Properties

Label 3600.3.e.f.3151.2
Level $3600$
Weight $3$
Character 3600.3151
Analytic conductor $98.093$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3600,3,Mod(3151,3600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3600.3151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3600.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,-48,0,0,0,-48,0,0,0,0,0,0,0,0,0,0,0, 20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.0928951697\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3151.2
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3600.3151
Dual form 3600.3.e.f.3151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.92820i q^{7} -13.8564i q^{11} -24.0000 q^{13} -24.0000 q^{17} +27.7128i q^{19} +34.6410i q^{23} +10.0000 q^{29} -13.8564i q^{31} -24.0000 q^{37} +34.0000 q^{41} -20.7846i q^{43} -6.92820i q^{47} +1.00000 q^{49} +48.0000 q^{53} +13.8564i q^{59} +70.0000 q^{61} -90.0666i q^{67} -55.4256i q^{71} -48.0000 q^{73} +96.0000 q^{77} +41.5692i q^{79} -90.0666i q^{83} -14.0000 q^{89} -166.277i q^{91} -96.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 48 q^{13} - 48 q^{17} + 20 q^{29} - 48 q^{37} + 68 q^{41} + 2 q^{49} + 96 q^{53} + 140 q^{61} - 96 q^{73} + 192 q^{77} - 28 q^{89} - 192 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 6.92820i 0.989743i 0.868966 + 0.494872i \(0.164785\pi\)
−0.868966 + 0.494872i \(0.835215\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 13.8564i − 1.25967i −0.776728 0.629837i \(-0.783122\pi\)
0.776728 0.629837i \(-0.216878\pi\)
\(12\) 0 0
\(13\) −24.0000 −1.84615 −0.923077 0.384615i \(-0.874334\pi\)
−0.923077 + 0.384615i \(0.874334\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −24.0000 −1.41176 −0.705882 0.708329i \(-0.749449\pi\)
−0.705882 + 0.708329i \(0.749449\pi\)
\(18\) 0 0
\(19\) 27.7128i 1.45857i 0.684211 + 0.729285i \(0.260147\pi\)
−0.684211 + 0.729285i \(0.739853\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 34.6410i 1.50613i 0.657945 + 0.753066i \(0.271426\pi\)
−0.657945 + 0.753066i \(0.728574\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 10.0000 0.344828 0.172414 0.985025i \(-0.444843\pi\)
0.172414 + 0.985025i \(0.444843\pi\)
\(30\) 0 0
\(31\) − 13.8564i − 0.446981i −0.974706 0.223490i \(-0.928255\pi\)
0.974706 0.223490i \(-0.0717451\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −24.0000 −0.648649 −0.324324 0.945946i \(-0.605137\pi\)
−0.324324 + 0.945946i \(0.605137\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 34.0000 0.829268 0.414634 0.909988i \(-0.363910\pi\)
0.414634 + 0.909988i \(0.363910\pi\)
\(42\) 0 0
\(43\) − 20.7846i − 0.483363i −0.970356 0.241682i \(-0.922301\pi\)
0.970356 0.241682i \(-0.0776989\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 6.92820i − 0.147409i −0.997280 0.0737043i \(-0.976518\pi\)
0.997280 0.0737043i \(-0.0234821\pi\)
\(48\) 0 0
\(49\) 1.00000 0.0204082
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 48.0000 0.905660 0.452830 0.891597i \(-0.350414\pi\)
0.452830 + 0.891597i \(0.350414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 13.8564i 0.234854i 0.993081 + 0.117427i \(0.0374647\pi\)
−0.993081 + 0.117427i \(0.962535\pi\)
\(60\) 0 0
\(61\) 70.0000 1.14754 0.573770 0.819016i \(-0.305480\pi\)
0.573770 + 0.819016i \(0.305480\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 90.0666i − 1.34428i −0.740425 0.672139i \(-0.765376\pi\)
0.740425 0.672139i \(-0.234624\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 55.4256i − 0.780643i −0.920679 0.390321i \(-0.872364\pi\)
0.920679 0.390321i \(-0.127636\pi\)
\(72\) 0 0
\(73\) −48.0000 −0.657534 −0.328767 0.944411i \(-0.606633\pi\)
−0.328767 + 0.944411i \(0.606633\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 96.0000 1.24675
\(78\) 0 0
