Properties

Label 1200.3.e.i.751.1
Level $1200$
Weight $3$
Character 1200.751
Analytic conductor $32.698$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1200,3,Mod(751,1200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1200.751"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-6,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 751.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1200.751
Dual form 1200.3.e.i.751.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} -6.92820i q^{7} -3.00000 q^{9} +13.8564i q^{11} +24.0000 q^{13} -24.0000 q^{17} +27.7128i q^{19} -12.0000 q^{21} +34.6410i q^{23} +5.19615i q^{27} -10.0000 q^{29} -13.8564i q^{31} +24.0000 q^{33} +24.0000 q^{37} -41.5692i q^{39} -34.0000 q^{41} +20.7846i q^{43} -6.92820i q^{47} +1.00000 q^{49} +41.5692i q^{51} +48.0000 q^{53} +48.0000 q^{57} -13.8564i q^{59} +70.0000 q^{61} +20.7846i q^{63} +90.0666i q^{67} +60.0000 q^{69} +55.4256i q^{71} +48.0000 q^{73} +96.0000 q^{77} +41.5692i q^{79} +9.00000 q^{81} -90.0666i q^{83} +17.3205i q^{87} +14.0000 q^{89} -166.277i q^{91} -24.0000 q^{93} +96.0000 q^{97} -41.5692i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{9} + 48 q^{13} - 48 q^{17} - 24 q^{21} - 20 q^{29} + 48 q^{33} + 48 q^{37} - 68 q^{41} + 2 q^{49} + 96 q^{53} + 96 q^{57} + 140 q^{61} + 120 q^{69} + 96 q^{73} + 192 q^{77} + 18 q^{81} + 28 q^{89}+ \cdots + 192 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 6.92820i − 0.989743i −0.868966 0.494872i \(-0.835215\pi\)
0.868966 0.494872i \(-0.164785\pi\)
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 13.8564i 1.25967i 0.776728 + 0.629837i \(0.216878\pi\)
−0.776728 + 0.629837i \(0.783122\pi\)
\(12\) 0 0
\(13\) 24.0000 1.84615 0.923077 0.384615i \(-0.125666\pi\)
0.923077 + 0.384615i \(0.125666\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −24.0000 −1.41176 −0.705882 0.708329i \(-0.749449\pi\)
−0.705882 + 0.708329i \(0.749449\pi\)
\(18\) 0 0
\(19\) 27.7128i 1.45857i 0.684211 + 0.729285i \(0.260147\pi\)
−0.684211 + 0.729285i \(0.739853\pi\)
\(20\) 0 0
\(21\) −12.0000 −0.571429
\(22\) 0 0
\(23\) 34.6410i 1.50613i 0.657945 + 0.753066i \(0.271426\pi\)
−0.657945 + 0.753066i \(0.728574\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −10.0000 −0.344828 −0.172414 0.985025i \(-0.555157\pi\)
−0.172414 + 0.985025i \(0.555157\pi\)
\(30\) 0 0
\(31\) − 13.8564i − 0.446981i −0.974706 0.223490i \(-0.928255\pi\)
0.974706 0.223490i \(-0.0717451\pi\)
\(32\) 0 0
\(33\) 24.0000 0.727273
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 24.0000 0.648649 0.324324 0.945946i \(-0.394863\pi\)
0.324324 + 0.945946i \(0.394863\pi\)
\(38\) 0 0
\(39\) − 41.5692i − 1.06588i
\(40\) 0 0
\(41\) −34.0000 −0.829268 −0.414634 0.909988i \(-0.636090\pi\)
−0.414634 + 0.909988i \(0.636090\pi\)
\(42\) 0 0
\(43\) 20.7846i 0.483363i 0.970356 + 0.241682i \(0.0776989\pi\)
−0.970356 + 0.241682i \(0.922301\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 6.92820i − 0.147409i −0.997280 0.0737043i \(-0.976518\pi\)
0.997280 0.0737043i \(-0.0234821\pi\)
\(48\) 0 0
\(49\) 1.00000 0.0204082
\(50\) 0 0
\(51\) 41.5692i 0.815083i
\(52\) 0 0
\(53\) 48.0000 0.905660 0.452830 0.891597i \(-0.350414\pi\)
0.452830 + 0.891597i \(0.350414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 48.0000 0.842105
\(58\) 0 0
\(59\) − 13.8564i − 0.234854i −0.993081 0.117427i \(-0.962535\pi\)
0.993081 0.117427i \(-0.0374647\pi\)
\(60\) 0 0
\(61\) 70.0000 1.14754 0.573770 0.819016i \(-0.305480\pi\)
0.573770 + 0.819016i \(0.305480\pi\)
\(62\) 0 0
\(63\) 20.7846i 0.329914i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 90.0666i 1.34428i 0.740425 + 0.672139i \(0.234624\pi\)
−0.740425 + 0.672139i \(0.765376\pi\)
\(68\) 0 0
\(69\) 60.0000 0.869565
\(70\) 0 0
\(71\) 55.4256i 0.780643i 0.920679 + 0.390321i \(0.127636\pi\)
−0.920679 + 0.390321i \(0.872364\pi\)
\(72\) 0 0
\(73\) 48.0000 0.657534 0.328767 0.944411i \(-0.393367\pi\)
0.328767 + 0.944411i \(0.393367\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 96.0000 1.24675
\(78\) 0 0
\(79\) 41.5692i 0.526193i 0.964770 + 0.263096i \(0.0847437\pi\)
−0.964770 + 0.263096i \(0.915256\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 90.0666i − 1.08514i −0.840011 0.542570i \(-0.817451\pi\)
