Properties

Label 351.2.h.a.334.5
Level $351$
Weight $2$
Character 351.334
Analytic conductor $2.803$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(289,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 334.5
Character \(\chi\) \(=\) 351.334
Dual form 351.2.h.a.289.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.697564 q^{2} -1.51340 q^{4} +(-1.44568 + 2.50399i) q^{5} +(1.58641 - 2.74774i) q^{7} +2.45082 q^{8} +(1.00846 - 1.74670i) q^{10} -2.31294 q^{11} +(-3.15329 + 1.74835i) q^{13} +(-1.10662 + 1.91673i) q^{14} +1.31720 q^{16} +(-2.69365 - 4.66554i) q^{17} +(-2.58760 - 4.48186i) q^{19} +(2.18790 - 3.78956i) q^{20} +1.61342 q^{22} +(-3.27079 - 5.66518i) q^{23} +(-1.67999 - 2.90983i) q^{25} +(2.19962 - 1.21959i) q^{26} +(-2.40088 + 4.15845i) q^{28} -4.02068 q^{29} +(4.23854 - 7.34137i) q^{31} -5.82048 q^{32} +(1.87899 + 3.25451i) q^{34} +(4.58689 + 7.94473i) q^{35} +(-2.42323 + 4.19715i) q^{37} +(1.80502 + 3.12638i) q^{38} +(-3.54311 + 6.13685i) q^{40} +(1.25716 + 2.17746i) q^{41} +(-2.99320 + 5.18437i) q^{43} +3.50041 q^{44} +(2.28159 + 3.95182i) q^{46} +(-0.521283 - 0.902888i) q^{47} +(-1.53340 - 2.65593i) q^{49} +(1.17190 + 2.02979i) q^{50} +(4.77221 - 2.64597i) q^{52} +1.29495 q^{53} +(3.34377 - 5.79158i) q^{55} +(3.88801 - 6.73424i) q^{56} +2.80468 q^{58} +4.70451 q^{59} +(-3.71841 + 6.44047i) q^{61} +(-2.95665 + 5.12107i) q^{62} +1.42575 q^{64} +(0.180794 - 10.4234i) q^{65} +(-4.18368 - 7.24635i) q^{67} +(4.07658 + 7.06085i) q^{68} +(-3.19965 - 5.54196i) q^{70} +(0.680710 + 1.17903i) q^{71} +1.41722 q^{73} +(1.69036 - 2.92778i) q^{74} +(3.91609 + 6.78287i) q^{76} +(-3.66927 + 6.35536i) q^{77} +(-0.0365793 - 0.0633573i) q^{79} +(-1.90426 + 3.29827i) q^{80} +(-0.876947 - 1.51892i) q^{82} +(1.08808 + 1.88462i) q^{83} +15.5766 q^{85} +(2.08795 - 3.61643i) q^{86} -5.66860 q^{88} +(0.0891486 - 0.154410i) q^{89} +(-0.198393 + 11.4381i) q^{91} +(4.95003 + 8.57371i) q^{92} +(0.363628 + 0.629822i) q^{94} +14.9634 q^{95} +(-0.0654501 + 0.113363i) q^{97} +(1.06965 + 1.85268i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 18 q^{4} + 2 q^{5} + 3 q^{7} + 18 q^{8} - 6 q^{11} - 2 q^{14} + 6 q^{16} - 6 q^{17} - 3 q^{19} + 11 q^{20} - 18 q^{22} - 17 q^{23} - 6 q^{25} + 12 q^{26} + 24 q^{29} - 6 q^{31} + 38 q^{32}+ \cdots + 61 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.697564 −0.493252 −0.246626 0.969111i \(-0.579322\pi\)
−0.246626 + 0.969111i \(0.579322\pi\)
\(3\) 0 0
\(4\) −1.51340 −0.756702
\(5\) −1.44568 + 2.50399i −0.646529 + 1.11982i 0.337417 + 0.941355i \(0.390447\pi\)
−0.983946 + 0.178465i \(0.942887\pi\)
\(6\) 0 0
\(7\) 1.58641 2.74774i 0.599607 1.03855i −0.393272 0.919422i \(-0.628657\pi\)
0.992879 0.119128i \(-0.0380098\pi\)
\(8\) 2.45082 0.866497
\(9\) 0 0
\(10\) 1.00846 1.74670i 0.318902 0.552354i
\(11\) −2.31294 −0.697377 −0.348688 0.937239i \(-0.613373\pi\)
−0.348688 + 0.937239i \(0.613373\pi\)
\(12\) 0 0
\(13\) −3.15329 + 1.74835i −0.874566 + 0.484906i
\(14\) −1.10662 + 1.91673i −0.295757 + 0.512267i
\(15\) 0 0
\(16\) 1.31720 0.329301
\(17\) −2.69365 4.66554i −0.653306 1.13156i −0.982316 0.187232i \(-0.940048\pi\)
0.329010 0.944326i \(-0.393285\pi\)
\(18\) 0 0
\(19\) −2.58760 4.48186i −0.593636 1.02821i −0.993738 0.111738i \(-0.964358\pi\)
0.400101 0.916471i \(-0.368975\pi\)
\(20\) 2.18790 3.78956i 0.489230 0.847371i
\(21\) 0 0
\(22\) 1.61342 0.343982
\(23\) −3.27079 5.66518i −0.682007 1.18127i −0.974367 0.224963i \(-0.927774\pi\)
0.292360 0.956308i \(-0.405559\pi\)
\(24\) 0 0
\(25\) −1.67999 2.90983i −0.335999 0.581967i
\(26\) 2.19962 1.21959i 0.431382 0.239181i
\(27\) 0 0
\(28\) −2.40088 + 4.15845i −0.453724 + 0.785873i
\(29\) −4.02068 −0.746621 −0.373311 0.927706i \(-0.621777\pi\)
−0.373311 + 0.927706i \(0.621777\pi\)
\(30\) 0 0
\(31\) 4.23854 7.34137i 0.761264 1.31855i −0.180935 0.983495i \(-0.557912\pi\)
0.942199 0.335053i \(-0.108754\pi\)
\(32\) −5.82048 −1.02893
\(33\) 0 0
\(34\) 1.87899 + 3.25451i 0.322244 + 0.558144i
\(35\) 4.58689 + 7.94473i 0.775326 + 1.34290i
\(36\) 0 0
\(37\) −2.42323 + 4.19715i −0.398376 + 0.690008i −0.993526 0.113607i \(-0.963759\pi\)
0.595150 + 0.803615i \(0.297093\pi\)
\(38\) 1.80502 + 3.12638i 0.292812 + 0.507166i
\(39\) 0 0
\(40\) −3.54311 + 6.13685i −0.560215 + 0.970321i
\(41\) 1.25716 + 2.17746i 0.196335 + 0.340062i 0.947337 0.320237i \(-0.103763\pi\)
−0.751002 + 0.660299i \(0.770429\pi\)
\(42\) 0 0
\(43\) −2.99320 + 5.18437i −0.456458 + 0.790609i −0.998771 0.0495679i \(-0.984216\pi\)
0.542312 + 0.840177i \(0.317549\pi\)
\(44\) 3.50041 0.527707
\(45\) 0 0
\(46\) 2.28159 + 3.95182i 0.336401 + 0.582664i
\(47\) −0.521283 0.902888i −0.0760369 0.131700i 0.825500 0.564402i \(-0.190893\pi\)
−0.901537 + 0.432703i \(0.857560\pi\)
\(48\) 0 0
