0.565061i −0.0141709 0.0245447i
\(531\) −4.53077 −0.196619
\(532\) 0 0
\(533\) 28.4164 1.23085
\(534\) 12.2577 + 21.2310i 0.530444 + 0.918756i
\(535\) −7.15942 12.4005i −0.309529 0.536120i
\(536\) −0.263932 + 0.457144i −0.0114001 + 0.0197456i
\(537\) −10.7533 18.6252i −0.464039 0.803739i
\(538\) −4.53444 + 7.85388i −0.195494 + 0.338605i
\(539\) −39.5967 −1.70555
\(540\) 4.14725 0.178469
\(541\) 3.35410 5.80948i 0.144204 0.249769i −0.784872 0.619658i \(-0.787271\pi\)
0.929076 + 0.369890i \(0.120604\pi\)
\(542\) 8.38800 14.5284i 0.360295 0.624050i
\(543\) −28.9443 −1.24212
\(544\) −8.29451 −0.355624
\(545\) −0.449028 + 0.777739i −0.0192342 + 0.0333147i
\(546\) 9.00854 + 15.6032i 0.385530 + 0.667757i
\(547\) −14.6291 + 25.3384i −0.625496 + 1.08339i 0.362949 + 0.931809i \(0.381770\pi\)
−0.988445 + 0.151582i \(0.951563\pi\)
\(548\) −1.45492 2.51999i −0.0621509 0.107648i
\(549\) −0.427051 0.739674i −0.0182261 0.0315685i
\(550\) −14.7679 −0.629704
\(551\) 0 0
\(552\) −9.47214 −0.403161
\(553\) 16.1150 + 27.9119i 0.685278 + 1.18694i
\(554\) −11.3067 19.5837i −0.480375 0.832033i
\(555\) −4.67376 + 8.09519i −0.198390 + 0.343622i
\(556\) −0.281153 0.486971i −0.0119235 0.0206522i
\(557\) −2.68034 + 4.64248i −0.113570 + 0.196708i −0.917207 0.398411i \(-0.869562\pi\)
0.803637 + 0.595119i \(0.202895\pi\)
\(558\) 2.23607 0.0946603
\(559\) 19.4702 0.823500
\(560\) −6.23607 + 10.8012i −0.263522 + 0.456433i
\(561\) 5.25731 9.10593i 0.221964 0.384453i
\(562\) 5.20163 0.219417
\(563\) −18.1231 −0.763797 −0.381898 0.924204i \(-0.624730\pi\)
−0.381898 + 0.924204i \(0.624730\pi\)
\(564\) −0.918300 + 1.59054i −0.0386674 + 0.0669739i
\(565\) 0 0
\(566\) −0.534785 + 0.926274i −0.0224787 + 0.0389342i
\(567\) −3.23607 5.60503i −0.135902 0.235389i
\(568\) 18.6803 + 32.3553i 0.783810 + 1.35760i
\(569\) 18.3601 0.769695 0.384848 0.922980i \(-0.374254\pi\)
0.384848 + 0.922980i \(0.374254\pi\)
\(570\) 0 0
\(571\) 41.1033 1.72012 0.860060 0.510192i \(-0.170426\pi\)
0.860060 + 0.510192i \(0.170426\pi\)
\(572\) 3.44095 + 5.95991i 0.143874 + 0.249196i
\(573\) 9.99235 + 17.3073i 0.417436 + 0.723021i
\(574\) 22.9894 39.8187i 0.959557 1.66200i
\(575\) −4.54508 7.87232i −0.189543 0.328298i
\(576\) 7.04508 12.2024i 0.293545 0.508435i
\(577\) −28.7082 −1.19514 −0.597569 0.801817i \(-0.703867\pi\)
−0.597569 + 0.801817i \(0.703867\pi\)
\(578\) 12.8003 0.532420
\(579\) 3.09017 5.35233i 0.128423 0.222435i
\(580\) 1.00406 1.73908i 0.0416912 0.0722113i
\(581\) −5.23607 −0.217229
\(582\) −21.6498 −0.897412
\(583\) −0.812299 + 1.40694i −0.0336420 + 0.0582696i
\(584\) −13.8496 23.9882i −0.573100 0.992638i
\(585\) −3.07768 + 5.33070i −0.127247 + 0.220397i
\(586\) 14.5344 + 25.1744i 0.600412 + 1.03994i
\(587\) −19.5902 33.9312i −0.808573 1.40049i −0.913852 0.406047i \(-0.866907\pi\)
0.105280 0.994443i \(-0.466426\pi\)
\(588\) −7.95148 −0.327913
\(589\) 0 0
\(590\) −4.06888 −0.167513
\(591\) −1.48584 2.57355i −0.0611193 0.105862i
\(592\) 7.66145 + 13.2700i 0.314884 + 0.545395i
\(593\) −15.3541 + 26.5941i −0.630517 + 1.09209i 0.356929 + 0.934132i \(0.383824\pi\)
−0.987446 + 0.157957i \(0.949509\pi\)