0.840011 0.542570i \(-0.182549\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 17.3205i 0.199086i
\(88\) 0 0
\(89\) 14.0000 0.157303 0.0786517 0.996902i \(-0.474939\pi\)
0.0786517 + 0.996902i \(0.474939\pi\)
\(90\) 0 0
\(91\) − 166.277i − 1.82722i
\(92\) 0 0
\(93\) −24.0000 −0.258065
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 96.0000 0.989691 0.494845 0.868981i \(-0.335225\pi\)
0.494845 + 0.868981i \(0.335225\pi\)
\(98\) 0 0
\(99\) − 41.5692i − 0.419891i
\(100\) 0 0
\(101\) −38.0000 −0.376238 −0.188119 0.982146i \(-0.560239\pi\)
−0.188119 + 0.982146i \(0.560239\pi\)
\(102\) 0 0
\(103\) 145.492i 1.41255i 0.707939 + 0.706273i \(0.249625\pi\)
−0.707939 + 0.706273i \(0.750375\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.92820i 0.0647496i 0.999476 + 0.0323748i \(0.0103070\pi\)
−0.999476 + 0.0323748i \(0.989693\pi\)
\(108\) 0 0
\(109\) −166.000 −1.52294 −0.761468 0.648203i \(-0.775521\pi\)
−0.761468 + 0.648203i \(0.775521\pi\)
\(110\) 0 0
\(111\) − 41.5692i − 0.374497i
\(112\) 0 0
\(113\) 168.000 1.48673 0.743363 0.668888i \(-0.233230\pi\)
0.743363 + 0.668888i \(0.233230\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −72.0000 −0.615385
\(118\) 0 0
\(119\) 166.277i 1.39728i
\(120\) 0 0
\(121\) −71.0000 −0.586777
\(122\) 0 0
\(123\) 58.8897i 0.478778i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 34.6410i − 0.272764i −0.990656 0.136382i \(-0.956453\pi\)
0.990656 0.136382i \(-0.0435474\pi\)
\(128\) 0 0
\(129\) 36.0000 0.279070
\(130\) 0 0
\(131\) 69.2820i 0.528870i 0.964403 + 0.264435i \(0.0851855\pi\)
−0.964403 + 0.264435i \(0.914814\pi\)
\(132\) 0 0
\(133\) 192.000 1.44361
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 24.0000 0.175182 0.0875912 0.996157i \(-0.472083\pi\)
0.0875912 + 0.996157i \(0.472083\pi\)
\(138\) 0 0
\(139\) − 193.990i − 1.39561i −0.716288 0.697805i \(-0.754160\pi\)
0.716288 0.697805i \(-0.245840\pi\)
\(140\) 0 0
\(141\) −12.0000 −0.0851064
\(142\) 0 0
\(143\) 332.554i 2.32555i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1.73205i − 0.0117827i
\(148\) 0 0
\(149\) −86.0000 −0.577181 −0.288591 0.957453i \(-0.593187\pi\)
−0.288591 + 0.957453i \(0.593187\pi\)
\(150\) 0 0
\(151\) 69.2820i 0.458821i 0.973330 + 0.229411i \(0.0736799\pi\)
−0.973330 + 0.229411i \(0.926320\pi\)
\(152\) 0 0
\(153\) 72.0000 0.470588
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −120.000 −0.764331 −0.382166 0.924094i \(-0.624822\pi\)
−0.382166 + 0.924094i \(0.624822\pi\)
\(158\) 0 0
\(159\) − 83.1384i − 0.522883i
\(160\) 0 0
\(161\) 240.000 1.49068
\(162\) 0 0
\(163\) − 62.3538i − 0.382539i −0.981538 0.191269i \(-0.938740\pi\)
0.981538 0.191269i \(-0.0612604\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 242.487i 1.45202i 0.687685 + 0.726009i \(0.258627\pi\)
−0.687685 + 0.726009i \(0.741373\pi\)
\(168\) 0 0
\(169\) 407.000 2.40828
\(170\) 0 0
\(171\) − 83.1384i − 0.486190i
\(172\) 0 0
\(173\) 192.000 1.10983 0.554913 0.831908i \(-0.312751\pi\)
0.554913 + 0.831908i \(0.312751\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −24.0000 −0.135593
\(178\) 0 0
\(179\) 318.697i 1.78043i 0.455539 + 0.890216i \(0.349447\pi\)
−0.455539 + 0.890216i \(0.650553\pi\)
\(180\) 0 0
\(181\) 122.000 0.674033 0.337017 0.941499i \(-0.390582\pi\)
0.337017 + 0.941499i \(0.390582\pi\)
\(182\) 0 0
\(183\) − 121.244i − 0.662533i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 332.554i − 1.77836i
\(188\) 0 0
\(189\) 36.0000 0.190476
\(190\) 0 0
\(191\) − 193.990i − 1.01565i −0.861459 0.507826i \(-0.830449\pi\)
0.861459 0.507826i \(-0.169551\pi\)
\(192\) 0 0
\(193\) 144.000 0.746114 0.373057 0.927808i \(-0.378310\pi\)
0.373057 + 0.927808i \(0.378310\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 48.0000 0.243655 0.121827 0.992551i \(-0.461125\pi\)
0.121827 + 0.992551i \(0.461125\pi\)
\(198\) 0 0
\(199\) − 290.985i − 1.46223i −0.682252 0.731117i \(-0.738999\pi\)
0.682252 0.731117i \(-0.261001\pi\)
\(200\) 0 0
\(201\) 156.000 0.776119
\(202\) 0 0
\(203\) 69.2820i 0.341291i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 103.923i − 0.502044i
\(208\) 0 0
\(209\) −384.000 −1.83732
\(210\) 0 0
\(211\) 193.990i 0.919382i 0.888079 + 0.459691i \(0.152040\pi\)