\(49\) −1.53340 2.65593i −0.219057 0.379418i
\(50\) 1.17190 + 2.02979i 0.165732 + 0.287056i
\(51\) 0 0
\(52\) 4.77221 2.64597i 0.661787 0.366929i
\(53\) 1.29495 0.177875 0.0889376 0.996037i \(-0.471653\pi\)
0.0889376 + 0.996037i \(0.471653\pi\)
\(54\) 0 0
\(55\) 3.34377 5.79158i 0.450874 0.780937i
\(56\) 3.88801 6.73424i 0.519558 0.899900i
\(57\) 0 0
\(58\) 2.80468 0.368272
\(59\) 4.70451 0.612475 0.306238 0.951955i \(-0.400930\pi\)
0.306238 + 0.951955i \(0.400930\pi\)
\(60\) 0 0
\(61\) −3.71841 + 6.44047i −0.476094 + 0.824618i −0.999625 0.0273883i \(-0.991281\pi\)
0.523531 + 0.852006i \(0.324614\pi\)
\(62\) −2.95665 + 5.12107i −0.375495 + 0.650377i
\(63\) 0 0
\(64\) 1.42575 0.178218
\(65\) 0.180794 10.4234i 0.0224247 1.29286i
\(66\) 0 0
\(67\) −4.18368 7.24635i −0.511118 0.885283i −0.999917 0.0128861i \(-0.995898\pi\)
0.488799 0.872397i \(-0.337435\pi\)
\(68\) 4.07658 + 7.06085i 0.494358 + 0.856253i
\(69\) 0 0
\(70\) −3.19965 5.54196i −0.382431 0.662390i
\(71\) 0.680710 + 1.17903i 0.0807855 + 0.139925i 0.903588 0.428403i \(-0.140924\pi\)
−0.822802 + 0.568328i \(0.807590\pi\)
\(72\) 0 0
\(73\) 1.41722 0.165873 0.0829365 0.996555i \(-0.473570\pi\)
0.0829365 + 0.996555i \(0.473570\pi\)
\(74\) 1.69036 2.92778i 0.196500 0.340348i
\(75\) 0 0
\(76\) 3.91609 + 6.78287i 0.449206 + 0.778048i
\(77\) −3.66927 + 6.35536i −0.418152 + 0.724261i
\(78\) 0 0
\(79\) −0.0365793 0.0633573i −0.00411550 0.00712825i 0.863960 0.503560i \(-0.167977\pi\)
−0.868076 + 0.496432i \(0.834643\pi\)
\(80\) −1.90426 + 3.29827i −0.212903 + 0.368758i
\(81\) 0 0
\(82\) −0.876947 1.51892i −0.0968426 0.167736i
\(83\) 1.08808 + 1.88462i 0.119433 + 0.206863i 0.919543 0.392989i \(-0.128559\pi\)
−0.800110 + 0.599853i \(0.795226\pi\)
\(84\) 0 0
\(85\) 15.5766 1.68952
\(86\) 2.08795 3.61643i 0.225149 0.389969i
\(87\) 0 0
\(88\) −5.66860 −0.604275
\(89\) 0.0891486 0.154410i 0.00944973 0.0163674i −0.861262 0.508161i \(-0.830325\pi\)
0.870712 + 0.491794i \(0.163659\pi\)
\(90\) 0 0
\(91\) −0.198393 + 11.4381i −0.0207973 + 1.19903i
\(92\) 4.95003 + 8.57371i 0.516077 + 0.893871i
\(93\) 0 0
\(94\) 0.363628 + 0.629822i 0.0375053 + 0.0649612i
\(95\) 14.9634 1.53521
\(96\) 0 0
\(97\) −0.0654501 + 0.113363i −0.00664545 + 0.0115103i −0.869329 0.494234i \(-0.835449\pi\)
0.862684 + 0.505744i \(0.168782\pi\)
\(98\) 1.06965 + 1.85268i 0.108050 + 0.187149i
\(99\) 0 0
\(100\) 2.54251 + 4.40376i 0.254251 + 0.440376i
\(101\) −8.73990 −0.869652 −0.434826 0.900514i \(-0.643190\pi\)
−0.434826 + 0.900514i \(0.643190\pi\)
\(102\) 0 0
\(103\) −8.78259 + 15.2119i −0.865375 + 1.49887i 0.00130026 + 0.999999i \(0.499586\pi\)
−0.866675 + 0.498874i \(0.833747\pi\)
\(104\) −7.72817 + 4.28490i −0.757809 + 0.420169i
\(105\) 0 0
\(106\) −0.903310 −0.0877373
\(107\) 6.23288 10.7957i 0.602555 1.04366i −0.389877 0.920867i \(-0.627483\pi\)
0.992433 0.122790i \(-0.0391841\pi\)
\(108\) 0 0
\(109\) 4.84430 0.463999 0.232000 0.972716i \(-0.425473\pi\)
0.232000 + 0.972716i \(0.425473\pi\)
\(110\) −2.33249 + 4.04000i −0.222395 + 0.385199i
\(111\) 0 0
\(112\) 2.08963 3.61934i 0.197451 0.341996i
\(113\) −6.14716 −0.578276 −0.289138 0.957287i \(-0.593369\pi\)
−0.289138 + 0.957287i \(0.593369\pi\)
\(114\) 0 0
\(115\) 18.9141 1.76375
\(116\) 6.08491 0.564970
\(117\) 0 0
\(118\) −3.28170 −0.302105
\(119\) −17.0929 −1.56691
\(120\) 0 0
\(121\) −5.65032 −0.513666
\(122\) 2.59383 4.49264i 0.234834 0.406745i
\(123\) 0 0
\(124\) −6.41463 + 11.1105i −0.576051 + 0.997749i
\(125\) −4.74187 −0.424126
\(126\) 0 0
\(127\) −2.10206 + 3.64088i −0.186528 + 0.323076i −0.944090 0.329687i \(-0.893057\pi\)
0.757562 + 0.652763i \(0.226390\pi\)
\(128\) 10.6464 0.941019
\(129\) 0 0
\(130\) −0.126115 + 7.27098i −0.0110610 + 0.637707i
\(131\) −0.309051 + 0.535292i −0.0270019 + 0.0467687i −0.879211 0.476433i \(-0.841929\pi\)
0.852209 + 0.523202i \(0.175263\pi\)
\(132\) 0 0
\(133\) −16.4200 −1.42379
\(134\) 2.91838 + 5.05479i 0.252110 + 0.436667i
\(135\) 0 0
\(136\) −6.60166 11.4344i −0.566087 0.980492i
\(137\) 9.47775 16.4159i 0.809739 1.40251i −0.103306 0.994650i \(-0.532942\pi\)
0.913045 0.407859i \(-0.133724\pi\)
\(138\) 0 0
\(139\) −3.02245 −0.256361 −0.128180 0.991751i \(-0.540914\pi\)
−0.128180 + 0.991751i \(0.540914\pi\)
\(140\) −6.94183 12.0236i −0.586691 1.01618i
\(141\) 0 0
\(142\) −0.474839 0.822445i −0.0398476 0.0690181i
\(143\) 7.29337 4.04383i 0.609902 0.338162i
\(144\) 0 0
\(145\) 5.81262 10.0678i 0.482712 0.836082i
\(146\) −0.988601 −0.0818172
\(147\) 0 0
\(148\) 3.66732 6.35199i 0.301452 0.522131i
\(149\) 5.73426 0.469769 0.234884 0.972023i \(-0.424529\pi\)
0.234884 + 0.972023i \(0.424529\pi\)
\(150\) 0 0
\(151\) −1.05976 1.83556i −0.0862420 0.149376i 0.819678 0.572825i \(-0.194153\pi\)
−0.905920 + 0.423449i \(0.860819\pi\)