\(79\) 41.5692i 0.526193i 0.964770 + 0.263096i \(0.0847437\pi\)
−0.964770 + 0.263096i \(0.915256\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 90.0666i − 1.08514i −0.840011 0.542570i \(-0.817451\pi\)
0.840011 0.542570i \(-0.182549\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −0.157303 −0.0786517 0.996902i \(-0.525061\pi\)
−0.0786517 + 0.996902i \(0.525061\pi\)
\(90\) 0 0
\(91\) − 166.277i − 1.82722i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −96.0000 −0.989691 −0.494845 0.868981i \(-0.664775\pi\)
−0.494845 + 0.868981i \(0.664775\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 38.0000 0.376238 0.188119 0.982146i \(-0.439761\pi\)
0.188119 + 0.982146i \(0.439761\pi\)
\(102\) 0 0
\(103\) − 145.492i − 1.41255i −0.707939 0.706273i \(-0.750375\pi\)
0.707939 0.706273i \(-0.249625\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.92820i 0.0647496i 0.999476 + 0.0323748i \(0.0103070\pi\)
−0.999476 + 0.0323748i \(0.989693\pi\)
\(108\) 0 0
\(109\) −166.000 −1.52294 −0.761468 0.648203i \(-0.775521\pi\)
−0.761468 + 0.648203i \(0.775521\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 168.000 1.48673 0.743363 0.668888i \(-0.233230\pi\)
0.743363 + 0.668888i \(0.233230\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 166.277i − 1.39728i
\(120\) 0 0
\(121\) −71.0000 −0.586777
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 34.6410i 0.272764i 0.990656 + 0.136382i \(0.0435474\pi\)
−0.990656 + 0.136382i \(0.956453\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 69.2820i − 0.528870i −0.964403 0.264435i \(-0.914814\pi\)
0.964403 0.264435i \(-0.0851855\pi\)
\(132\) 0 0
\(133\) −192.000 −1.44361
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 24.0000 0.175182 0.0875912 0.996157i \(-0.472083\pi\)
0.0875912 + 0.996157i \(0.472083\pi\)
\(138\) 0 0
\(139\) − 193.990i − 1.39561i −0.716288 0.697805i \(-0.754160\pi\)
0.716288 0.697805i \(-0.245840\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 332.554i 2.32555i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 86.0000 0.577181 0.288591 0.957453i \(-0.406813\pi\)
0.288591 + 0.957453i \(0.406813\pi\)
\(150\) 0 0
\(151\) 69.2820i 0.458821i 0.973330 + 0.229411i \(0.0736799\pi\)
−0.973330 + 0.229411i \(0.926320\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 120.000 0.764331 0.382166 0.924094i \(-0.375178\pi\)
0.382166 + 0.924094i \(0.375178\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −240.000 −1.49068
\(162\) 0 0
\(163\) 62.3538i 0.382539i 0.981538 + 0.191269i \(0.0612604\pi\)
−0.981538 + 0.191269i \(0.938740\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 242.487i 1.45202i 0.687685 + 0.726009i \(0.258627\pi\)
−0.687685 + 0.726009i \(0.741373\pi\)
\(168\) 0 0
\(169\) 407.000 2.40828
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 192.000 1.10983 0.554913 0.831908i \(-0.312751\pi\)
0.554913 + 0.831908i \(0.312751\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 318.697i − 1.78043i −0.455539 0.890216i \(-0.650553\pi\)
0.455539 0.890216i \(-0.349447\pi\)
\(180\) 0 0
\(181\) 122.000 0.674033 0.337017 0.941499i \(-0.390582\pi\)
0.337017 + 0.941499i \(0.390582\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 332.554i 1.77836i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 193.990i 1.01565i 0.861459 + 0.507826i \(0.169551\pi\)
−0.861459 + 0.507826i \(0.830449\pi\)
\(192\) 0 0
\(193\) −144.000 −0.746114 −0.373057 0.927808i \(-0.621690\pi\)
−0.373057 + 0.927808i \(0.621690\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 48.0000 0.243655 0.121827 0.992551i \(-0.461125\pi\)
0.121827 + 0.992551i \(0.461125\pi\)
\(198\) 0 0
\(199\) − 290.985i − 1.46223i −0.682252 0.731117i \(-0.738999\pi\)
0.682252 0.731117i \(-0.261001\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 69.2820i 0.341291i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 384.000 1.83732