\(594\) 11.5451 + 19.9967i 0.473701 + 0.820473i
\(595\) 6.47214 11.2101i 0.265332 0.459568i
\(596\) 14.2361 0.583132
\(597\) −22.2703 −0.911464
\(598\) 4.73607 8.20311i 0.193672 0.335450i
\(599\) 10.3229 17.8797i 0.421781 0.730546i −0.574333 0.818622i \(-0.694739\pi\)
0.996114 + 0.0880760i \(0.0280718\pi\)
\(600\) −12.5623 −0.512854
\(601\) 41.2915 1.68431 0.842157 0.539233i \(-0.181286\pi\)
0.842157 + 0.539233i \(0.181286\pi\)
\(602\) 15.7517 27.2827i 0.641991 1.11196i
\(603\) 0.138757 + 0.240335i 0.00565063 + 0.00978718i
\(604\) 0.759299 1.31514i 0.0308954 0.0535124i
\(605\) −1.29180 2.23746i −0.0525190 0.0909655i
\(606\) −9.63525 16.6888i −0.391405 0.677934i
\(607\) −1.51860 −0.0616380 −0.0308190 0.999525i \(-0.509812\pi\)
−0.0308190 + 0.999525i \(0.509812\pi\)
\(608\) 0 0
\(609\) −13.0902 −0.530440
\(610\) −0.383516 0.664269i −0.0155281 0.0268955i
\(611\) −3.88998 6.73765i −0.157372 0.272576i
\(612\) −1.23607 + 2.14093i −0.0499651 + 0.0865421i
\(613\) 12.2639 + 21.2418i 0.495336 + 0.857946i 0.999986 0.00537770i \(-0.00171178\pi\)
−0.504650 + 0.863324i \(0.668378\pi\)
\(614\) −16.2188 + 28.0919i −0.654539 + 1.13370i
\(615\) −13.4164 −0.541002
\(616\) 47.1693 1.90051
\(617\) −8.63525 + 14.9567i −0.347642 + 0.602134i −0.985830 0.167747i \(-0.946351\pi\)
0.638188 + 0.769881i \(0.279684\pi\)
\(618\) −0.693786 + 1.20167i −0.0279082 + 0.0483384i
\(619\) 36.7771 1.47820 0.739098 0.673598i \(-0.235252\pi\)
0.739098 + 0.673598i \(0.235252\pi\)
\(620\) −0.898056 −0.0360668
\(621\) −7.10642 + 12.3087i −0.285171 + 0.493931i
\(622\) −3.24920 5.62777i −0.130281 0.225653i
\(623\) 37.5730 65.0783i 1.50533 2.60731i
\(624\) −4.30902 7.46344i −0.172499 0.298777i
\(625\) −2.20820 3.82472i −0.0883282 0.152989i
\(626\) −8.95554 −0.357935
\(627\) 0 0
\(628\) −9.61803 −0.383801
\(629\) −7.95148 13.7724i −0.317046 0.549140i
\(630\) 4.97980 + 8.62526i 0.198400 + 0.343639i
\(631\) 12.5000 21.6506i 0.497617 0.861898i −0.502379 0.864647i \(-0.667542\pi\)
0.999996 + 0.00274930i \(0.000875132\pi\)
\(632\) −11.7082 20.2792i −0.465727 0.806663i
\(633\) 10.5902 18.3427i 0.420921 0.729057i
\(634\) −10.4033 −0.413166
\(635\) −19.7072 −0.782056
\(636\) −0.163119 + 0.282530i −0.00646809 + 0.0112031i
\(637\) 16.8415 29.1703i 0.667285 1.15577i
\(638\) 11.1803 0.442634
\(639\) 19.6417 0.777013
\(640\) 2.17963 3.77523i 0.0861573 0.149229i
\(641\) −14.4576 25.0413i −0.571041 0.989072i −0.996459 0.0840753i \(-0.973206\pi\)
0.425418 0.904997i \(-0.360127\pi\)
\(642\) 8.00448 13.8642i 0.315912 0.547175i
\(643\) −3.85410 6.67550i −0.151991 0.263256i 0.779968 0.625819i \(-0.215235\pi\)
−0.931959 + 0.362563i \(0.881902\pi\)
\(644\) 3.42705 + 5.93583i 0.135045 + 0.233904i
\(645\) −9.19256 −0.361957
\(646\) 0 0
\(647\) −32.1246 −1.26295 −0.631474 0.775397i \(-0.717550\pi\)
−0.631474 + 0.775397i \(0.717550\pi\)
\(648\) 2.35114 + 4.07230i 0.0923615 + 0.159975i
\(649\) 5.06555 + 8.77380i 0.198840 + 0.344402i
\(650\) 6.28115 10.8793i 0.246367 0.426720i
\(651\) 2.92705 + 5.06980i 0.114720 + 0.198701i
\(652\) 2.01722 3.49393i 0.0790005 0.136833i
\(653\) 19.7426 0.772589 0.386295 0.922375i \(-0.373755\pi\)