\(152\) −6.34175 10.9842i −0.514384 0.890940i
\(153\) 0 0
\(154\) 2.55955 4.43327i 0.206254 0.357243i
\(155\) 12.2552 + 21.2266i 0.984358 + 1.70496i
\(156\) 0 0
\(157\) 7.70204 13.3403i 0.614690 1.06467i −0.375749 0.926721i \(-0.622615\pi\)
0.990439 0.137952i \(-0.0440520\pi\)
\(158\) 0.0255164 + 0.0441957i 0.00202998 + 0.00351602i
\(159\) 0 0
\(160\) 8.41457 14.5745i 0.665230 1.15221i
\(161\) −20.7553 −1.63575
\(162\) 0 0
\(163\) −6.56126 11.3644i −0.513918 0.890131i −0.999870 0.0161459i \(-0.994860\pi\)
0.485952 0.873985i \(-0.338473\pi\)
\(164\) −1.90259 3.29538i −0.148567 0.257326i
\(165\) 0 0
\(166\) −0.759007 1.31464i −0.0589104 0.102036i
\(167\) −2.90872 5.03805i −0.225084 0.389856i 0.731261 0.682098i \(-0.238932\pi\)
−0.956345 + 0.292242i \(0.905599\pi\)
\(168\) 0 0
\(169\) 6.88652 11.0261i 0.529733 0.848165i
\(170\) −10.8657 −0.833361
\(171\) 0 0
\(172\) 4.52992 7.84605i 0.345403 0.598256i
\(173\) −9.04187 + 15.6610i −0.687441 + 1.19068i 0.285222 + 0.958461i \(0.407933\pi\)
−0.972663 + 0.232221i \(0.925401\pi\)
\(174\) 0 0
\(175\) −10.6606 −0.805869
\(176\) −3.04661 −0.229647
\(177\) 0 0
\(178\) −0.0621868 + 0.107711i −0.00466110 + 0.00807326i
\(179\) −10.9345 + 18.9391i −0.817283 + 1.41558i 0.0903935 + 0.995906i \(0.471188\pi\)
−0.907677 + 0.419670i \(0.862146\pi\)
\(180\) 0 0
\(181\) −10.9883 −0.816754 −0.408377 0.912813i \(-0.633905\pi\)
−0.408377 + 0.912813i \(0.633905\pi\)
\(182\) 0.138392 7.97877i 0.0102583 0.591426i
\(183\) 0 0
\(184\) −8.01613 13.8843i −0.590957 1.02357i
\(185\) −7.00643 12.1355i −0.515123 0.892220i
\(186\) 0 0
\(187\) 6.23024 + 10.7911i 0.455600 + 0.789123i
\(188\) 0.788912 + 1.36644i 0.0575373 + 0.0996575i
\(189\) 0 0
\(190\) −10.4379 −0.757246
\(191\) −8.99172 + 15.5741i −0.650618 + 1.12690i 0.332355 + 0.943154i \(0.392157\pi\)
−0.982973 + 0.183749i \(0.941177\pi\)
\(192\) 0 0
\(193\) −1.90083 3.29234i −0.136825 0.236988i 0.789468 0.613792i \(-0.210356\pi\)
−0.926293 + 0.376804i \(0.877023\pi\)
\(194\) 0.0456556 0.0790778i 0.00327788 0.00567745i
\(195\) 0 0
\(196\) 2.32066 + 4.01950i 0.165761 + 0.287107i
\(197\) 12.3633 21.4139i 0.880848 1.52567i 0.0304487 0.999536i \(-0.490306\pi\)
0.850399 0.526138i \(-0.176360\pi\)
\(198\) 0 0
\(199\) 13.8440 + 23.9785i 0.981376 + 1.69979i 0.657047 + 0.753849i \(0.271805\pi\)
0.324329 + 0.945944i \(0.394862\pi\)
\(200\) −4.11737 7.13149i −0.291142 0.504273i
\(201\) 0 0
\(202\) 6.09664 0.428958
\(203\) −6.37845 + 11.0478i −0.447679 + 0.775403i
\(204\) 0 0
\(205\) −7.26980 −0.507745
\(206\) 6.12642 10.6113i 0.426848 0.739322i
\(207\) 0 0
\(208\) −4.15353 + 2.30294i −0.287996 + 0.159680i
\(209\) 5.98496 + 10.3663i 0.413988 + 0.717049i
\(210\) 0 0
\(211\) 1.89606 + 3.28407i 0.130530 + 0.226085i 0.923881 0.382680i \(-0.124999\pi\)
−0.793351 + 0.608764i \(0.791665\pi\)
\(212\) −1.95978 −0.134599
\(213\) 0 0
\(214\) −4.34783 + 7.53066i −0.297212 + 0.514786i
\(215\) −8.65442 14.9899i −0.590227 1.02230i
\(216\) 0 0
\(217\) −13.4481 23.2929i −0.912919 1.58122i
\(218\) −3.37921 −0.228869
\(219\) 0 0
\(220\) −5.06048 + 8.76501i −0.341178 + 0.590937i
\(221\) 16.6509 + 10.0024i 1.12006 + 0.672831i
\(222\) 0 0
\(223\) 1.11066 0.0743751 0.0371876 0.999308i \(-0.488160\pi\)
0.0371876 + 0.999308i \(0.488160\pi\)
\(224\) −9.23368 + 15.9932i −0.616951 + 1.06859i
\(225\) 0 0
\(226\) 4.28803 0.285236
\(227\) −4.17223 + 7.22651i −0.276921 + 0.479641i −0.970618 0.240626i \(-0.922647\pi\)
0.693697 + 0.720267i \(0.255981\pi\)
\(228\) 0 0
\(229\) −3.79878 + 6.57968i −0.251030 + 0.434797i −0.963810 0.266591i \(-0.914103\pi\)
0.712779 + 0.701388i \(0.247436\pi\)
\(230\) −13.1938 −0.869973
\(231\) 0 0
\(232\) −9.85397 −0.646945
\(233\) −0.767797 −0.0503001 −0.0251500 0.999684i \(-0.508006\pi\)
−0.0251500 + 0.999684i \(0.508006\pi\)
\(234\) 0 0
\(235\) 3.01444 0.196640
\(236\) −7.11983 −0.463462
\(237\) 0 0
\(238\) 11.9234 0.772880
\(239\) 10.6216 18.3972i 0.687055 1.19001i −0.285732 0.958310i \(-0.592237\pi\)
0.972786 0.231704i \(-0.0744300\pi\)
\(240\) 0 0
\(241\) 11.4305 19.7983i 0.736306 1.27532i −0.217842 0.975984i \(-0.569902\pi\)
0.954148 0.299335i \(-0.0967648\pi\)
\(242\) 3.94146 0.253367
\(243\) 0 0
\(244\) 5.62746 9.74704i 0.360261 0.623991i
\(245\) 8.86725 0.566508
\(246\) 0 0
\(247\) 15.9953 + 9.60857i 1.01776 + 0.611379i
\(248\) 10.3879 17.9924i 0.659633 1.14252i
\(249\) 0 0
\(250\) 3.30776 0.209201
\(251\) −8.21662 14.2316i −0.518629 0.898291i −0.999766 0.0216457i \(-0.993109\pi\)
0.481137 0.876645i \(-0.340224\pi\)
\(252\) 0 0
\(253\) 7.56513 + 13.1032i 0.475616 + 0.823791i
\(254\) 1.46632 2.53975i 0.0920053 0.159358i
\(255\) 0 0
\(256\) −10.2780 −0.642378
\(257\) −1.82657 3.16372i −0.113938 0.197347i 0.803416 0.595417i \(-0.203013\pi\)
