# SageMath code for working with modular form 3600.3.e.f # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))] # Compute space of new eigenforms: from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a") # select newform: traces = [2,0,0,0,0,0,0,0,0,0,0,0,-48,0,0,0,-48,0,0,0,0,0,0,0,0,0,0,0, 20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces) # q-expansion: f.q_expansion() # note that sage often uses an isomorphic number field