0.386295 + 0.922375i \(0.373755\pi\)
\(654\) −1.00406 −0.0392617
\(655\) 3.14590 5.44886i 0.122920 0.212904i
\(656\) −10.9964 + 19.0463i −0.429338 + 0.743634i
\(657\) −14.5623 −0.568130
\(658\) −12.5882 −0.490741
\(659\) −9.33905 + 16.1757i −0.363798 + 0.630116i −0.988582 0.150681i \(-0.951853\pi\)
0.624785 + 0.780797i \(0.285187\pi\)
\(660\) −1.62460 2.81389i −0.0632374 0.109530i
\(661\) −2.52265 + 4.36937i −0.0981199 + 0.169949i −0.910906 0.412613i \(-0.864616\pi\)
0.812787 + 0.582562i \(0.197950\pi\)
\(662\) −14.2705 24.7172i −0.554639 0.960663i
\(663\) 4.47214 + 7.74597i 0.173683 + 0.300828i
\(664\) 3.80423 0.147633
\(665\) 0 0
\(666\) 12.2361 0.474138
\(667\) 3.44095 + 5.95991i 0.133234 + 0.230769i
\(668\) −2.12663 3.68343i −0.0822817 0.142516i
\(669\) −7.98936 + 13.8380i −0.308886 + 0.535007i
\(670\) 0.124612 + 0.215834i 0.00481417 + 0.00833839i
\(671\) −0.954915 + 1.65396i −0.0368641 + 0.0638505i
\(672\) 16.7082 0.644533
\(673\) −28.2542 −1.08912 −0.544559 0.838722i \(-0.683303\pi\)
−0.544559 + 0.838722i \(0.683303\pi\)
\(674\) −9.47214 + 16.4062i −0.364853 + 0.631944i
\(675\) −9.42481 + 16.3242i −0.362761 + 0.628321i
\(676\) 2.18034 0.0838592
\(677\) −11.6902 −0.449291 −0.224645 0.974441i \(-0.572122\pi\)
−0.224645 + 0.974441i \(0.572122\pi\)
\(678\) 0 0
\(679\) 33.1810 + 57.4711i 1.27337 + 2.20554i
\(680\) −4.70228 + 8.14459i −0.180324 + 0.312331i
\(681\) 17.4615 + 30.2442i 0.669126 + 1.15896i
\(682\) −2.50000 4.33013i −0.0957299 0.165809i
\(683\) 32.7445 1.25293 0.626466 0.779449i \(-0.284501\pi\)
0.626466 + 0.779449i \(0.284501\pi\)
\(684\) 0 0
\(685\) −5.81966 −0.222358
\(686\) −9.82084 17.0102i −0.374961 0.649452i
\(687\) −2.40414 4.16410i −0.0917237 0.158870i
\(688\) −7.53444 + 13.0500i −0.287248 + 0.497528i
\(689\) −0.690983 1.19682i −0.0263244 0.0455951i
\(690\) −2.23607 + 3.87298i −0.0851257 + 0.147442i
\(691\) 46.3050 1.76152 0.880762 0.473560i \(-0.157031\pi\)
0.880762 + 0.473560i \(0.157031\pi\)
\(692\) 9.61657 0.365567
\(693\) 12.3992 21.4760i 0.471006 0.815807i
\(694\) −14.5964 + 25.2816i −0.554070 + 0.959678i
\(695\) −1.12461 −0.0426590
\(696\) 9.51057 0.360497
\(697\) 11.4127 19.7673i 0.432286 0.748741i
\(698\) 6.69015 + 11.5877i 0.253226 + 0.438600i
\(699\) −7.91872 + 13.7156i −0.299514 + 0.518773i
\(700\) 4.54508 + 7.87232i 0.171788 + 0.297546i
\(701\) 16.8713 + 29.2220i 0.637221 + 1.10370i 0.986040 + 0.166509i \(0.0532495\pi\)
−0.348819 + 0.937190i \(0.613417\pi\)
\(702\) −19.6417 −0.741327
\(703\) 0 0
\(704\) −31.5066 −1.18745
\(705\) 1.83660 + 3.18109i 0.0691704 + 0.119807i
\(706\) 16.2335 + 28.1172i 0.610955 + 1.05820i
\(707\) −29.5344 + 51.1552i −1.11076 + 1.92389i
\(708\) 1.01722 + 1.76188i 0.0382295 + 0.0662154i
\(709\) −6.70820 + 11.6190i −0.251932 + 0.436359i −0.964058 0.265693i \(-0.914399\pi\)
0.712126 + 0.702052i \(0.247733\pi\)
\(710\) 17.6393 0.661992
\(711\) −12.3107 −0.461689
\(712\) −27.2984 + 47.2822i −1.02305 + 1.77197i
\(713\) 1.53884 2.66535i 0.0576301 0.0998182i
\(714\) 14.4721 0.541606
\(715\) 13.7638 0.514738
\(716\) 5.65334 9.79187i 0.211275 0.365939i
\(717\) 9.31881 + 16.1406i 0.348017 + 0.602784i