−0.917355 + 0.398070i \(0.869680\pi\)
\(258\) 0 0
\(259\) 7.68847 + 13.3168i 0.477738 + 0.827467i
\(260\) −0.273615 + 15.7748i −0.0169689 + 0.978313i
\(261\) 0 0
\(262\) 0.215583 0.373400i 0.0133187 0.0230688i
\(263\) 24.8898 1.53477 0.767384 0.641188i \(-0.221558\pi\)
0.767384 + 0.641188i \(0.221558\pi\)
\(264\) 0 0
\(265\) −1.87209 + 3.24255i −0.115001 + 0.199188i
\(266\) 11.4540 0.702290
\(267\) 0 0
\(268\) 6.33161 + 10.9667i 0.386764 + 0.669896i
\(269\) 4.43529 + 7.68215i 0.270424 + 0.468389i 0.968971 0.247176i \(-0.0795027\pi\)
−0.698546 + 0.715565i \(0.746169\pi\)
\(270\) 0 0
\(271\) −5.20415 + 9.01385i −0.316129 + 0.547552i −0.979677 0.200582i \(-0.935717\pi\)
0.663548 + 0.748134i \(0.269050\pi\)
\(272\) −3.54809 6.14547i −0.215134 0.372624i
\(273\) 0 0
\(274\) −6.61133 + 11.4512i −0.399405 + 0.691790i
\(275\) 3.88572 + 6.73026i 0.234318 + 0.405850i
\(276\) 0 0
\(277\) 12.4312 21.5315i 0.746918 1.29370i −0.202375 0.979308i \(-0.564866\pi\)
0.949293 0.314392i \(-0.101801\pi\)
\(278\) 2.10835 0.126450
\(279\) 0 0
\(280\) 11.2417 + 19.4711i 0.671818 + 1.16362i
\(281\) 5.46747 + 9.46994i 0.326162 + 0.564929i 0.981747 0.190192i \(-0.0609112\pi\)
−0.655585 + 0.755122i \(0.727578\pi\)
\(282\) 0 0
\(283\) −14.8192 25.6676i −0.880909 1.52578i −0.850331 0.526248i \(-0.823599\pi\)
−0.0305780 0.999532i \(-0.509735\pi\)
\(284\) −1.03019 1.78434i −0.0611306 0.105881i
\(285\) 0 0
\(286\) −5.08759 + 2.82083i −0.300835 + 0.166799i
\(287\) 7.97747 0.470895
\(288\) 0 0
\(289\) −6.01149 + 10.4122i −0.353617 + 0.612482i
\(290\) −4.05467 + 7.02290i −0.238099 + 0.412399i
\(291\) 0 0
\(292\) −2.14483 −0.125517
\(293\) 15.2763 0.892449 0.446225 0.894921i \(-0.352768\pi\)
0.446225 + 0.894921i \(0.352768\pi\)
\(294\) 0 0
\(295\) −6.80123 + 11.7801i −0.395983 + 0.685863i
\(296\) −5.93890 + 10.2865i −0.345192 + 0.597890i
\(297\) 0 0
\(298\) −4.00001 −0.231714
\(299\) 20.2185 + 12.1455i 1.16927 + 0.702391i
\(300\) 0 0
\(301\) 9.49688 + 16.4491i 0.547391 + 0.948110i
\(302\) 0.739250 + 1.28042i 0.0425391 + 0.0736798i
\(303\) 0 0
\(304\) −3.40840 5.90352i −0.195485 0.338590i
\(305\) −10.7513 18.6218i −0.615616 1.06628i
\(306\) 0 0
\(307\) −2.96530 −0.169238 −0.0846192 0.996413i \(-0.526967\pi\)
−0.0846192 + 0.996413i \(0.526967\pi\)
\(308\) 5.55309 9.61823i 0.316417 0.548050i
\(309\) 0 0
\(310\) −8.54876 14.8069i −0.485537 0.840974i
\(311\) −0.483334 + 0.837159i −0.0274073 + 0.0474709i −0.879404 0.476077i \(-0.842058\pi\)
0.851996 + 0.523548i \(0.175392\pi\)
\(312\) 0 0
\(313\) −1.56622 2.71277i −0.0885279 0.153335i 0.818361 0.574704i \(-0.194883\pi\)
−0.906889 + 0.421369i \(0.861550\pi\)
\(314\) −5.37266 + 9.30572i −0.303197 + 0.525152i
\(315\) 0 0
\(316\) 0.0553594 + 0.0958852i 0.00311421 + 0.00539397i
\(317\) −14.5827 25.2580i −0.819046 1.41863i −0.906386 0.422451i \(-0.861170\pi\)
0.0873393 0.996179i \(-0.472164\pi\)
\(318\) 0 0
\(319\) 9.29957 0.520676
\(320\) −2.06118 + 3.57006i −0.115223 + 0.199573i
\(321\) 0 0
\(322\) 14.4781 0.806835
\(323\) −13.9402 + 24.1451i −0.775652 + 1.34347i
\(324\) 0 0
\(325\) 10.3849 + 6.23834i 0.576052 + 0.346041i
\(326\) 4.57690 + 7.92742i 0.253491 + 0.439059i
\(327\) 0 0
\(328\) 3.08107 + 5.33657i 0.170124 + 0.294663i
\(329\) −3.30787 −0.182369
\(330\) 0 0
\(331\) −3.57725 + 6.19598i −0.196624 + 0.340562i −0.947432 0.319959i \(-0.896331\pi\)
0.750808 + 0.660520i \(0.229664\pi\)
\(332\) −1.64671 2.85219i −0.0903750 0.156534i
\(333\) 0 0
\(334\) 2.02902 + 3.51436i 0.111023 + 0.192297i
\(335\) 24.1931 1.32181
\(336\) 0 0
\(337\) −7.36818 + 12.7621i −0.401370 + 0.695194i −0.993892 0.110361i \(-0.964799\pi\)
0.592521 + 0.805555i \(0.298133\pi\)
\(338\) −4.80379 + 7.69143i −0.261292 + 0.418359i
\(339\) 0 0
\(340\) −23.5738 −1.27847
\(341\) −9.80348 + 16.9801i −0.530888 + 0.919525i
\(342\) 0 0
\(343\) 12.4793 0.673821
\(344\) −7.33580 + 12.7060i −0.395520 + 0.685060i
\(345\) 0 0
\(346\) 6.30728 10.9245i 0.339081 0.587306i
\(347\) 19.9131 1.06899 0.534496 0.845171i \(-0.320502\pi\)
0.534496 + 0.845171i \(0.320502\pi\)
\(348\) 0 0
\(349\) −27.7690 −1.48644 −0.743221 0.669046i \(-0.766703\pi\)
−0.743221 + 0.669046i \(0.766703\pi\)
\(350\) 7.43648 0.397496
\(351\) 0 0
\(352\) 13.4624 0.717549
\(353\) −28.5705 −1.52065 −0.760326 0.649542i \(-0.774961\pi\)
−0.760326 + 0.649542i \(0.774961\pi\)
\(354\) 0 0
\(355\) −3.93636 −0.208920
\(356\) −0.134918 + 0.233685i −0.00715064 + 0.0123853i
\(357\) 0 0
\(358\) 7.62751 13.2112i 0.403127 0.698236i
\(359\) 15.4518 0.815515 0.407757 0.913090i \(-0.366311\pi\)
0.407757 + 0.913090i \(0.366311\pi\)
\(360\) 0 0
\(361\) −3.89136 + 6.74004i −0.204809 + 0.354739i
\(362\) 7.66504 0.402866
\(363\) 0 0
\(364\) 0.300249 17.3104i 0.0157373 0.907312i
\(365\) −2.04885 + 3.54871i −0.107242 + 0.185748i