−0.888079 + 0.459691i \(0.847960\pi\)
\(212\) 0 0
\(213\) 96.0000 0.450704
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −96.0000 −0.442396
\(218\) 0 0
\(219\) − 83.1384i − 0.379628i
\(220\) 0 0
\(221\) −576.000 −2.60633
\(222\) 0 0
\(223\) − 131.636i − 0.590295i −0.955452 0.295148i \(-0.904631\pi\)
0.955452 0.295148i \(-0.0953688\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 270.200i − 1.19031i −0.803612 0.595154i \(-0.797091\pi\)
0.803612 0.595154i \(-0.202909\pi\)
\(228\) 0 0
\(229\) 166.000 0.724891 0.362445 0.932005i \(-0.381942\pi\)
0.362445 + 0.932005i \(0.381942\pi\)
\(230\) 0 0
\(231\) − 166.277i − 0.719813i
\(232\) 0 0
\(233\) −264.000 −1.13305 −0.566524 0.824046i \(-0.691712\pi\)
−0.566524 + 0.824046i \(0.691712\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 72.0000 0.303797
\(238\) 0 0
\(239\) 83.1384i 0.347860i 0.984758 + 0.173930i \(0.0556466\pi\)
−0.984758 + 0.173930i \(0.944353\pi\)
\(240\) 0 0
\(241\) −242.000 −1.00415 −0.502075 0.864824i \(-0.667430\pi\)
−0.502075 + 0.864824i \(0.667430\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 665.108i 2.69274i
\(248\) 0 0
\(249\) −156.000 −0.626506
\(250\) 0 0
\(251\) 207.846i 0.828072i 0.910260 + 0.414036i \(0.135881\pi\)
−0.910260 + 0.414036i \(0.864119\pi\)
\(252\) 0 0
\(253\) −480.000 −1.89723
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 72.0000 0.280156 0.140078 0.990140i \(-0.455265\pi\)
0.140078 + 0.990140i \(0.455265\pi\)
\(258\) 0 0
\(259\) − 166.277i − 0.641996i
\(260\) 0 0
\(261\) 30.0000 0.114943
\(262\) 0 0
\(263\) − 270.200i − 1.02738i −0.857977 0.513688i \(-0.828279\pi\)
0.857977 0.513688i \(-0.171721\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 24.2487i − 0.0908191i
\(268\) 0 0
\(269\) −230.000 −0.855019 −0.427509 0.904011i \(-0.640609\pi\)
−0.427509 + 0.904011i \(0.640609\pi\)
\(270\) 0 0
\(271\) 207.846i 0.766960i 0.923549 + 0.383480i \(0.125274\pi\)
−0.923549 + 0.383480i \(0.874726\pi\)
\(272\) 0 0
\(273\) −288.000 −1.05495
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 264.000 0.953069 0.476534 0.879156i \(-0.341893\pi\)
0.476534 + 0.879156i \(0.341893\pi\)
\(278\) 0 0
\(279\) 41.5692i 0.148994i
\(280\) 0 0
\(281\) 254.000 0.903915 0.451957 0.892040i \(-0.350726\pi\)
0.451957 + 0.892040i \(0.350726\pi\)
\(282\) 0 0
\(283\) 214.774i 0.758920i 0.925208 + 0.379460i \(0.123890\pi\)
−0.925208 + 0.379460i \(0.876110\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 235.559i 0.820763i
\(288\) 0 0
\(289\) 287.000 0.993080
\(290\) 0 0
\(291\) − 166.277i − 0.571398i
\(292\) 0 0
\(293\) −432.000 −1.47440 −0.737201 0.675673i \(-0.763853\pi\)
−0.737201 + 0.675673i \(0.763853\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −72.0000 −0.242424
\(298\) 0 0
\(299\) 831.384i 2.78055i
\(300\) 0 0
\(301\) 144.000 0.478405
\(302\) 0 0
\(303\) 65.8179i 0.217221i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 297.913i − 0.970400i −0.874403 0.485200i \(-0.838747\pi\)
0.874403 0.485200i \(-0.161253\pi\)
\(308\) 0 0
\(309\) 252.000 0.815534
\(310\) 0 0
\(311\) 526.543i 1.69307i 0.532336 + 0.846533i \(0.321314\pi\)
−0.532336 + 0.846533i \(0.678686\pi\)
\(312\) 0 0
\(313\) −240.000 −0.766773 −0.383387 0.923588i \(-0.625242\pi\)
−0.383387 + 0.923588i \(0.625242\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −240.000 −0.757098 −0.378549 0.925581i \(-0.623577\pi\)
−0.378549 + 0.925581i \(0.623577\pi\)
\(318\) 0 0
\(319\) − 138.564i − 0.434370i
\(320\) 0 0
\(321\) 12.0000 0.0373832
\(322\) 0 0
\(323\) − 665.108i − 2.05916i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 287.520i 0.879267i
\(328\) 0 0
\(329\) −48.0000 −0.145897
\(330\) 0 0
\(331\) 110.851i 0.334898i 0.985881 + 0.167449i \(0.0535530\pi\)
−0.985881 + 0.167449i \(0.946447\pi\)
\(332\) 0 0
\(333\) −72.0000 −0.216216
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −48.0000 −0.142433 −0.0712166 0.997461i \(-0.522688\pi\)
−0.0712166 + 0.997461i \(0.522688\pi\)
\(338\) 0 0
\(339\) − 290.985i − 0.858361i
\(340\) 0 0
\(341\) 192.000 0.563050
\(342\) 0 0
\(343\) − 346.410i − 1.00994i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 685.892i − 1.97663i −0.152411 0.988317i \(-0.548704\pi\)
0.152411 0.988317i \(-0.451296\pi\)
\(348\) 0 0