\(210\) 0 0
\(211\) 193.990i 0.919382i 0.888079 + 0.459691i \(0.152040\pi\)
−0.888079 + 0.459691i \(0.847960\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 96.0000 0.442396
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 576.000 2.60633
\(222\) 0 0
\(223\) 131.636i 0.590295i 0.955452 + 0.295148i \(0.0953688\pi\)
−0.955452 + 0.295148i \(0.904631\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 270.200i − 1.19031i −0.803612 0.595154i \(-0.797091\pi\)
0.803612 0.595154i \(-0.202909\pi\)
\(228\) 0 0
\(229\) 166.000 0.724891 0.362445 0.932005i \(-0.381942\pi\)
0.362445 + 0.932005i \(0.381942\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −264.000 −1.13305 −0.566524 0.824046i \(-0.691712\pi\)
−0.566524 + 0.824046i \(0.691712\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 83.1384i − 0.347860i −0.984758 0.173930i \(-0.944353\pi\)
0.984758 0.173930i \(-0.0556466\pi\)
\(240\) 0 0
\(241\) −242.000 −1.00415 −0.502075 0.864824i \(-0.667430\pi\)
−0.502075 + 0.864824i \(0.667430\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 665.108i − 2.69274i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 207.846i − 0.828072i −0.910260 0.414036i \(-0.864119\pi\)
0.910260 0.414036i \(-0.135881\pi\)
\(252\) 0 0
\(253\) 480.000 1.89723
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 72.0000 0.280156 0.140078 0.990140i \(-0.455265\pi\)
0.140078 + 0.990140i \(0.455265\pi\)
\(258\) 0 0
\(259\) − 166.277i − 0.641996i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 270.200i − 1.02738i −0.857977 0.513688i \(-0.828279\pi\)
0.857977 0.513688i \(-0.171721\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 230.000 0.855019 0.427509 0.904011i \(-0.359391\pi\)
0.427509 + 0.904011i \(0.359391\pi\)
\(270\) 0 0
\(271\) 207.846i 0.766960i 0.923549 + 0.383480i \(0.125274\pi\)
−0.923549 + 0.383480i \(0.874726\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −264.000 −0.953069 −0.476534 0.879156i \(-0.658107\pi\)
−0.476534 + 0.879156i \(0.658107\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −254.000 −0.903915 −0.451957 0.892040i \(-0.649274\pi\)
−0.451957 + 0.892040i \(0.649274\pi\)
\(282\) 0 0
\(283\) − 214.774i − 0.758920i −0.925208 0.379460i \(-0.876110\pi\)
0.925208 0.379460i \(-0.123890\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 235.559i 0.820763i
\(288\) 0 0
\(289\) 287.000 0.993080
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −432.000 −1.47440 −0.737201 0.675673i \(-0.763853\pi\)
−0.737201 + 0.675673i \(0.763853\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 831.384i − 2.78055i
\(300\) 0 0
\(301\) 144.000 0.478405
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 297.913i 0.970400i 0.874403 + 0.485200i \(0.161253\pi\)
−0.874403 + 0.485200i \(0.838747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 526.543i − 1.69307i −0.532336 0.846533i \(-0.678686\pi\)
0.532336 0.846533i \(-0.321314\pi\)
\(312\) 0 0
\(313\) 240.000 0.766773 0.383387 0.923588i \(-0.374758\pi\)
0.383387 + 0.923588i \(0.374758\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −240.000 −0.757098 −0.378549 0.925581i \(-0.623577\pi\)
−0.378549 + 0.925581i \(0.623577\pi\)
\(318\) 0 0
\(319\) − 138.564i − 0.434370i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 665.108i − 2.05916i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 48.0000 0.145897
\(330\) 0 0
\(331\) 110.851i 0.334898i 0.985881 + 0.167449i \(0.0535530\pi\)
−0.985881 + 0.167449i \(0.946447\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 48.0000 0.142433 0.0712166 0.997461i \(-0.477312\pi\)
0.0712166 + 0.997461i \(0.477312\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −192.000 −0.563050
\(342\) 0 0