\(366\) 0 0
\(367\) 0.471182 0.0245955 0.0122977 0.999924i \(-0.496085\pi\)
0.0122977 + 0.999924i \(0.496085\pi\)
\(368\) −4.30830 7.46220i −0.224586 0.388994i
\(369\) 0 0
\(370\) 4.88743 + 8.46528i 0.254086 + 0.440089i
\(371\) 2.05432 3.55819i 0.106655 0.184732i
\(372\) 0 0
\(373\) 32.3488 1.67496 0.837478 0.546472i \(-0.184029\pi\)
0.837478 + 0.546472i \(0.184029\pi\)
\(374\) −4.34599 7.52747i −0.224726 0.389236i
\(375\) 0 0
\(376\) −1.27757 2.21282i −0.0658857 0.114117i
\(377\) 12.6784 7.02956i 0.652970 0.362041i
\(378\) 0 0
\(379\) 0.713364 1.23558i 0.0366430 0.0634676i −0.847122 0.531398i \(-0.821667\pi\)
0.883765 + 0.467930i \(0.155000\pi\)
\(380\) −22.6457 −1.16170
\(381\) 0 0
\(382\) 6.27229 10.8639i 0.320919 0.555847i
\(383\) 15.9444 0.814719 0.407360 0.913268i \(-0.366450\pi\)
0.407360 + 0.913268i \(0.366450\pi\)
\(384\) 0 0
\(385\) −10.6092 18.3757i −0.540695 0.936510i
\(386\) 1.32595 + 2.29662i 0.0674892 + 0.116895i
\(387\) 0 0
\(388\) 0.0990524 0.171564i 0.00502863 0.00870984i
\(389\) −10.0545 17.4150i −0.509785 0.882973i −0.999936 0.0113357i \(-0.996392\pi\)
0.490151 0.871638i \(-0.336942\pi\)
\(390\) 0 0
\(391\) −17.6207 + 30.5200i −0.891119 + 1.54346i
\(392\) −3.75810 6.50921i −0.189813 0.328765i
\(393\) 0 0
\(394\) −8.62418 + 14.9375i −0.434480 + 0.752542i
\(395\) 0.211528 0.0106431
\(396\) 0 0
\(397\) 1.77422 + 3.07304i 0.0890454 + 0.154231i 0.907108 0.420898i \(-0.138285\pi\)
−0.818062 + 0.575129i \(0.804952\pi\)
\(398\) −9.65708 16.7266i −0.484066 0.838427i
\(399\) 0 0
\(400\) −2.21290 3.83285i −0.110645 0.191642i
\(401\) 13.3212 + 23.0730i 0.665229 + 1.15221i 0.979223 + 0.202785i \(0.0649994\pi\)
−0.313994 + 0.949425i \(0.601667\pi\)
\(402\) 0 0
\(403\) −0.530063 + 30.5600i −0.0264043 + 1.52230i
\(404\) 13.2270 0.658068
\(405\) 0 0
\(406\) 4.44937 7.70654i 0.220819 0.382469i
\(407\) 5.60477 9.70775i 0.277818 0.481195i
\(408\) 0 0
\(409\) −13.5215 −0.668597 −0.334299 0.942467i \(-0.608499\pi\)
−0.334299 + 0.942467i \(0.608499\pi\)
\(410\) 5.07115 0.250446
\(411\) 0 0
\(412\) 13.2916 23.0218i 0.654831 1.13420i
\(413\) 7.46329 12.9268i 0.367245 0.636086i
\(414\) 0 0
\(415\) −6.29209 −0.308866
\(416\) 18.3537 10.1763i 0.899864 0.498932i
\(417\) 0 0
\(418\) −4.17489 7.23112i −0.204201 0.353686i
\(419\) −6.30293 10.9170i −0.307918 0.533330i 0.669988 0.742372i \(-0.266299\pi\)
−0.977907 + 0.209041i \(0.932966\pi\)
\(420\) 0 0
\(421\) 4.49703 + 7.78908i 0.219172 + 0.379617i 0.954555 0.298035i \(-0.0963312\pi\)
−0.735383 + 0.677651i \(0.762998\pi\)
\(422\) −1.32262 2.29085i −0.0643842 0.111517i
\(423\) 0 0
\(424\) 3.17370 0.154128
\(425\) −9.05063 + 15.6761i −0.439020 + 0.760405i
\(426\) 0 0
\(427\) 11.7979 + 20.4345i 0.570938 + 0.988894i
\(428\) −9.43287 + 16.3382i −0.455955 + 0.789737i
\(429\) 0 0
\(430\) 6.03701 + 10.4564i 0.291131 + 0.504253i
\(431\) 8.05558 13.9527i 0.388024 0.672077i −0.604160 0.796863i \(-0.706491\pi\)
0.992184 + 0.124786i \(0.0398245\pi\)
\(432\) 0 0
\(433\) −13.5252 23.4264i −0.649981 1.12580i −0.983127 0.182924i \(-0.941444\pi\)
0.333146 0.942875i \(-0.391890\pi\)
\(434\) 9.38093 + 16.2482i 0.450299 + 0.779941i
\(435\) 0 0
\(436\) −7.33138 −0.351110
\(437\) −16.9270 + 29.3184i −0.809729 + 1.40249i
\(438\) 0 0
\(439\) 2.30329 0.109930 0.0549651 0.998488i \(-0.482495\pi\)
0.0549651 + 0.998488i \(0.482495\pi\)
\(440\) 8.19499 14.1941i 0.390681 0.676679i
\(441\) 0 0
\(442\) −11.6150 6.97728i −0.552471 0.331875i
\(443\) −13.1481 22.7731i −0.624683 1.08198i −0.988602 0.150552i \(-0.951895\pi\)
0.363919 0.931431i \(-0.381439\pi\)
\(444\) 0 0
\(445\) 0.257761 + 0.446455i 0.0122190 + 0.0211640i
\(446\) −0.774754 −0.0366857
\(447\) 0 0
\(448\) 2.26182 3.91759i 0.106861 0.185089i
\(449\) 4.46646 + 7.73613i 0.210785 + 0.365091i 0.951960 0.306221i \(-0.0990646\pi\)
−0.741175 + 0.671311i \(0.765731\pi\)
\(450\) 0 0
\(451\) −2.90772 5.03633i −0.136919 0.237151i
\(452\) 9.30314 0.437583
\(453\) 0 0
\(454\) 2.91040 5.04095i 0.136592 0.236584i
\(455\) −28.3540 17.0326i −1.32926 0.798499i
\(456\) 0 0
\(457\) 18.8815 0.883239 0.441620 0.897202i \(-0.354404\pi\)
0.441620 + 0.897202i \(0.354404\pi\)
\(458\) 2.64989 4.58974i 0.123821 0.214465i
\(459\) 0 0
\(460\) −28.6247 −1.33463
\(461\) −11.6128 + 20.1139i −0.540860 + 0.936797i 0.457995 + 0.888955i \(0.348568\pi\)
−0.998855 + 0.0478419i \(0.984766\pi\)
\(462\) 0 0
\(463\) 1.15005 1.99194i 0.0534473 0.0925735i −0.838064 0.545572i \(-0.816312\pi\)
0.891511 + 0.452999i \(0.149646\pi\)
\(464\) −5.29606 −0.245863
\(465\) 0 0
\(466\) 0.535587 0.0248106
\(467\) 22.4713 1.03985 0.519925 0.854212i \(-0.325960\pi\)
0.519925 + 0.854212i \(0.325960\pi\)
\(468\) 0 0
\(469\) −26.5482 −1.22588
\(470\) −2.10276 −0.0969931
\(471\) 0 0
\(472\) 11.5299 0.530708