\(349\) −458.000 −1.31232 −0.656160 0.754621i \(-0.727821\pi\)
−0.656160 + 0.754621i \(0.727821\pi\)
\(350\) 0 0
\(351\) 124.708i 0.355292i
\(352\) 0 0
\(353\) −72.0000 −0.203966 −0.101983 0.994786i \(-0.532519\pi\)
−0.101983 + 0.994786i \(0.532519\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 288.000 0.806723
\(358\) 0 0
\(359\) 637.395i 1.77547i 0.460352 + 0.887736i \(0.347723\pi\)
−0.460352 + 0.887736i \(0.652277\pi\)
\(360\) 0 0
\(361\) −407.000 −1.12742
\(362\) 0 0
\(363\) 122.976i 0.338776i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 145.492i − 0.396437i −0.980158 0.198218i \(-0.936484\pi\)
0.980158 0.198218i \(-0.0635155\pi\)
\(368\) 0 0
\(369\) 102.000 0.276423
\(370\) 0 0
\(371\) − 332.554i − 0.896371i
\(372\) 0 0
\(373\) −24.0000 −0.0643432 −0.0321716 0.999482i \(-0.510242\pi\)
−0.0321716 + 0.999482i \(0.510242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −240.000 −0.636605
\(378\) 0 0
\(379\) − 332.554i − 0.877451i −0.898621 0.438725i \(-0.855430\pi\)
0.898621 0.438725i \(-0.144570\pi\)
\(380\) 0 0
\(381\) −60.0000 −0.157480
\(382\) 0 0
\(383\) − 187.061i − 0.488411i −0.969723 0.244206i \(-0.921473\pi\)
0.969723 0.244206i \(-0.0785272\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 62.3538i − 0.161121i
\(388\) 0 0
\(389\) −182.000 −0.467866 −0.233933 0.972253i \(-0.575160\pi\)
−0.233933 + 0.972253i \(0.575160\pi\)
\(390\) 0 0
\(391\) − 831.384i − 2.12630i
\(392\) 0 0
\(393\) 120.000 0.305344
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −264.000 −0.664987 −0.332494 0.943105i \(-0.607890\pi\)
−0.332494 + 0.943105i \(0.607890\pi\)
\(398\) 0 0
\(399\) − 332.554i − 0.833468i
\(400\) 0 0
\(401\) −350.000 −0.872818 −0.436409 0.899748i \(-0.643750\pi\)
−0.436409 + 0.899748i \(0.643750\pi\)
\(402\) 0 0
\(403\) − 332.554i − 0.825195i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 332.554i 0.817085i
\(408\) 0 0
\(409\) −190.000 −0.464548 −0.232274 0.972650i \(-0.574617\pi\)
−0.232274 + 0.972650i \(0.574617\pi\)
\(410\) 0 0
\(411\) − 41.5692i − 0.101142i
\(412\) 0 0
\(413\) −96.0000 −0.232446
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −336.000 −0.805755
\(418\) 0 0
\(419\) − 789.815i − 1.88500i −0.334206 0.942500i \(-0.608468\pi\)
0.334206 0.942500i \(-0.391532\pi\)
\(420\) 0 0
\(421\) 502.000 1.19240 0.596200 0.802836i \(-0.296677\pi\)
0.596200 + 0.802836i \(0.296677\pi\)
\(422\) 0 0
\(423\) 20.7846i 0.0491362i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 484.974i − 1.13577i
\(428\) 0 0
\(429\) 576.000 1.34266
\(430\) 0 0
\(431\) 193.990i 0.450092i 0.974348 + 0.225046i \(0.0722533\pi\)
−0.974348 + 0.225046i \(0.927747\pi\)
\(432\) 0 0
\(433\) −528.000 −1.21940 −0.609700 0.792632i \(-0.708710\pi\)
−0.609700 + 0.792632i \(0.708710\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −960.000 −2.19680
\(438\) 0 0
\(439\) − 180.133i − 0.410326i −0.978728 0.205163i \(-0.934227\pi\)
0.978728 0.205163i \(-0.0657725\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.00680272
\(442\) 0 0
\(443\) 713.605i 1.61085i 0.592700 + 0.805423i \(0.298062\pi\)
−0.592700 + 0.805423i \(0.701938\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 148.956i 0.333236i
\(448\) 0 0
\(449\) 82.0000 0.182628 0.0913140 0.995822i \(-0.470893\pi\)
0.0913140 + 0.995822i \(0.470893\pi\)
\(450\) 0 0
\(451\) − 471.118i − 1.04461i
\(452\) 0 0
\(453\) 120.000 0.264901
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −384.000 −0.840263 −0.420131 0.907463i \(-0.638016\pi\)
−0.420131 + 0.907463i \(0.638016\pi\)
\(458\) 0 0
\(459\) − 124.708i − 0.271694i
\(460\) 0 0
\(461\) −278.000 −0.603037 −0.301518 0.953460i \(-0.597493\pi\)
−0.301518 + 0.953460i \(0.597493\pi\)
\(462\) 0 0
\(463\) 228.631i 0.493803i 0.969041 + 0.246901i \(0.0794124\pi\)
−0.969041 + 0.246901i \(0.920588\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 436.477i − 0.934640i −0.884088 0.467320i \(-0.845220\pi\)
0.884088 0.467320i \(-0.154780\pi\)
\(468\) 0 0
\(469\) 624.000 1.33049
\(470\) 0 0
\(471\) 207.846i 0.441287i
\(472\) 0 0
\(473\) −288.000 −0.608879
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −144.000 −0.301887
\(478\) 0 0
\(479\) 387.979i 0.809978i 0.914322 + 0.404989i \(0.132725\pi\)