\(343\) 346.410i 1.00994i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 685.892i − 1.97663i −0.152411 0.988317i \(-0.548704\pi\)
0.152411 0.988317i \(-0.451296\pi\)
\(348\) 0 0
\(349\) −458.000 −1.31232 −0.656160 0.754621i \(-0.727821\pi\)
−0.656160 + 0.754621i \(0.727821\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −72.0000 −0.203966 −0.101983 0.994786i \(-0.532519\pi\)
−0.101983 + 0.994786i \(0.532519\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 637.395i − 1.77547i −0.460352 0.887736i \(-0.652277\pi\)
0.460352 0.887736i \(-0.347723\pi\)
\(360\) 0 0
\(361\) −407.000 −1.12742
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 145.492i 0.396437i 0.980158 + 0.198218i \(0.0635155\pi\)
−0.980158 + 0.198218i \(0.936484\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 332.554i 0.896371i
\(372\) 0 0
\(373\) 24.0000 0.0643432 0.0321716 0.999482i \(-0.489758\pi\)
0.0321716 + 0.999482i \(0.489758\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −240.000 −0.636605
\(378\) 0 0
\(379\) − 332.554i − 0.877451i −0.898621 0.438725i \(-0.855430\pi\)
0.898621 0.438725i \(-0.144570\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 187.061i − 0.488411i −0.969723 0.244206i \(-0.921473\pi\)
0.969723 0.244206i \(-0.0785272\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 182.000 0.467866 0.233933 0.972253i \(-0.424840\pi\)
0.233933 + 0.972253i \(0.424840\pi\)
\(390\) 0 0
\(391\) − 831.384i − 2.12630i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 264.000 0.664987 0.332494 0.943105i \(-0.392110\pi\)
0.332494 + 0.943105i \(0.392110\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 350.000 0.872818 0.436409 0.899748i \(-0.356250\pi\)
0.436409 + 0.899748i \(0.356250\pi\)
\(402\) 0 0
\(403\) 332.554i 0.825195i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 332.554i 0.817085i
\(408\) 0 0
\(409\) −190.000 −0.464548 −0.232274 0.972650i \(-0.574617\pi\)
−0.232274 + 0.972650i \(0.574617\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −96.0000 −0.232446
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 789.815i 1.88500i 0.334206 + 0.942500i \(0.391532\pi\)
−0.334206 + 0.942500i \(0.608468\pi\)
\(420\) 0 0
\(421\) 502.000 1.19240 0.596200 0.802836i \(-0.296677\pi\)
0.596200 + 0.802836i \(0.296677\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 484.974i 1.13577i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 193.990i − 0.450092i −0.974348 0.225046i \(-0.927747\pi\)
0.974348 0.225046i \(-0.0722533\pi\)
\(432\) 0 0
\(433\) 528.000 1.21940 0.609700 0.792632i \(-0.291290\pi\)
0.609700 + 0.792632i \(0.291290\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −960.000 −2.19680
\(438\) 0 0
\(439\) − 180.133i − 0.410326i −0.978728 0.205163i \(-0.934227\pi\)
0.978728 0.205163i \(-0.0657725\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 713.605i 1.61085i 0.592700 + 0.805423i \(0.298062\pi\)
−0.592700 + 0.805423i \(0.701938\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −82.0000 −0.182628 −0.0913140 0.995822i \(-0.529107\pi\)
−0.0913140 + 0.995822i \(0.529107\pi\)
\(450\) 0 0
\(451\) − 471.118i − 1.04461i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 384.000 0.840263 0.420131 0.907463i \(-0.361984\pi\)
0.420131 + 0.907463i \(0.361984\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 278.000 0.603037 0.301518 0.953460i \(-0.402507\pi\)
0.301518 + 0.953460i \(0.402507\pi\)
\(462\) 0 0
\(463\) − 228.631i − 0.493803i −0.969041 0.246901i \(-0.920588\pi\)
0.969041 0.246901i \(-0.0794124\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 436.477i − 0.934640i −0.884088 0.467320i \(-0.845220\pi\)
0.884088 0.467320i \(-0.154780\pi\)
\(468\) 0 0
\(469\) 624.000 1.33049
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −288.000 −0.608879
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 387.979i − 0.809978i −0.914322 0.404989i \(-0.867275\pi\)