\(473\) 6.92308 11.9911i 0.318323 0.551352i
\(474\) 0 0
\(475\) −8.69431 + 15.0590i −0.398922 + 0.690954i
\(476\) 25.8685 1.18568
\(477\) 0 0
\(478\) −7.40925 + 12.8332i −0.338891 + 0.586976i
\(479\) 4.87209 0.222611 0.111306 0.993786i \(-0.464497\pi\)
0.111306 + 0.993786i \(0.464497\pi\)
\(480\) 0 0
\(481\) 0.303044 17.4715i 0.0138176 0.796632i
\(482\) −7.97353 + 13.8106i −0.363184 + 0.629054i
\(483\) 0 0
\(484\) 8.55123 0.388692
\(485\) −0.189240 0.327773i −0.00859294 0.0148834i
\(486\) 0 0
\(487\) −6.17126 10.6889i −0.279647 0.484362i 0.691650 0.722233i \(-0.256884\pi\)
−0.971297 + 0.237870i \(0.923551\pi\)
\(488\) −9.11316 + 15.7845i −0.412534 + 0.714529i
\(489\) 0 0
\(490\) −6.18547 −0.279431
\(491\) −14.0792 24.3859i −0.635386 1.10052i −0.986433 0.164164i \(-0.947507\pi\)
0.351047 0.936358i \(-0.385826\pi\)
\(492\) 0 0
\(493\) 10.8303 + 18.7586i 0.487772 + 0.844846i
\(494\) −11.1578 6.70259i −0.502012 0.301564i
\(495\) 0 0
\(496\) 5.58303 9.67008i 0.250685 0.434200i
\(497\) 4.31955 0.193758
\(498\) 0 0
\(499\) 12.0417 20.8568i 0.539061 0.933681i −0.459894 0.887974i \(-0.652113\pi\)
0.998955 0.0457069i \(-0.0145540\pi\)
\(500\) 7.17637 0.320937
\(501\) 0 0
\(502\) 5.73162 + 9.92745i 0.255815 + 0.443084i
\(503\) 1.66703 + 2.88738i 0.0743291 + 0.128742i 0.900794 0.434246i \(-0.142985\pi\)
−0.826465 + 0.562988i \(0.809652\pi\)
\(504\) 0 0
\(505\) 12.6351 21.8847i 0.562255 0.973855i
\(506\) −5.27716 9.14031i −0.234598 0.406336i
\(507\) 0 0
\(508\) 3.18127 5.51013i 0.141146 0.244472i
\(509\) 17.0658 + 29.5589i 0.756429 + 1.31017i 0.944661 + 0.328048i \(0.106391\pi\)
−0.188232 + 0.982125i \(0.560276\pi\)
\(510\) 0 0
\(511\) 2.24829 3.89416i 0.0994587 0.172267i
\(512\) −14.1232 −0.624165
\(513\) 0 0
\(514\) 1.27415 + 2.20689i 0.0562004 + 0.0973419i
\(515\) −25.3937 43.9831i −1.11898 1.93813i
\(516\) 0 0
\(517\) 1.20569 + 2.08832i 0.0530264 + 0.0918443i
\(518\) −5.36320 9.28933i −0.235645 0.408150i
\(519\) 0 0
\(520\) 0.443094 25.5459i 0.0194310 1.12026i
\(521\) −42.5774 −1.86535 −0.932675 0.360719i \(-0.882531\pi\)
−0.932675 + 0.360719i \(0.882531\pi\)
\(522\) 0 0
\(523\) −1.45092 + 2.51307i −0.0634443 + 0.109889i −0.896003 0.444048i \(-0.853542\pi\)
0.832559 + 0.553937i \(0.186875\pi\)
\(524\) 0.467719 0.810114i 0.0204324 0.0353900i
\(525\) 0 0
\(526\) −17.3622 −0.757027
\(527\) −45.6686 −1.98935
\(528\) 0 0
\(529\) −9.89616 + 17.1406i −0.430268 + 0.745245i
\(530\) 1.30590 2.26188i 0.0567247 0.0982500i
\(531\) 0 0
\(532\) 24.8501 1.07739
\(533\) −7.77115 4.66822i −0.336606 0.202203i
\(534\) 0 0
\(535\) 18.0215 + 31.2142i 0.779139 + 1.34951i
\(536\) −10.2535 17.7595i −0.442882 0.767095i
\(537\) 0 0
\(538\) −3.09390 5.35879i −0.133387 0.231034i
\(539\) 3.54666 + 6.14300i 0.152765 + 0.264598i
\(540\) 0 0
\(541\) 22.6048 0.971857 0.485929 0.873999i \(-0.338482\pi\)
0.485929 + 0.873999i \(0.338482\pi\)
\(542\) 3.63022 6.28773i 0.155931 0.270081i
\(543\) 0 0
\(544\) 15.6783 + 27.1557i 0.672203 + 1.16429i
\(545\) −7.00331 + 12.1301i −0.299989 + 0.519596i
\(546\) 0 0
\(547\) −18.1136 31.3737i −0.774481 1.34144i −0.935085 0.354422i \(-0.884678\pi\)
0.160604 0.987019i \(-0.448656\pi\)
\(548\) −14.3437 + 24.8440i −0.612731 + 1.06128i
\(549\) 0 0
\(550\) −2.71054 4.69479i −0.115578 0.200186i
\(551\) 10.4039 + 18.0201i 0.443222 + 0.767682i
\(552\) 0 0
\(553\) −0.232120 −0.00987073
\(554\) −8.67155 + 15.0196i −0.368419 + 0.638120i
\(555\) 0 0
\(556\) 4.57419 0.193989
\(557\) −1.08919 + 1.88653i −0.0461503 + 0.0799347i −0.888178 0.459500i \(-0.848029\pi\)
0.842027 + 0.539435i \(0.181362\pi\)
\(558\) 0 0
\(559\) 0.374323 21.5810i 0.0158322 0.912779i
\(560\) 6.04188 + 10.4648i 0.255316 + 0.442220i
\(561\) 0 0
\(562\) −3.81391 6.60588i −0.160880 0.278652i
\(563\) −7.65705 −0.322706 −0.161353 0.986897i \(-0.551586\pi\)
−0.161353 + 0.986897i \(0.551586\pi\)
\(564\) 0 0
\(565\) 8.88684 15.3925i 0.373872 0.647565i
\(566\) 10.3373 + 17.9048i 0.434510 + 0.752594i
\(567\) 0 0
\(568\) 1.66830 + 2.88958i 0.0700004 + 0.121244i
\(569\) 26.5940 1.11488 0.557440 0.830217i \(-0.311784\pi\)
0.557440 + 0.830217i \(0.311784\pi\)
\(570\) 0 0
\(571\) 21.6621 37.5199i 0.906531 1.57016i 0.0876825 0.996148i \(-0.472054\pi\)
0.818849 0.574010i \(-0.194613\pi\)
\(572\) −11.0378 + 6.11995i −0.461515 + 0.255888i
\(573\) 0 0
\(574\) −5.56479 −0.232270
\(575\) −10.9898 + 19.0349i −0.458307 + 0.793811i
\(576\) 0 0
\(577\) −24.5681 −1.02278 −0.511392 0.859348i \(-0.670870\pi\)
−0.511392 + 0.859348i \(0.670870\pi\)
\(578\) 4.19339 7.26317i 0.174422 0.302108i
\(579\) 0 0
\(580\) −8.79685 + 15.2366i −0.365269 + 0.632665i
\(581\) 6.90459 0.286451
\(582\) 0 0
\(583\) −2.99514 −0.124046
\(584\) 3.47336 0.143729
\(585\) 0 0
\(586\) −10.6562 −0.440202