−0.914322 + 0.404989i \(0.867275\pi\)
\(480\) 0 0
\(481\) 576.000 1.19751
\(482\) 0 0
\(483\) − 415.692i − 0.860646i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 270.200i 0.554825i 0.960751 + 0.277413i \(0.0894769\pi\)
−0.960751 + 0.277413i \(0.910523\pi\)
\(488\) 0 0
\(489\) −108.000 −0.220859
\(490\) 0 0
\(491\) 568.113i 1.15705i 0.815664 + 0.578526i \(0.196372\pi\)
−0.815664 + 0.578526i \(0.803628\pi\)
\(492\) 0 0
\(493\) 240.000 0.486815
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 384.000 0.772636
\(498\) 0 0
\(499\) 775.959i 1.55503i 0.628866 + 0.777514i \(0.283519\pi\)
−0.628866 + 0.777514i \(0.716481\pi\)
\(500\) 0 0
\(501\) 420.000 0.838323
\(502\) 0 0
\(503\) 256.344i 0.509629i 0.966990 + 0.254815i \(0.0820145\pi\)
−0.966990 + 0.254815i \(0.917986\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 704.945i − 1.39042i
\(508\) 0 0
\(509\) 374.000 0.734774 0.367387 0.930068i \(-0.380252\pi\)
0.367387 + 0.930068i \(0.380252\pi\)
\(510\) 0 0
\(511\) − 332.554i − 0.650790i
\(512\) 0 0
\(513\) −144.000 −0.280702
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 96.0000 0.185687
\(518\) 0 0
\(519\) − 332.554i − 0.640759i
\(520\) 0 0
\(521\) 82.0000 0.157390 0.0786948 0.996899i \(-0.474925\pi\)
0.0786948 + 0.996899i \(0.474925\pi\)
\(522\) 0 0
\(523\) − 505.759i − 0.967034i −0.875335 0.483517i \(-0.839359\pi\)
0.875335 0.483517i \(-0.160641\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 332.554i 0.631032i
\(528\) 0 0
\(529\) −671.000 −1.26843
\(530\) 0 0
\(531\) 41.5692i 0.0782848i
\(532\) 0 0
\(533\) −816.000 −1.53096
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 552.000 1.02793
\(538\) 0 0
\(539\) 13.8564i 0.0257076i
\(540\) 0 0
\(541\) 842.000 1.55638 0.778189 0.628031i \(-0.216139\pi\)
0.778189 + 0.628031i \(0.216139\pi\)
\(542\) 0 0
\(543\) − 211.310i − 0.389153i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 450.333i 0.823278i 0.911347 + 0.411639i \(0.135044\pi\)
−0.911347 + 0.411639i \(0.864956\pi\)
\(548\) 0 0
\(549\) −210.000 −0.382514
\(550\) 0 0
\(551\) − 277.128i − 0.502955i
\(552\) 0 0
\(553\) 288.000 0.520796
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 864.000 1.55117 0.775583 0.631245i \(-0.217456\pi\)
0.775583 + 0.631245i \(0.217456\pi\)
\(558\) 0 0
\(559\) 498.831i 0.892362i
\(560\) 0 0
\(561\) −576.000 −1.02674
\(562\) 0 0
\(563\) − 616.610i − 1.09522i −0.836733 0.547611i \(-0.815537\pi\)
0.836733 0.547611i \(-0.184463\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 62.3538i − 0.109971i
\(568\) 0 0
\(569\) −830.000 −1.45870 −0.729350 0.684141i \(-0.760177\pi\)
−0.729350 + 0.684141i \(0.760177\pi\)
\(570\) 0 0
\(571\) 55.4256i 0.0970676i 0.998822 + 0.0485338i \(0.0154549\pi\)
−0.998822 + 0.0485338i \(0.984545\pi\)
\(572\) 0 0
\(573\) −336.000 −0.586387
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 96.0000 0.166378 0.0831889 0.996534i \(-0.473490\pi\)
0.0831889 + 0.996534i \(0.473490\pi\)
\(578\) 0 0
\(579\) − 249.415i − 0.430769i
\(580\) 0 0
\(581\) −624.000 −1.07401
\(582\) 0 0
\(583\) 665.108i 1.14084i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 755.174i 1.28650i 0.765657 + 0.643249i \(0.222414\pi\)
−0.765657 + 0.643249i \(0.777586\pi\)
\(588\) 0 0
\(589\) 384.000 0.651952
\(590\) 0 0
\(591\) − 83.1384i − 0.140674i
\(592\) 0 0
\(593\) 456.000 0.768971 0.384486 0.923131i \(-0.374379\pi\)
0.384486 + 0.923131i \(0.374379\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −504.000 −0.844221
\(598\) 0 0
\(599\) − 304.841i − 0.508916i −0.967084 0.254458i \(-0.918103\pi\)
0.967084 0.254458i \(-0.0818971\pi\)
\(600\) 0 0
\(601\) −1154.00 −1.92013 −0.960067 0.279772i \(-0.909741\pi\)
−0.960067 + 0.279772i \(0.909741\pi\)
\(602\) 0 0
\(603\) − 270.200i − 0.448093i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 117.779i − 0.194035i −0.995283 0.0970177i \(-0.969070\pi\)
0.995283 0.0970177i \(-0.0309303\pi\)
\(608\) 0 0
\(609\) 120.000 0.197044
\(610\) 0 0
\(611\) − 166.277i − 0.272139i
\(612\) 0 0
\(613\) −456.000 −0.743883 −0.371941 0.928256i \(-0.621308\pi\)
−0.371941 + 0.928256i \(0.621308\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 600.000 0.972447 0.486224 0.873834i \(-0.338374\pi\)
0.486224 + 0.873834i \(0.338374\pi\)