0.914322 0.404989i \(-0.132725\pi\)
\(480\) 0 0
\(481\) 576.000 1.19751
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 270.200i − 0.554825i −0.960751 0.277413i \(-0.910523\pi\)
0.960751 0.277413i \(-0.0894769\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 568.113i − 1.15705i −0.815664 0.578526i \(-0.803628\pi\)
0.815664 0.578526i \(-0.196372\pi\)
\(492\) 0 0
\(493\) −240.000 −0.486815
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 384.000 0.772636
\(498\) 0 0
\(499\) 775.959i 1.55503i 0.628866 + 0.777514i \(0.283519\pi\)
−0.628866 + 0.777514i \(0.716481\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 256.344i 0.509629i 0.966990 + 0.254815i \(0.0820145\pi\)
−0.966990 + 0.254815i \(0.917986\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −374.000 −0.734774 −0.367387 0.930068i \(-0.619748\pi\)
−0.367387 + 0.930068i \(0.619748\pi\)
\(510\) 0 0
\(511\) − 332.554i − 0.650790i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −96.0000 −0.185687
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −82.0000 −0.157390 −0.0786948 0.996899i \(-0.525075\pi\)
−0.0786948 + 0.996899i \(0.525075\pi\)
\(522\) 0 0
\(523\) 505.759i 0.967034i 0.875335 + 0.483517i \(0.160641\pi\)
−0.875335 + 0.483517i \(0.839359\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 332.554i 0.631032i
\(528\) 0 0
\(529\) −671.000 −1.26843
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −816.000 −1.53096
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 13.8564i − 0.0257076i
\(540\) 0 0
\(541\) 842.000 1.55638 0.778189 0.628031i \(-0.216139\pi\)
0.778189 + 0.628031i \(0.216139\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 450.333i − 0.823278i −0.911347 0.411639i \(-0.864956\pi\)
0.911347 0.411639i \(-0.135044\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 277.128i 0.502955i
\(552\) 0 0
\(553\) −288.000 −0.520796
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 864.000 1.55117 0.775583 0.631245i \(-0.217456\pi\)
0.775583 + 0.631245i \(0.217456\pi\)
\(558\) 0 0
\(559\) 498.831i 0.892362i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 616.610i − 1.09522i −0.836733 0.547611i \(-0.815537\pi\)
0.836733 0.547611i \(-0.184463\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 830.000 1.45870 0.729350 0.684141i \(-0.239823\pi\)
0.729350 + 0.684141i \(0.239823\pi\)
\(570\) 0 0
\(571\) 55.4256i 0.0970676i 0.998822 + 0.0485338i \(0.0154549\pi\)
−0.998822 + 0.0485338i \(0.984545\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −96.0000 −0.166378 −0.0831889 0.996534i \(-0.526510\pi\)
−0.0831889 + 0.996534i \(0.526510\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 624.000 1.07401
\(582\) 0 0
\(583\) − 665.108i − 1.14084i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 755.174i 1.28650i 0.765657 + 0.643249i \(0.222414\pi\)
−0.765657 + 0.643249i \(0.777586\pi\)
\(588\) 0 0
\(589\) 384.000 0.651952
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 456.000 0.768971 0.384486 0.923131i \(-0.374379\pi\)
0.384486 + 0.923131i \(0.374379\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 304.841i 0.508916i 0.967084 + 0.254458i \(0.0818971\pi\)
−0.967084 + 0.254458i \(0.918103\pi\)
\(600\) 0 0
\(601\) −1154.00 −1.92013 −0.960067 0.279772i \(-0.909741\pi\)
−0.960067 + 0.279772i \(0.909741\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 117.779i 0.194035i 0.995283 + 0.0970177i \(0.0309303\pi\)
−0.995283 + 0.0970177i \(0.969070\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 166.277i 0.272139i
\(612\) 0 0
\(613\) 456.000 0.743883 0.371941 0.928256i \(-0.378692\pi\)
0.371941 + 0.928256i \(0.378692\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 600.000 0.972447 0.486224 0.873834i \(-0.338374\pi\)