\(718\) −22.1113 + 38.2979i −0.825187 + 1.42927i
\(719\) −6.19098 10.7231i −0.230885 0.399904i 0.727184 0.686443i \(-0.240829\pi\)
−0.958069 + 0.286539i \(0.907495\pi\)
\(720\) −2.38197 4.12569i −0.0887706 0.153755i
\(721\) 4.25325 0.158399
\(722\) 0 0
\(723\) 26.6312 0.990425
\(724\) −7.60845 13.1782i −0.282766 0.489765i
\(725\) 4.56352 + 7.90426i 0.169485 + 0.293557i
\(726\) 1.44427 2.50155i 0.0536020 0.0928413i
\(727\) 9.52786 + 16.5027i 0.353369 + 0.612053i 0.986837 0.161716i \(-0.0517027\pi\)
−0.633468 + 0.773768i \(0.718369\pi\)
\(728\) −20.0623 + 34.7489i −0.743559 + 1.28788i
\(729\) 21.6180 0.800668
\(730\) −13.0778 −0.484030
\(731\) 7.81966 13.5440i 0.289221 0.500945i
\(732\) −0.191758 + 0.332134i −0.00708757 + 0.0122760i
\(733\) 35.1803 1.29942 0.649708 0.760184i \(-0.274891\pi\)
0.649708 + 0.760184i \(0.274891\pi\)
\(734\) −25.2420 −0.931700
\(735\) −7.95148 + 13.7724i −0.293295 + 0.508001i
\(736\) −4.39201 7.60719i −0.161892 0.280405i
\(737\) 0.310271 0.537405i 0.0114290 0.0197956i
\(738\) 8.78115 + 15.2094i 0.323239 + 0.559866i
\(739\) −5.26393 9.11740i −0.193637 0.335389i 0.752816 0.658231i \(-0.228695\pi\)
−0.946453 + 0.322842i \(0.895362\pi\)
\(740\) −4.91428 −0.180653
\(741\) 0 0
\(742\) −2.23607 −0.0820886
\(743\) −2.15938 3.74016i −0.0792201 0.137213i 0.823694 0.567035i \(-0.191910\pi\)
−0.902914 + 0.429822i \(0.858576\pi\)
\(744\) −2.12663 3.68343i −0.0779659 0.135041i
\(745\) 14.2361 24.6576i 0.521569 0.903384i
\(746\) −2.53851 4.39682i −0.0929414 0.160979i
\(747\) 1.00000 1.73205i 0.0365881 0.0633724i
\(748\) 5.52786 0.202119
\(749\) −49.0714 −1.79303
\(750\) −7.23607 + 12.5332i −0.264224 + 0.457649i
\(751\) −22.1316 + 38.3330i −0.807592 + 1.39879i 0.106934 + 0.994266i \(0.465897\pi\)
−0.914527 + 0.404525i \(0.867437\pi\)
\(752\) 6.02129 0.219574
\(753\) 12.2452 0.446241
\(754\) −4.75528 + 8.23639i −0.173177 + 0.299952i
\(755\) −1.51860 2.63029i −0.0552674 0.0957260i
\(756\) 7.10642 12.3087i 0.258458 0.447663i
\(757\) 1.86475 + 3.22983i 0.0677753 + 0.117390i 0.897922 0.440155i \(-0.145077\pi\)
−0.830146 + 0.557545i \(0.811743\pi\)
\(758\) −4.67376 8.09519i −0.169759 0.294031i
\(759\) 11.1352 0.404181
\(760\) 0 0
\(761\) −6.05573 −0.219520 −0.109760 0.993958i \(-0.535008\pi\)
−0.109760 + 0.993958i \(0.535008\pi\)
\(762\) −11.0167 19.0814i −0.399091 0.691246i
\(763\) 1.53884 + 2.66535i 0.0557098 + 0.0964922i
\(764\) −5.25329 + 9.09896i −0.190057 + 0.329189i
\(765\) 2.47214 + 4.28187i 0.0893803 + 0.154811i
\(766\) 8.25329 14.2951i 0.298203 0.516504i
\(767\) −8.61803 −0.311179
\(768\) −15.6004 −0.562932
\(769\) 18.0795 31.3147i 0.651964 1.12924i −0.330681 0.943743i \(-0.607278\pi\)
0.982646 0.185493i \(-0.0593882\pi\)
\(770\) 11.1352 19.2867i 0.401283 0.695043i
\(771\) 10.6525 0.383640
\(772\) 3.24920 0.116941
\(773\) −18.5191 + 32.0760i −0.666086 + 1.15369i 0.312904 + 0.949785i \(0.398698\pi\)
−0.978990 + 0.203910i \(0.934635\pi\)
\(774\) 6.01661 + 10.4211i 0.216263 + 0.374578i
\(775\) 2.04087 3.53489i 0.0733102 0.126977i
\(776\) −24.1074 41.7552i −0.865405 1.49893i
\(777\) 16.0172 + 27.7426i 0.574615 + 0.995262i
\(778\) −15.3884 −0.551702