\(587\) 13.9587 0.576138 0.288069 0.957610i \(-0.406987\pi\)
0.288069 + 0.957610i \(0.406987\pi\)
\(588\) 0 0
\(589\) −43.8706 −1.80766
\(590\) 4.74429 8.21735i 0.195319 0.338303i
\(591\) 0 0
\(592\) −3.19189 + 5.52851i −0.131186 + 0.227220i
\(593\) 42.3659 1.73976 0.869880 0.493263i \(-0.164196\pi\)
0.869880 + 0.493263i \(0.164196\pi\)
\(594\) 0 0
\(595\) 24.7110 42.8006i 1.01305 1.75465i
\(596\) −8.67826 −0.355475
\(597\) 0 0
\(598\) −14.1037 8.47224i −0.576743 0.346456i
\(599\) 0.140194 0.242822i 0.00572815 0.00992145i −0.863147 0.504953i \(-0.831510\pi\)
0.868875 + 0.495031i \(0.164843\pi\)
\(600\) 0 0
\(601\) 17.5799 0.717101 0.358550 0.933510i \(-0.383271\pi\)
0.358550 + 0.933510i \(0.383271\pi\)
\(602\) −6.62468 11.4743i −0.270002 0.467657i
\(603\) 0 0
\(604\) 1.60385 + 2.77794i 0.0652596 + 0.113033i
\(605\) 8.16857 14.1484i 0.332100 0.575214i
\(606\) 0 0
\(607\) −40.1830 −1.63098 −0.815489 0.578773i \(-0.803532\pi\)
−0.815489 + 0.578773i \(0.803532\pi\)
\(608\) 15.0611 + 26.0866i 0.610808 + 1.05795i
\(609\) 0 0
\(610\) 7.49970 + 12.9899i 0.303654 + 0.525944i
\(611\) 3.22232 + 1.93569i 0.130361 + 0.0783095i
\(612\) 0 0
\(613\) 12.3197 21.3384i 0.497589 0.861849i −0.502407 0.864631i \(-0.667552\pi\)
0.999996 + 0.00278192i \(0.000885515\pi\)
\(614\) 2.06848 0.0834772
\(615\) 0 0
\(616\) −8.99273 + 15.5759i −0.362327 + 0.627570i
\(617\) −36.1037 −1.45348 −0.726739 0.686913i \(-0.758965\pi\)
−0.726739 + 0.686913i \(0.758965\pi\)
\(618\) 0 0
\(619\) −19.1602 33.1865i −0.770114 1.33388i −0.937500 0.347986i \(-0.886866\pi\)
0.167386 0.985892i \(-0.446468\pi\)
\(620\) −18.5470 32.1244i −0.744867 1.29015i
\(621\) 0 0
\(622\) 0.337156 0.583971i 0.0135187 0.0234151i
\(623\) −0.282853 0.489915i −0.0113323 0.0196280i
\(624\) 0 0
\(625\) 15.2552 26.4228i 0.610208 1.05691i
\(626\) 1.09254 + 1.89233i 0.0436665 + 0.0756327i
\(627\) 0 0
\(628\) −11.6563 + 20.1893i −0.465137 + 0.805641i
\(629\) 26.1093 1.04105
\(630\) 0 0
\(631\) 4.85653 + 8.41176i 0.193335 + 0.334867i 0.946354 0.323133i \(-0.104736\pi\)
−0.753018 + 0.658000i \(0.771403\pi\)
\(632\) −0.0896495 0.155278i −0.00356607 0.00617661i
\(633\) 0 0
\(634\) 10.1724 + 17.6191i 0.403996 + 0.699742i
\(635\) −6.07783 10.5271i −0.241191 0.417756i
\(636\) 0 0
\(637\) 9.47877 + 5.69400i 0.375562 + 0.225604i
\(638\) −6.48704 −0.256825
\(639\) 0 0
\(640\) −15.3913 + 26.6586i −0.608396 + 1.05377i
\(641\) −14.9792 + 25.9448i −0.591643 + 1.02476i 0.402368 + 0.915478i \(0.368187\pi\)
−0.994011 + 0.109278i \(0.965146\pi\)
\(642\) 0 0
\(643\) 18.5574 0.731834 0.365917 0.930647i \(-0.380755\pi\)
0.365917 + 0.930647i \(0.380755\pi\)
\(644\) 31.4111 1.23777
\(645\) 0 0
\(646\) 9.72416 16.8427i 0.382592 0.662669i
\(647\) −17.4909 + 30.2951i −0.687637 + 1.19102i 0.284963 + 0.958538i \(0.408019\pi\)
−0.972600 + 0.232484i \(0.925315\pi\)
\(648\) 0 0
\(649\) −10.8812 −0.427126
\(650\) −7.24415 4.35164i −0.284139 0.170685i
\(651\) 0 0
\(652\) 9.92984 + 17.1990i 0.388883 + 0.673565i
\(653\) −7.84322 13.5849i −0.306929 0.531616i 0.670760 0.741674i \(-0.265968\pi\)
−0.977689 + 0.210058i \(0.932635\pi\)
\(654\) 0 0
\(655\) −0.893579 1.54772i −0.0349150 0.0604746i
\(656\) 1.65593 + 2.86816i 0.0646533 + 0.111983i
\(657\) 0 0
\(658\) 2.30745 0.0899539
\(659\) 11.1513 19.3146i 0.434391 0.752388i −0.562854 0.826556i \(-0.690297\pi\)
0.997246 + 0.0741680i \(0.0236301\pi\)
\(660\) 0 0
\(661\) −8.30249 14.3803i −0.322930 0.559330i 0.658162 0.752877i \(-0.271334\pi\)
−0.981091 + 0.193546i \(0.938001\pi\)
\(662\) 2.49536 4.32209i 0.0969849 0.167983i
\(663\) 0 0
\(664\) 2.66670 + 4.61886i 0.103488 + 0.179246i
\(665\) 23.7381 41.1156i 0.920524 1.59439i
\(666\) 0 0
\(667\) 13.1508 + 22.7779i 0.509201 + 0.881962i
\(668\) 4.40207 + 7.62462i 0.170321 + 0.295005i
\(669\) 0 0
\(670\) −16.8762 −0.651986
\(671\) 8.60045 14.8964i 0.332017 0.575069i
\(672\) 0 0
\(673\) −8.62484 −0.332463 −0.166232 0.986087i \(-0.553160\pi\)
−0.166232 + 0.986087i \(0.553160\pi\)
\(674\) 5.13978 8.90235i 0.197977 0.342906i
\(675\) 0 0
\(676\) −10.4221 + 16.6870i −0.400850 + 0.641808i
\(677\) −11.5236 19.9595i −0.442888 0.767105i 0.555014 0.831841i \(-0.312713\pi\)
−0.997902 + 0.0647358i \(0.979380\pi\)
\(678\) 0 0
\(679\) 0.207661 + 0.359680i 0.00796931 + 0.0138033i
\(680\) 38.1756 1.46397
\(681\) 0 0
\(682\) 6.83855 11.8447i 0.261862 0.453557i
\(683\) 13.6294 + 23.6068i 0.521514 + 0.903289i 0.999687 + 0.0250235i \(0.00796605\pi\)
−0.478172 + 0.878266i \(0.658701\pi\)
\(684\) 0 0
\(685\) 27.4036 + 47.4645i 1.04704 + 1.81352i
\(686\) −8.70513 −0.332363
\(687\) 0 0
\(688\) −3.94265 + 6.82888i −0.150312 + 0.260348i
\(689\) −4.08336 + 2.26403i −0.155564 + 0.0862527i
\(690\) 0 0
\(691\) −21.2474 −0.808288 −0.404144 0.914695i \(-0.632431\pi\)