0.486224 + 0.873834i \(0.338374\pi\)
\(618\) 0 0
\(619\) 249.415i 0.402933i 0.979495 + 0.201466i \(0.0645707\pi\)
−0.979495 + 0.201466i \(0.935429\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 96.9948i − 0.155690i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 576.000 0.915739
\(630\) 0 0
\(631\) − 13.8564i − 0.0219594i −0.999940 0.0109797i \(-0.996505\pi\)
0.999940 0.0109797i \(-0.00349502\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −24.0000 −0.0376766
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1070.00 −1.66927 −0.834633 0.550806i \(-0.814320\pi\)
−0.834633 + 0.550806i \(0.814320\pi\)
\(642\) 0 0
\(643\) 921.451i 1.43305i 0.697562 + 0.716525i \(0.254268\pi\)
−0.697562 + 0.716525i \(0.745732\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 339.482i − 0.524702i −0.964973 0.262351i \(-0.915502\pi\)
0.964973 0.262351i \(-0.0844978\pi\)
\(648\) 0 0
\(649\) 192.000 0.295840
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1056.00 1.61715 0.808576 0.588392i \(-0.200239\pi\)
0.808576 + 0.588392i \(0.200239\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 956.092i − 1.45082i −0.688316 0.725411i \(-0.741650\pi\)
0.688316 0.725411i \(-0.258350\pi\)
\(660\) 0 0
\(661\) −554.000 −0.838124 −0.419062 0.907958i \(-0.637641\pi\)
−0.419062 + 0.907958i \(0.637641\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 346.410i 0.519356i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 969.948i − 1.44553i
\(672\) 0 0
\(673\) 624.000 0.927192 0.463596 0.886047i \(-0.346559\pi\)
0.463596 + 0.886047i \(0.346559\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 864.000 1.27622 0.638109 0.769946i \(-0.279717\pi\)
0.638109 + 0.769946i \(0.279717\pi\)
\(678\) 0 0
\(679\) − 665.108i − 0.979540i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 145.492i − 0.213019i −0.994312 0.106510i \(-0.966032\pi\)
0.994312 0.106510i \(-0.0339675\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1152.00 −1.67199
\(690\) 0 0
\(691\) 748.246i 1.08285i 0.840751 + 0.541423i \(0.182114\pi\)
−0.840751 + 0.541423i \(0.817886\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −816.000 −1.17073
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 634.000 0.904422 0.452211 0.891911i \(-0.350635\pi\)
0.452211 + 0.891911i \(0.350635\pi\)
\(702\) 0 0
\(703\) − 665.108i − 0.946099i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 263.272i 0.372379i
\(708\) 0 0
\(709\) 358.000 0.504937 0.252468 0.967605i \(-0.418758\pi\)
0.252468 + 0.967605i \(0.418758\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 480.000 0.673212
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 471.118i 0.655240i 0.944810 + 0.327620i \(0.106247\pi\)
−0.944810 + 0.327620i \(0.893753\pi\)
\(720\) 0 0
\(721\) 1008.00 1.39806
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 713.605i − 0.981575i −0.871279 0.490787i \(-0.836709\pi\)
0.871279 0.490787i \(-0.163291\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 498.831i 0.682395i
\(732\) 0 0
\(733\) −840.000 −1.14598 −0.572988 0.819564i \(-0.694216\pi\)
−0.572988 + 0.819564i \(0.694216\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1248.00 −1.69335
\(738\) 0 0
\(739\) − 609.682i − 0.825009i −0.910955 0.412505i \(-0.864654\pi\)
0.910955 0.412505i \(-0.135346\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 782.887i 1.05368i 0.849963 + 0.526842i \(0.176624\pi\)
−0.849963 + 0.526842i \(0.823376\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −48.0000 −0.0640854
\(750\) 0 0
\(751\) 872.954i 1.16239i 0.813765 + 0.581194i \(0.197414\pi\)
−0.813765 + 0.581194i \(0.802586\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 504.000 0.665786 0.332893 0.942965i \(-0.391975\pi\)
0.332893 + 0.942965i \(0.391975\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −754.000 −0.990802 −0.495401 0.868665i \(-0.664979\pi\)