\(779\) 0 0
\(780\) 2.76393 0.0989646
\(781\) −21.9601 38.0359i −0.785793 1.36103i
\(782\) −3.80423 6.58911i −0.136039 0.235626i
\(783\) 7.13525 12.3586i 0.254993 0.441661i
\(784\) 13.0344 + 22.5763i 0.465516 + 0.806297i
\(785\) −9.61803 + 16.6589i −0.343282 + 0.594582i
\(786\) 7.03444 0.250910
\(787\) 14.3188 0.510412 0.255206 0.966887i \(-0.417857\pi\)
0.255206 + 0.966887i \(0.417857\pi\)
\(788\) 0.781153 1.35300i 0.0278274 0.0481985i
\(789\) −6.98791 + 12.1034i −0.248776 + 0.430893i
\(790\) −11.0557 −0.393345
\(791\) 0 0
\(792\) −9.00854 + 15.6032i −0.320104 + 0.554437i
\(793\) −0.812299 1.40694i −0.0288456 0.0499620i
\(794\) 8.64527 14.9740i 0.306809 0.531409i
\(795\) 0.326238 + 0.565061i 0.0115705 + 0.0200406i
\(796\) −5.85410 10.1396i −0.207493 0.359389i
\(797\) −12.8658 −0.455729 −0.227864 0.973693i \(-0.573174\pi\)
−0.227864 + 0.973693i \(0.573174\pi\)
\(798\) 0 0
\(799\) −6.24922 −0.221082
\(800\) −5.82485 10.0889i −0.205940 0.356698i
\(801\) 14.3516 + 24.8577i 0.507089 + 0.878304i
\(802\) −4.47214 + 7.74597i −0.157917 + 0.273520i
\(803\) 16.2812 + 28.1998i 0.574549 + 0.995149i
\(804\) 0.0623059 0.107917i 0.00219736 0.00380594i
\(805\) 13.7082 0.483151
\(806\) 4.25325 0.149814
\(807\) 4.53444 7.85388i 0.159620 0.276470i
\(808\) 21.4580 37.1664i 0.754891 1.30751i
\(809\) −0.729490 −0.0256475 −0.0128238 0.999918i \(-0.504082\pi\)
−0.0128238 + 0.999918i \(0.504082\pi\)
\(810\) 2.22012 0.0780069
\(811\) −16.0620 + 27.8201i −0.564012 + 0.976897i 0.433129 + 0.901332i \(0.357409\pi\)
−0.997141 + 0.0755650i \(0.975924\pi\)
\(812\) −3.44095 5.95991i −0.120754 0.209152i
\(813\) −8.38800 + 14.5284i −0.294180 + 0.509534i
\(814\) −13.6803 23.6950i −0.479496 0.830511i
\(815\) −4.03444 6.98786i −0.141320 0.244774i
\(816\) −6.92240 −0.242332
\(817\) 0 0
\(818\) −25.7771 −0.901275
\(819\) 10.5474 + 18.2686i 0.368555 + 0.638356i
\(820\) −3.52671 6.10844i −0.123158 0.213316i
\(821\) 9.51722 16.4843i 0.332153 0.575306i −0.650781 0.759266i \(-0.725558\pi\)
0.982934 + 0.183960i \(0.0588915\pi\)
\(822\) −3.25329 5.63486i −0.113471 0.196538i
\(823\) 19.3607 33.5337i 0.674871 1.16891i −0.301636 0.953423i \(-0.597533\pi\)
0.976507 0.215487i \(-0.0691340\pi\)
\(824\) −3.09017 −0.107651
\(825\) 14.7679 0.514151
\(826\) −6.97214 + 12.0761i −0.242592 + 0.420181i
\(827\) 7.86572 13.6238i 0.273518 0.473747i −0.696242 0.717807i \(-0.745146\pi\)
0.969760 + 0.244060i \(0.0784794\pi\)
\(828\) −2.61803 −0.0909830
\(829\) −11.6902 −0.406017 −0.203009 0.979177i \(-0.565072\pi\)
−0.203009 + 0.979177i \(0.565072\pi\)
\(830\) 0.898056 1.55548i 0.0311720 0.0539914i
\(831\) 11.3067 + 19.5837i 0.392224 + 0.679352i
\(832\) 13.4005 23.2104i 0.464580 0.804677i
\(833\) −13.5279 23.4309i −0.468713 0.811834i
\(834\) −0.628677 1.08890i −0.0217693 0.0377055i
\(835\) −8.50651 −0.294380
\(836\) 0 0
\(837\) −6.38197 −0.220593
\(838\) −19.6417 34.0204i −0.678510 1.17521i
\(839\) 11.8087 + 20.4533i 0.407682 + 0.706126i 0.994630 0.103499i \(-0.0330039\pi\)
−0.586948 + 0.809625i \(0.699671\pi\)
\(840\) 9.47214 16.4062i 0.326820 0.566068i
\(841\) 11.0451 + 19.1306i 0.380865 + 0.659678i