\(618\) 0 0
\(619\) 249.415i 0.402933i 0.979495 + 0.201466i \(0.0645707\pi\)
−0.979495 + 0.201466i \(0.935429\pi\)
\(620\) 0 0
\(621\) −180.000 −0.289855
\(622\) 0 0
\(623\) − 96.9948i − 0.155690i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 665.108i 1.06078i
\(628\) 0 0
\(629\) −576.000 −0.915739
\(630\) 0 0
\(631\) − 13.8564i − 0.0219594i −0.999940 0.0109797i \(-0.996505\pi\)
0.999940 0.0109797i \(-0.00349502\pi\)
\(632\) 0 0
\(633\) 336.000 0.530806
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 24.0000 0.0376766
\(638\) 0 0
\(639\) − 166.277i − 0.260214i
\(640\) 0 0
\(641\) 1070.00 1.66927 0.834633 0.550806i \(-0.185680\pi\)
0.834633 + 0.550806i \(0.185680\pi\)
\(642\) 0 0
\(643\) − 921.451i − 1.43305i −0.697562 0.716525i \(-0.745732\pi\)
0.697562 0.716525i \(-0.254268\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 339.482i − 0.524702i −0.964973 0.262351i \(-0.915502\pi\)
0.964973 0.262351i \(-0.0844978\pi\)
\(648\) 0 0
\(649\) 192.000 0.295840
\(650\) 0 0
\(651\) 166.277i 0.255418i
\(652\) 0 0
\(653\) 1056.00 1.61715 0.808576 0.588392i \(-0.200239\pi\)
0.808576 + 0.588392i \(0.200239\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −144.000 −0.219178
\(658\) 0 0
\(659\) 956.092i 1.45082i 0.688316 + 0.725411i \(0.258350\pi\)
−0.688316 + 0.725411i \(0.741650\pi\)
\(660\) 0 0
\(661\) −554.000 −0.838124 −0.419062 0.907958i \(-0.637641\pi\)
−0.419062 + 0.907958i \(0.637641\pi\)
\(662\) 0 0
\(663\) 997.661i 1.50477i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 346.410i − 0.519356i
\(668\) 0 0
\(669\) −228.000 −0.340807
\(670\) 0 0
\(671\) 969.948i 1.44553i
\(672\) 0 0
\(673\) −624.000 −0.927192 −0.463596 0.886047i \(-0.653441\pi\)
−0.463596 + 0.886047i \(0.653441\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 864.000 1.27622 0.638109 0.769946i \(-0.279717\pi\)
0.638109 + 0.769946i \(0.279717\pi\)
\(678\) 0 0
\(679\) − 665.108i − 0.979540i
\(680\) 0 0
\(681\) −468.000 −0.687225
\(682\) 0 0
\(683\) − 145.492i − 0.213019i −0.994312 0.106510i \(-0.966032\pi\)
0.994312 0.106510i \(-0.0339675\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 287.520i − 0.418516i
\(688\) 0 0
\(689\) 1152.00 1.67199
\(690\) 0 0
\(691\) 748.246i 1.08285i 0.840751 + 0.541423i \(0.182114\pi\)
−0.840751 + 0.541423i \(0.817886\pi\)
\(692\) 0 0
\(693\) −288.000 −0.415584
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 816.000 1.17073
\(698\) 0 0
\(699\) 457.261i 0.654165i
\(700\) 0 0
\(701\) −634.000 −0.904422 −0.452211 0.891911i \(-0.649365\pi\)
−0.452211 + 0.891911i \(0.649365\pi\)
\(702\) 0 0
\(703\) 665.108i 0.946099i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 263.272i 0.372379i
\(708\) 0 0
\(709\) 358.000 0.504937 0.252468 0.967605i \(-0.418758\pi\)
0.252468 + 0.967605i \(0.418758\pi\)
\(710\) 0 0
\(711\) − 124.708i − 0.175398i
\(712\) 0 0
\(713\) 480.000 0.673212
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 144.000 0.200837
\(718\) 0 0
\(719\) − 471.118i − 0.655240i −0.944810 0.327620i \(-0.893753\pi\)
0.944810 0.327620i \(-0.106247\pi\)
\(720\) 0 0
\(721\) 1008.00 1.39806
\(722\) 0 0
\(723\) 419.156i 0.579746i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 713.605i 0.981575i 0.871279 + 0.490787i \(0.163291\pi\)
−0.871279 + 0.490787i \(0.836709\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) − 498.831i − 0.682395i
\(732\) 0 0
\(733\) 840.000 1.14598 0.572988 0.819564i \(-0.305784\pi\)
0.572988 + 0.819564i \(0.305784\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1248.00 −1.69335
\(738\) 0 0
\(739\) − 609.682i − 0.825009i −0.910955 0.412505i \(-0.864654\pi\)
0.910955 0.412505i \(-0.135346\pi\)
\(740\) 0 0
\(741\) 1152.00 1.55466
\(742\) 0 0
\(743\) 782.887i 1.05368i 0.849963 + 0.526842i \(0.176624\pi\)
−0.849963 + 0.526842i \(0.823376\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 270.200i 0.361713i
\(748\) 0 0
\(749\) 48.0000 0.0640854
\(750\) 0 0
\(751\) 872.954i 1.16239i 0.813765 + 0.581194i \(0.197414\pi\)
−0.813765 + 0.581194i \(0.802586\pi\)
\(752\) 0 0
\(753\) 360.000 0.478088
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −504.000 −0.665786 −0.332893 0.942965i \(-0.608025\pi\)
−0.332893 + 0.942965i \(0.608025\pi\)
\(758\) 0 0