−0.495401 + 0.868665i \(0.664979\pi\)
\(762\) 0 0
\(763\) − 1150.08i − 1.50732i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 332.554i − 0.433577i
\(768\) 0 0
\(769\) −578.000 −0.751625 −0.375813 0.926696i \(-0.622636\pi\)
−0.375813 + 0.926696i \(0.622636\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1296.00 1.67658 0.838292 0.545221i \(-0.183554\pi\)
0.838292 + 0.545221i \(0.183554\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 942.236i 1.20955i
\(780\) 0 0
\(781\) −768.000 −0.983355
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1351.00i 1.71665i 0.513111 + 0.858323i \(0.328493\pi\)
−0.513111 + 0.858323i \(0.671507\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1163.94i 1.47148i
\(792\) 0 0
\(793\) −1680.00 −2.11854
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 288.000 0.361355 0.180678 0.983542i \(-0.442171\pi\)
0.180678 + 0.983542i \(0.442171\pi\)
\(798\) 0 0
\(799\) 166.277i 0.208106i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 665.108i 0.828278i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −494.000 −0.610630 −0.305315 0.952251i \(-0.598762\pi\)
−0.305315 + 0.952251i \(0.598762\pi\)
\(810\) 0 0
\(811\) − 720.533i − 0.888450i −0.895915 0.444225i \(-0.853479\pi\)
0.895915 0.444225i \(-0.146521\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 576.000 0.705018
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 298.000 0.362972 0.181486 0.983394i \(-0.441909\pi\)
0.181486 + 0.983394i \(0.441909\pi\)
\(822\) 0 0
\(823\) − 866.025i − 1.05228i −0.850398 0.526139i \(-0.823639\pi\)
0.850398 0.526139i \(-0.176361\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 367.195i 0.444008i 0.975046 + 0.222004i \(0.0712598\pi\)
−0.975046 + 0.222004i \(0.928740\pi\)
\(828\) 0 0
\(829\) −454.000 −0.547648 −0.273824 0.961780i \(-0.588289\pi\)
−0.273824 + 0.961780i \(0.588289\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −24.0000 −0.0288115
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 193.990i 0.231215i 0.993295 + 0.115608i \(0.0368815\pi\)
−0.993295 + 0.115608i \(0.963118\pi\)
\(840\) 0 0
\(841\) −741.000 −0.881094
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 491.902i − 0.580758i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 831.384i − 0.976950i
\(852\) 0 0
\(853\) −1560.00 −1.82884 −0.914420 0.404767i \(-0.867353\pi\)
−0.914420 + 0.404767i \(0.867353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1272.00 −1.48425 −0.742124 0.670263i \(-0.766181\pi\)
−0.742124 + 0.670263i \(0.766181\pi\)
\(858\) 0 0
\(859\) − 1053.09i − 1.22595i −0.790104 0.612973i \(-0.789974\pi\)
0.790104 0.612973i \(-0.210026\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 491.902i − 0.569991i −0.958529 0.284996i \(-0.908008\pi\)
0.958529 0.284996i \(-0.0919921\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 576.000 0.662831
\(870\) 0 0
\(871\) 2161.60i 2.48174i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −936.000 −1.06727 −0.533637 0.845713i \(-0.679175\pi\)
−0.533637 + 0.845713i \(0.679175\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 562.000 0.637911 0.318956 0.947770i \(-0.396668\pi\)
0.318956 + 0.947770i \(0.396668\pi\)
\(882\) 0 0
\(883\) 6.92820i 0.00784621i 0.999992 + 0.00392310i \(0.00124877\pi\)
−0.999992 + 0.00392310i \(0.998751\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 561.184i − 0.632677i −0.948646 0.316338i \(-0.897546\pi\)
0.948646 0.316338i \(-0.102454\pi\)
\(888\) 0 0
\(889\) −240.000 −0.269966
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 192.000 0.215006
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 138.564i − 0.154131i
\(900\) 0 0
\(901\) −1152.00 −1.27858
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1669.70i − 1.84090i −0.390859 0.920450i \(-0.627822\pi\)