\(842\) −8.31559 + 14.4030i −0.286574 + 0.496361i
\(843\) −5.20163 −0.179154
\(844\) 11.1352 0.383288
\(845\) 2.18034 3.77646i 0.0750060 0.129914i
\(846\) 2.40414 4.16410i 0.0826561 0.143165i
\(847\) −8.85410 −0.304231
\(848\) 1.06957 0.0367292
\(849\) 0.534785 0.926274i 0.0183538 0.0317897i
\(850\) −5.04531 8.73873i −0.173053 0.299736i
\(851\) 8.42075 14.5852i 0.288660 0.499973i
\(852\) −4.40983 7.63805i −0.151078 0.261675i
\(853\) 11.1525 + 19.3167i 0.381853 + 0.661390i 0.991327 0.131417i \(-0.0419526\pi\)
−0.609474 + 0.792806i \(0.708619\pi\)
\(854\) −2.62866 −0.0899507
\(855\) 0 0
\(856\) 35.6525 1.21858
\(857\) 10.5271 + 18.2335i 0.359600 + 0.622846i 0.987894 0.155130i \(-0.0495798\pi\)
−0.628294 + 0.777976i \(0.716246\pi\)
\(858\) 7.69421 + 13.3268i 0.262676 + 0.454968i
\(859\) −10.5279 + 18.2348i −0.359206 + 0.622163i −0.987828 0.155548i \(-0.950286\pi\)
0.628622 + 0.777711i \(0.283619\pi\)
\(860\) −2.41641 4.18534i −0.0823988 0.142719i
\(861\) −22.9894 + 39.8187i −0.783475 + 1.35702i
\(862\) 18.7426 0.638377
\(863\) 27.1846 0.925375 0.462687 0.886521i \(-0.346885\pi\)
0.462687 + 0.886521i \(0.346885\pi\)
\(864\) −9.10739 + 15.7745i −0.309840 + 0.536658i
\(865\) 9.61657 16.6564i 0.326973 0.566334i
\(866\) 10.9787 0.373072
\(867\) −12.8003 −0.434719
\(868\) −1.53884 + 2.66535i −0.0522317 + 0.0904679i
\(869\) 13.7638 + 23.8396i 0.466906 + 0.808704i
\(870\) 2.24514 3.88870i 0.0761174 0.131839i
\(871\) 0.263932 + 0.457144i 0.00894300 + 0.0154897i
\(872\) −1.11803 1.93649i −0.0378614 0.0655779i
\(873\) −25.3480 −0.857900
\(874\) 0 0
\(875\) 44.3607 1.49966
\(876\) 3.26944 + 5.66284i 0.110464 + 0.191330i
\(877\) −20.6457 35.7595i −0.697157 1.20751i −0.969448 0.245296i \(-0.921115\pi\)
0.272291 0.962215i \(-0.412219\pi\)
\(878\) −6.80902 + 11.7936i −0.229793 + 0.398013i
\(879\) −14.5344 25.1744i −0.490235 0.849111i
\(880\) −5.32624 + 9.22531i −0.179547 + 0.310985i
\(881\) −55.5755 −1.87238 −0.936192 0.351488i \(-0.885676\pi\)
−0.936192 + 0.351488i \(0.885676\pi\)
\(882\) 20.8172 0.700953
\(883\) −21.5172 + 37.2689i −0.724112 + 1.25420i 0.235226 + 0.971941i \(0.424417\pi\)
−0.959338 + 0.282258i \(0.908916\pi\)
\(884\) −2.35114 + 4.07230i −0.0790774 + 0.136966i
\(885\) 4.06888 0.136774
\(886\) 8.44100 0.283581
\(887\) −13.3148 + 23.0619i −0.447067 + 0.774343i −0.998194 0.0600789i \(-0.980865\pi\)
0.551127 + 0.834422i \(0.314198\pi\)
\(888\) −11.6372 20.1562i −0.390519 0.676398i
\(889\) −33.7688 + 58.4892i −1.13257 + 1.96167i
\(890\) 12.8885 + 22.3236i 0.432025 + 0.748289i
\(891\) −2.76393 4.78727i −0.0925952 0.160380i
\(892\) −8.40051 −0.281270
\(893\) 0 0
\(894\) 31.8328 1.06465
\(895\) −11.3067 19.5837i −0.377941 0.654612i
\(896\) −7.46969 12.9379i −0.249545 0.432225i
\(897\) −4.73607 + 8.20311i −0.158133 + 0.273894i
\(898\) −20.5517 35.5965i −0.685818 1.18787i
\(899\) −1.54508 + 2.67617i −0.0515315 + 0.0892551i
\(900\) −3.47214 −0.115738
\(901\) −1.11006 −0.0369814
\(902\) 19.6353 34.0093i 0.653782 1.13238i
\(903\) −15.7517 + 27.2827i −0.524183 + 0.907912i
\(904\) 0 0
\(905\) −30.4338 −1.01165
\(906\) 1.69784 2.94075i 0.0564071 0.0976999i