\(759\) 831.384i 1.09537i
\(760\) 0 0
\(761\) 754.000 0.990802 0.495401 0.868665i \(-0.335021\pi\)
0.495401 + 0.868665i \(0.335021\pi\)
\(762\) 0 0
\(763\) 1150.08i 1.50732i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 332.554i − 0.433577i
\(768\) 0 0
\(769\) −578.000 −0.751625 −0.375813 0.926696i \(-0.622636\pi\)
−0.375813 + 0.926696i \(0.622636\pi\)
\(770\) 0 0
\(771\) − 124.708i − 0.161748i
\(772\) 0 0
\(773\) 1296.00 1.67658 0.838292 0.545221i \(-0.183554\pi\)
0.838292 + 0.545221i \(0.183554\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −288.000 −0.370656
\(778\) 0 0
\(779\) − 942.236i − 1.20955i
\(780\) 0 0
\(781\) −768.000 −0.983355
\(782\) 0 0
\(783\) − 51.9615i − 0.0663621i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1351.00i − 1.71665i −0.513111 0.858323i \(-0.671507\pi\)
0.513111 0.858323i \(-0.328493\pi\)
\(788\) 0 0
\(789\) −468.000 −0.593156
\(790\) 0 0
\(791\) − 1163.94i − 1.47148i
\(792\) 0 0
\(793\) 1680.00 2.11854
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 288.000 0.361355 0.180678 0.983542i \(-0.442171\pi\)
0.180678 + 0.983542i \(0.442171\pi\)
\(798\) 0 0
\(799\) 166.277i 0.208106i
\(800\) 0 0
\(801\) −42.0000 −0.0524345
\(802\) 0 0
\(803\) 665.108i 0.828278i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 398.372i 0.493645i
\(808\) 0 0
\(809\) 494.000 0.610630 0.305315 0.952251i \(-0.401238\pi\)
0.305315 + 0.952251i \(0.401238\pi\)
\(810\) 0 0
\(811\) − 720.533i − 0.888450i −0.895915 0.444225i \(-0.853479\pi\)
0.895915 0.444225i \(-0.146521\pi\)
\(812\) 0 0
\(813\) 360.000 0.442804
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −576.000 −0.705018
\(818\) 0 0
\(819\) 498.831i 0.609073i
\(820\) 0 0
\(821\) −298.000 −0.362972 −0.181486 0.983394i \(-0.558091\pi\)
−0.181486 + 0.983394i \(0.558091\pi\)
\(822\) 0 0
\(823\) 866.025i 1.05228i 0.850398 + 0.526139i \(0.176361\pi\)
−0.850398 + 0.526139i \(0.823639\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 367.195i 0.444008i 0.975046 + 0.222004i \(0.0712598\pi\)
−0.975046 + 0.222004i \(0.928740\pi\)
\(828\) 0 0
\(829\) −454.000 −0.547648 −0.273824 0.961780i \(-0.588289\pi\)
−0.273824 + 0.961780i \(0.588289\pi\)
\(830\) 0 0
\(831\) − 457.261i − 0.550254i
\(832\) 0 0
\(833\) −24.0000 −0.0288115
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 72.0000 0.0860215
\(838\) 0 0
\(839\) − 193.990i − 0.231215i −0.993295 0.115608i \(-0.963118\pi\)
0.993295 0.115608i \(-0.0368815\pi\)
\(840\) 0 0
\(841\) −741.000 −0.881094
\(842\) 0 0
\(843\) − 439.941i − 0.521875i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 491.902i 0.580758i
\(848\) 0 0
\(849\) 372.000 0.438163
\(850\) 0 0
\(851\) 831.384i 0.976950i
\(852\) 0 0
\(853\) 1560.00 1.82884 0.914420 0.404767i \(-0.132647\pi\)
0.914420 + 0.404767i \(0.132647\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1272.00 −1.48425 −0.742124 0.670263i \(-0.766181\pi\)
−0.742124 + 0.670263i \(0.766181\pi\)
\(858\) 0 0
\(859\) − 1053.09i − 1.22595i −0.790104 0.612973i \(-0.789974\pi\)
0.790104 0.612973i \(-0.210026\pi\)
\(860\) 0 0
\(861\) 408.000 0.473868
\(862\) 0 0
\(863\) − 491.902i − 0.569991i −0.958529 0.284996i \(-0.908008\pi\)
0.958529 0.284996i \(-0.0919921\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 497.099i − 0.573355i
\(868\) 0 0
\(869\) −576.000 −0.662831
\(870\) 0 0
\(871\) 2161.60i 2.48174i
\(872\) 0 0
\(873\) −288.000 −0.329897
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 936.000 1.06727 0.533637 0.845713i \(-0.320825\pi\)
0.533637 + 0.845713i \(0.320825\pi\)
\(878\) 0 0
\(879\) 748.246i 0.851247i
\(880\) 0 0
\(881\) −562.000 −0.637911 −0.318956 0.947770i \(-0.603332\pi\)
−0.318956 + 0.947770i \(0.603332\pi\)
\(882\) 0 0
\(883\) − 6.92820i − 0.00784621i −0.999992 0.00392310i \(-0.998751\pi\)
0.999992 0.00392310i \(-0.00124877\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 561.184i − 0.632677i −0.948646 0.316338i \(-0.897546\pi\)
0.948646 0.316338i \(-0.102454\pi\)
\(888\) 0 0
\(889\) −240.000 −0.269966
\(890\) 0 0
\(891\) 124.708i 0.139964i
\(892\) 0 0
\(893\) 192.000 0.215006
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1440.00 1.60535
\(898\) 0 0
\(899\) 138.564i 0.154131i
\(900\) 0 0
\(901\) −1152.00 −1.27858
\(902\) 0 0