0.390859 0.920450i \(-0.372178\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1718.19i 1.88605i 0.332717 + 0.943027i \(0.392034\pi\)
−0.332717 + 0.943027i \(0.607966\pi\)
\(912\) 0 0
\(913\) −1248.00 −1.36692
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 480.000 0.523446
\(918\) 0 0
\(919\) 595.825i 0.648341i 0.945999 + 0.324171i \(0.105085\pi\)
−0.945999 + 0.324171i \(0.894915\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1330.22i 1.44119i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1042.00 −1.12164 −0.560818 0.827939i \(-0.689513\pi\)
−0.560818 + 0.827939i \(0.689513\pi\)
\(930\) 0 0
\(931\) 27.7128i 0.0297667i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −864.000 −0.922092 −0.461046 0.887376i \(-0.652526\pi\)
−0.461046 + 0.887376i \(0.652526\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −490.000 −0.520723 −0.260361 0.965511i \(-0.583842\pi\)
−0.260361 + 0.965511i \(0.583842\pi\)
\(942\) 0 0
\(943\) 1177.79i 1.24899i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1129.30i − 1.19250i −0.802799 0.596250i \(-0.796657\pi\)
0.802799 0.596250i \(-0.203343\pi\)
\(948\) 0 0
\(949\) 1152.00 1.21391
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −360.000 −0.377754 −0.188877 0.982001i \(-0.560485\pi\)
−0.188877 + 0.982001i \(0.560485\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 166.277i 0.173386i
\(960\) 0 0
\(961\) 769.000 0.800208
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 422.620i 0.437043i 0.975832 + 0.218521i \(0.0701233\pi\)
−0.975832 + 0.218521i \(0.929877\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1233.22i 1.27005i 0.772491 + 0.635026i \(0.219011\pi\)
−0.772491 + 0.635026i \(0.780989\pi\)
\(972\) 0 0
\(973\) 1344.00 1.38129
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1128.00 1.15455 0.577277 0.816548i \(-0.304115\pi\)
0.577277 + 0.816548i \(0.304115\pi\)
\(978\) 0 0
\(979\) 193.990i 0.198151i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 284.056i 0.288969i 0.989507 + 0.144484i \(0.0461524\pi\)
−0.989507 + 0.144484i \(0.953848\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 720.000 0.728008
\(990\) 0 0
\(991\) − 1094.66i − 1.10460i −0.833646 0.552299i \(-0.813751\pi\)
0.833646 0.552299i \(-0.186249\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 24.0000 0.0240722 0.0120361 0.999928i \(-0.496169\pi\)
0.0120361 + 0.999928i \(0.496169\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.3.e.f.3151.2 2
3.2 odd 2 1200.3.e.a.751.2 2
4.3 odd 2 inner 3600.3.e.f.3151.1 2
5.2 odd 4 720.3.j.g.559.1 4
5.3 odd 4 720.3.j.g.559.3 4
5.4 even 2 3600.3.e.x.3151.1 2
12.11 even 2 1200.3.e.a.751.1 2
15.2 even 4 240.3.j.a.79.4 yes 4
15.8 even 4 240.3.j.a.79.2 yes 4
15.14 odd 2 1200.3.e.i.751.1 2
20.3 even 4 720.3.j.g.559.2 4
20.7 even 4 720.3.j.g.559.4 4
20.19 odd 2 3600.3.e.x.3151.2 2
60.23 odd 4 240.3.j.a.79.3 yes 4
60.47 odd 4 240.3.j.a.79.1 4
60.59 even 2 1200.3.e.i.751.2 2
120.53 even 4 960.3.j.d.319.3 4
120.77 even 4 960.3.j.d.319.1 4
120.83 odd 4 960.3.j.d.319.2 4
120.107 odd 4 960.3.j.d.319.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.3.j.a.79.1 4 60.47 odd 4
240.3.j.a.79.2 yes 4 15.8 even 4
240.3.j.a.79.3 yes 4 60.23 odd 4
240.3.j.a.79.4 yes 4 15.2 even 4
720.3.j.g.559.1 4 5.2 odd 4
720.3.j.g.559.2 4 20.3 even 4
720.3.j.g.559.3 4 5.3 odd 4
720.3.j.g.559.4 4 20.7 even 4
960.3.j.d.319.1 4 120.77 even 4
960.3.j.d.319.2 4 120.83 odd 4
960.3.j.d.319.3 4 120.53 even 4
960.3.j.d.319.4 4 120.107 odd 4
1200.3.e.a.751.1 2 12.11 even 2
1200.3.e.a.751.2 2 3.2 odd 2
1200.3.e.i.751.1 2 15.14 odd 2
1200.3.e.i.751.2 2 60.59 even 2
3600.3.e.f.3151.1 2 4.3 odd 2 inner
3600.3.e.f.3151.2 2 1.1 even 1 trivial
3600.3.e.x.3151.1 2 5.4 even 2
3600.3.e.x.3151.2 2 20.19 odd 2