\(907\) −6.32688 10.9585i −0.210081 0.363870i 0.741659 0.670777i \(-0.234039\pi\)
−0.951740 + 0.306907i \(0.900706\pi\)
\(908\) −9.18005 + 15.9003i −0.304651 + 0.527670i
\(909\) −11.2812 19.5395i −0.374172 0.648085i
\(910\) 9.47214 + 16.4062i 0.313998 + 0.543861i
\(911\) 18.3601 0.608297 0.304149 0.952625i \(-0.401628\pi\)
0.304149 + 0.952625i \(0.401628\pi\)
\(912\) 0 0
\(913\) −4.47214 −0.148006
\(914\) 11.5842 + 20.0644i 0.383171 + 0.663672i
\(915\) 0.383516 + 0.664269i 0.0126786 + 0.0219600i
\(916\) 1.26393 2.18919i 0.0417615 0.0723330i
\(917\) −10.7812 18.6735i −0.356025 0.616653i
\(918\) −7.88854 + 13.6634i −0.260361 + 0.450958i
\(919\) −2.63932 −0.0870631 −0.0435316 0.999052i \(-0.513861\pi\)
−0.0435316 + 0.999052i \(0.513861\pi\)
\(920\) −9.95959 −0.328358
\(921\) 16.2188 28.0919i 0.534429 0.925658i
\(922\) −20.0907 + 34.7981i −0.661652 + 1.14601i
\(923\) 37.3607 1.22974
\(924\) −11.1352 −0.366320
\(925\) 11.1679 19.3434i 0.367199 0.636007i
\(926\) 9.90659 + 17.1587i 0.325551 + 0.563871i
\(927\) −0.812299 + 1.40694i −0.0266794 + 0.0462101i
\(928\) 4.40983 + 7.63805i 0.144760 + 0.250731i
\(929\) 10.7533 + 18.6252i 0.352804 + 0.611074i 0.986740 0.162311i \(-0.0518949\pi\)
−0.633936 + 0.773386i \(0.718562\pi\)
\(930\) −2.00811 −0.0658487
\(931\) 0 0
\(932\) −8.32624 −0.272735
\(933\) 3.24920 + 5.62777i 0.106374 + 0.184245i
\(934\) −0.138757 0.240335i −0.00454028 0.00786399i
\(935\) 5.52786 9.57454i 0.180780 0.313121i
\(936\) −7.66312 13.2729i −0.250477 0.433839i
\(937\) 20.8992 36.1985i 0.682747 1.18255i −0.291393 0.956604i \(-0.594119\pi\)
0.974139 0.225948i \(-0.0725481\pi\)
\(938\) 0.854102 0.0278874
\(939\) 8.95554 0.292253
\(940\) −0.965558 + 1.67240i −0.0314930 + 0.0545475i
\(941\) −7.27794 + 12.6058i −0.237254 + 0.410936i −0.959925 0.280256i \(-0.909581\pi\)
0.722671 + 0.691192i \(0.242914\pi\)
\(942\) −21.5066 −0.700722
\(943\) 24.1724 0.787163
\(944\) 3.33495 5.77631i 0.108543 0.188003i
\(945\) −14.2128 24.6174i −0.462344 0.800803i
\(946\) 13.4535 23.3022i 0.437413 0.757621i
\(947\) 2.90983 + 5.03997i 0.0945568 + 0.163777i 0.909424 0.415871i \(-0.136523\pi\)
−0.814867 + 0.579648i \(0.803190\pi\)
\(948\) 2.76393 + 4.78727i 0.0897683 + 0.155483i
\(949\) −27.6992 −0.899153
\(950\) 0 0
\(951\) 10.4033 0.337349
\(952\) 16.1150 + 27.9119i 0.522289 + 0.904631i
\(953\) −18.6579 32.3164i −0.604387 1.04683i −0.992148 0.125069i \(-0.960085\pi\)
0.387761 0.921760i \(-0.373249\pi\)
\(954\) 0.427051 0.739674i 0.0138263 0.0239478i
\(955\) 10.5066 + 18.1979i 0.339985 + 0.588871i
\(956\) −4.89919 + 8.48564i −0.158451 + 0.274445i
\(957\) −11.1803 −0.361409
\(958\) 31.8464 1.02891
\(959\) −9.97214 + 17.2722i −0.322017 + 0.557750i
\(960\) −6.32688 + 10.9585i −0.204199 + 0.353683i
\(961\) −29.6180 −0.955420
\(962\) 23.2744 0.750396
\(963\) 9.37181 16.2324i 0.302002 0.523083i
\(964\) 7.00042 + 12.1251i 0.225468 + 0.390523i
\(965\) 3.24920 5.62777i 0.104595 0.181164i
\(966\) 7.66312 + 13.2729i 0.246557 + 0.427049i
\(967\) −16.8541 29.1922i −0.541991 0.938757i −0.998790 0.0491863i \(-0.984337\pi\)
0.456798 0.889570i \(-0.348996\pi\)
\(968\) 6.43288 0.206761
\(969\) 0 0
\(970\) −22.7639 −0.730906