\(903\) − 249.415i − 0.276207i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1669.70i 1.84090i 0.390859 + 0.920450i \(0.372178\pi\)
−0.390859 + 0.920450i \(0.627822\pi\)
\(908\) 0 0
\(909\) 114.000 0.125413
\(910\) 0 0
\(911\) − 1718.19i − 1.88605i −0.332717 0.943027i \(-0.607966\pi\)
0.332717 0.943027i \(-0.392034\pi\)
\(912\) 0 0
\(913\) 1248.00 1.36692
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 480.000 0.523446
\(918\) 0 0
\(919\) 595.825i 0.648341i 0.945999 + 0.324171i \(0.105085\pi\)
−0.945999 + 0.324171i \(0.894915\pi\)
\(920\) 0 0
\(921\) −516.000 −0.560261
\(922\) 0 0
\(923\) 1330.22i 1.44119i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 436.477i − 0.470849i
\(928\) 0 0
\(929\) 1042.00 1.12164 0.560818 0.827939i \(-0.310487\pi\)
0.560818 + 0.827939i \(0.310487\pi\)
\(930\) 0 0
\(931\) 27.7128i 0.0297667i
\(932\) 0 0
\(933\) 912.000 0.977492
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 864.000 0.922092 0.461046 0.887376i \(-0.347474\pi\)
0.461046 + 0.887376i \(0.347474\pi\)
\(938\) 0 0
\(939\) 415.692i 0.442697i
\(940\) 0 0
\(941\) 490.000 0.520723 0.260361 0.965511i \(-0.416158\pi\)
0.260361 + 0.965511i \(0.416158\pi\)
\(942\) 0 0
\(943\) − 1177.79i − 1.24899i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1129.30i − 1.19250i −0.802799 0.596250i \(-0.796657\pi\)
0.802799 0.596250i \(-0.203343\pi\)
\(948\) 0 0
\(949\) 1152.00 1.21391
\(950\) 0 0
\(951\) 415.692i 0.437111i
\(952\) 0 0
\(953\) −360.000 −0.377754 −0.188877 0.982001i \(-0.560485\pi\)
−0.188877 + 0.982001i \(0.560485\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −240.000 −0.250784
\(958\) 0 0
\(959\) − 166.277i − 0.173386i
\(960\) 0 0
\(961\) 769.000 0.800208
\(962\) 0 0
\(963\) − 20.7846i − 0.0215832i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 422.620i − 0.437043i −0.975832 0.218521i \(-0.929877\pi\)
0.975832 0.218521i \(-0.0701233\pi\)
\(968\) 0 0
\(969\) −1152.00 −1.18885
\(970\) 0 0
\(971\) − 1233.22i − 1.27005i −0.772491 0.635026i \(-0.780989\pi\)
0.772491 0.635026i \(-0.219011\pi\)
\(972\) 0 0
\(973\) −1344.00 −1.38129
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1128.00 1.15455 0.577277 0.816548i \(-0.304115\pi\)
0.577277 + 0.816548i \(0.304115\pi\)
\(978\) 0 0
\(979\) 193.990i 0.198151i
\(980\) 0 0
\(981\) 498.000 0.507645
\(982\) 0 0
\(983\) 284.056i 0.288969i 0.989507 + 0.144484i \(0.0461524\pi\)
−0.989507 + 0.144484i \(0.953848\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 83.1384i 0.0842335i
\(988\) 0 0
\(989\) −720.000 −0.728008
\(990\) 0 0
\(991\) − 1094.66i − 1.10460i −0.833646 0.552299i \(-0.813751\pi\)
0.833646 0.552299i \(-0.186249\pi\)
\(992\) 0 0
\(993\) 192.000 0.193353
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −24.0000 −0.0240722 −0.0120361 0.999928i \(-0.503831\pi\)
−0.0120361 + 0.999928i \(0.503831\pi\)
\(998\) 0 0
\(999\) 124.708i 0.124832i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.3.e.i.751.1 2
3.2 odd 2 3600.3.e.x.3151.1 2
4.3 odd 2 inner 1200.3.e.i.751.2 2
5.2 odd 4 240.3.j.a.79.2 yes 4
5.3 odd 4 240.3.j.a.79.4 yes 4
5.4 even 2 1200.3.e.a.751.2 2
12.11 even 2 3600.3.e.x.3151.2 2
15.2 even 4 720.3.j.g.559.3 4
15.8 even 4 720.3.j.g.559.1 4
15.14 odd 2 3600.3.e.f.3151.2 2
20.3 even 4 240.3.j.a.79.1 4
20.7 even 4 240.3.j.a.79.3 yes 4
20.19 odd 2 1200.3.e.a.751.1 2
40.3 even 4 960.3.j.d.319.4 4
40.13 odd 4 960.3.j.d.319.1 4
40.27 even 4 960.3.j.d.319.2 4
40.37 odd 4 960.3.j.d.319.3 4
60.23 odd 4 720.3.j.g.559.4 4
60.47 odd 4 720.3.j.g.559.2 4
60.59 even 2 3600.3.e.f.3151.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.3.j.a.79.1 4 20.3 even 4
240.3.j.a.79.2 yes 4 5.2 odd 4
240.3.j.a.79.3 yes 4 20.7 even 4
240.3.j.a.79.4 yes 4 5.3 odd 4
720.3.j.g.559.1 4 15.8 even 4
720.3.j.g.559.2 4 60.47 odd 4
720.3.j.g.559.3 4 15.2 even 4
720.3.j.g.559.4 4 60.23 odd 4
960.3.j.d.319.1 4 40.13 odd 4
960.3.j.d.319.2 4 40.27 even 4
960.3.j.d.319.3 4 40.37 odd 4
960.3.j.d.319.4 4 40.3 even 4
1200.3.e.a.751.1 2 20.19 odd 2
1200.3.e.a.751.2 2 5.4 even 2
1200.3.e.i.751.1 2 1.1 even 1 trivial
1200.3.e.i.751.2 2 4.3 odd 2 inner
3600.3.e.f.3151.1 2 60.59 even 2
3600.3.e.f.3151.2 2 15.14 odd 2
3600.3.e.x.3151.1 2 3.2 odd 2
3600.3.e.x.3151.2 2 12.11 even 2