\(971\) 8.53926 + 14.7904i 0.274038 + 0.474648i 0.969892 0.243536i \(-0.0783072\pi\)
−0.695854 + 0.718183i \(0.744974\pi\)
\(972\) 4.47777 + 7.75572i 0.143624 + 0.248765i
\(973\) −1.92705 + 3.33775i −0.0617784 + 0.107003i
\(974\) 9.14590 + 15.8412i 0.293053 + 0.507584i
\(975\) −6.28115 + 10.8793i −0.201158 + 0.348416i
\(976\) 1.25735 0.0402469
\(977\) −28.2542 −0.903931 −0.451966 0.892035i \(-0.649277\pi\)
−0.451966 + 0.892035i \(0.649277\pi\)
\(978\) 4.51064 7.81266i 0.144234 0.249821i
\(979\) 32.0912 55.5835i 1.02564 1.77646i
\(980\) −8.36068 −0.267072
\(981\) −1.17557 −0.0375331
\(982\) −9.56357 + 16.5646i −0.305186 + 0.528597i
\(983\) 10.8046 + 18.7142i 0.344615 + 0.596890i 0.985284 0.170927i \(-0.0546762\pi\)
−0.640669 + 0.767817i \(0.721343\pi\)
\(984\) 16.7027 28.9300i 0.532464 0.922255i
\(985\) −1.56231 2.70599i −0.0497792 0.0862201i
\(986\) 3.81966 + 6.61585i 0.121643 + 0.210691i
\(987\) 12.5882 0.400688
\(988\) 0 0
\(989\) 16.5623 0.526651
\(990\) 4.25325 + 7.36685i 0.135177 + 0.234134i
\(991\) −10.5271 18.2335i −0.334405 0.579207i 0.648965 0.760818i \(-0.275202\pi\)
−0.983370 + 0.181611i \(0.941869\pi\)
\(992\) 1.97214 3.41584i 0.0626154 0.108453i
\(993\) 14.2705 + 24.7172i 0.452861 + 0.784378i
\(994\) 30.2254 52.3520i 0.958692 1.66050i
\(995\) −23.4164 −0.742350
\(996\) −0.898056 −0.0284560
\(997\) −3.56231 + 6.17009i −0.112819 + 0.195409i −0.916906 0.399103i \(-0.869321\pi\)
0.804087 + 0.594512i \(0.202655\pi\)
\(998\) 12.6538 21.9170i 0.400548 0.693769i
\(999\) −34.9230 −1.10491
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.2.c.j.292.3 8
19.2 odd 18 361.2.e.m.28.3 24
19.3 odd 18 361.2.e.m.234.3 24
19.4 even 9 361.2.e.m.245.2 24
19.5 even 9 361.2.e.m.99.3 24
19.6 even 9 361.2.e.m.62.3 24
19.7 even 3 361.2.a.i.1.2 4
19.8 odd 6 inner 361.2.c.j.68.2 8
19.9 even 9 361.2.e.m.54.2 24
19.10 odd 18 361.2.e.m.54.3 24
19.11 even 3 inner 361.2.c.j.68.3 8
19.12 odd 6 361.2.a.i.1.3 yes 4
19.13 odd 18 361.2.e.m.62.2 24
19.14 odd 18 361.2.e.m.99.2 24
19.15 odd 18 361.2.e.m.245.3 24
19.16 even 9 361.2.e.m.234.2 24
19.17 even 9 361.2.e.m.28.2 24
19.18 odd 2 inner 361.2.c.j.292.2 8
57.26 odd 6 3249.2.a.bc.1.3 4
57.50 even 6 3249.2.a.bc.1.2 4
76.7 odd 6 5776.2.a.bu.1.2 4
76.31 even 6 5776.2.a.bu.1.3 4
95.64 even 6 9025.2.a.bj.1.3 4
95.69 odd 6 9025.2.a.bj.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
361.2.a.i.1.2 4 19.7 even 3
361.2.a.i.1.3 yes 4 19.12 odd 6
361.2.c.j.68.2 8 19.8 odd 6 inner
361.2.c.j.68.3 8 19.11 even 3 inner
361.2.c.j.292.2 8 19.18 odd 2 inner
361.2.c.j.292.3 8 1.1 even 1 trivial
361.2.e.m.28.2 24 19.17 even 9
361.2.e.m.28.3 24 19.2 odd 18
361.2.e.m.54.2 24 19.9 even 9
361.2.e.m.54.3 24 19.10 odd 18
361.2.e.m.62.2 24 19.13 odd 18
361.2.e.m.62.3 24 19.6 even 9
361.2.e.m.99.2 24 19.14 odd 18
361.2.e.m.99.3 24 19.5 even 9
361.2.e.m.234.2 24 19.16 even 9
361.2.e.m.234.3 24 19.3 odd 18
361.2.e.m.245.2 24 19.4 even 9
361.2.e.m.245.3 24 19.15 odd 18
3249.2.a.bc.1.2 4 57.50 even 6
3249.2.a.bc.1.3 4 57.26 odd 6
5776.2.a.bu.1.2 4 76.7 odd 6
5776.2.a.bu.1.3 4 76.31 even 6
9025.2.a.bj.1.2 4 95.69 odd 6
9025.2.a.bj.1.3 4 95.64 even 6