−0.404144 + 0.914695i \(0.632431\pi\)
\(692\) 13.6840 23.7014i 0.520188 0.900992i
\(693\) 0 0
\(694\) −13.8907 −0.527282
\(695\) 4.36950 7.56820i 0.165745 0.287078i
\(696\) 0 0
\(697\) 6.77268 11.7306i 0.256533 0.444329i
\(698\) 19.3707 0.733190
\(699\) 0 0
\(700\) 16.1339 0.609803
\(701\) −10.1915 −0.384928 −0.192464 0.981304i \(-0.561648\pi\)
−0.192464 + 0.981304i \(0.561648\pi\)
\(702\) 0 0
\(703\) 25.0814 0.945962
\(704\) −3.29766 −0.124285
\(705\) 0 0
\(706\) 19.9297 0.750065
\(707\) −13.8651 + 24.0150i −0.521450 + 0.903177i
\(708\) 0 0
\(709\) −12.8669 + 22.2861i −0.483227 + 0.836973i −0.999814 0.0192609i \(-0.993869\pi\)
0.516588 + 0.856234i \(0.327202\pi\)
\(710\) 2.74586 0.103050
\(711\) 0 0
\(712\) 0.218487 0.378431i 0.00818816 0.0141823i
\(713\) −55.4535 −2.07675
\(714\) 0 0
\(715\) −0.418165 + 24.1087i −0.0156385 + 0.901612i
\(716\) 16.5483 28.6626i 0.618440 1.07117i
\(717\) 0 0
\(718\) −10.7786 −0.402254
\(719\) 8.35595 + 14.4729i 0.311624 + 0.539749i 0.978714 0.205228i \(-0.0657936\pi\)
−0.667090 + 0.744977i \(0.732460\pi\)
\(720\) 0 0
\(721\) 27.8656 + 48.2646i 1.03777 + 1.79747i
\(722\) 2.71447 4.70161i 0.101022 0.174976i
\(723\) 0 0
\(724\) 16.6298 0.618040
\(725\) 6.75471 + 11.6995i 0.250864 + 0.434509i
\(726\) 0 0
\(727\) −20.7535 35.9461i −0.769705 1.33317i −0.937723 0.347384i \(-0.887070\pi\)
0.168018 0.985784i \(-0.446263\pi\)
\(728\) −0.486227 + 28.0327i −0.0180208 + 1.03896i
\(729\) 0 0
\(730\) 1.42920 2.47545i 0.0528972 0.0916206i
\(731\) 32.2505 1.19283
\(732\) 0 0
\(733\) −18.6541 + 32.3098i −0.689003 + 1.19339i 0.283157 + 0.959073i \(0.408618\pi\)
−0.972161 + 0.234315i \(0.924715\pi\)
\(734\) −0.328679 −0.0121318
\(735\) 0 0
\(736\) 19.0376 + 32.9741i 0.701735 + 1.21544i
\(737\) 9.67659 + 16.7604i 0.356442 + 0.617375i
\(738\) 0 0
\(739\) −17.9464 + 31.0841i −0.660169 + 1.14345i 0.320401 + 0.947282i \(0.396182\pi\)
−0.980571 + 0.196165i \(0.937151\pi\)
\(740\) 10.6036 + 18.3659i 0.389795 + 0.675145i
\(741\) 0 0
\(742\) −1.43302 + 2.48207i −0.0526079 + 0.0911195i
\(743\) −0.751788 1.30214i −0.0275804 0.0477707i 0.851906 0.523695i \(-0.175447\pi\)
−0.879486 + 0.475924i \(0.842114\pi\)
\(744\) 0 0
\(745\) −8.28992 + 14.3586i −0.303719 + 0.526057i
\(746\) −22.5653 −0.826175
\(747\) 0 0
\(748\) −9.42888 16.3313i −0.344754 0.597131i
\(749\) −19.7758 34.2527i −0.722593 1.25157i
\(750\) 0 0
\(751\) −2.10916 3.65317i −0.0769642 0.133306i 0.824975 0.565170i \(-0.191189\pi\)
−0.901939 + 0.431864i \(0.857856\pi\)
\(752\) −0.686636 1.18929i −0.0250390 0.0433689i
\(753\) 0 0
\(754\) −8.84398 + 4.90357i −0.322079 + 0.178577i
\(755\) 6.12830 0.223032
\(756\) 0 0
\(757\) −3.70611 + 6.41918i −0.134701 + 0.233309i −0.925483 0.378789i \(-0.876341\pi\)
0.790782 + 0.612098i \(0.209674\pi\)
\(758\) −0.497617 + 0.861898i −0.0180743 + 0.0313055i
\(759\) 0 0
\(760\) 36.6726 1.33026
\(761\) −36.5128 −1.32359 −0.661795 0.749685i \(-0.730205\pi\)
−0.661795 + 0.749685i \(0.730205\pi\)
\(762\) 0 0
\(763\) 7.68505 13.3109i 0.278217 0.481887i
\(764\) 13.6081 23.5699i 0.492324 0.852730i
\(765\) 0 0
\(766\) −11.1222 −0.401862
\(767\) −14.8347 + 8.22515i −0.535650 + 0.296993i
\(768\) 0 0
\(769\) −8.00060 13.8575i −0.288509 0.499712i 0.684945 0.728595i \(-0.259826\pi\)
−0.973454 + 0.228882i \(0.926493\pi\)
\(770\) 7.40059 + 12.8182i 0.266699 + 0.461936i
\(771\) 0 0
\(772\) 2.87673 + 4.98264i 0.103536 + 0.179329i
\(773\) −14.3128 24.7905i −0.514796 0.891652i −0.999853 0.0171698i \(-0.994534\pi\)
0.485057 0.874483i \(-0.338799\pi\)
\(774\) 0 0
\(775\) −28.4829 −1.02314
\(776\) −0.160407 + 0.277832i −0.00575826 + 0.00997360i
\(777\) 0 0
\(778\) 7.01367 + 12.1480i 0.251452 + 0.435528i
\(779\) 6.50604 11.2688i 0.233103 0.403746i
\(780\) 0 0
\(781\) −1.57444 2.72701i −0.0563379 0.0975801i
\(782\) 12.2916 21.2896i 0.439546 0.761316i
\(783\) 0 0
\(784\) −2.01980 3.49840i −0.0721358 0.124943i
\(785\) 22.2694 + 38.5717i 0.794829 + 1.37668i
\(786\) 0 0
\(787\) −5.75106 −0.205003 −0.102502 0.994733i \(-0.532685\pi\)
−0.102502 + 0.994733i \(0.532685\pi\)
\(788\) −18.7107 + 32.4078i −0.666540 + 1.15448i
\(789\) 0 0
\(790\) −0.147555 −0.00524975
\(791\) −9.75192 + 16.8908i −0.346738 + 0.600569i
\(792\) 0 0
\(793\) 0.465017 26.8098i 0.0165132 0.952044i
\(794\) −1.23763 2.14364i −0.0439218 0.0760748i
\(795\) 0 0
\(796\) −20.9516 36.2892i −0.742610 1.28624i
\(797\) 53.9162 1.90981 0.954905 0.296911i \(-0.0959565\pi\)
0.954905 + 0.296911i \(0.0959565\pi\)
\(798\) 0 0
\(799\) −2.80830 + 4.86413i −0.0993507 + 0.172080i
\(800\) 9.77837 + 16.9366i 0.345718 + 0.598801i
\(801\) 0 0
\(802\) −9.29238 16.0949i −0.328125 0.568330i
\(803\) −3.27794 −0.115676
\(804\) 0 0
\(805\) 30.0055 51.9711i 1.05756 1.83174i
\(806\) 0.369753 21.3175i 0.0130240 0.750877i
\(807\) 0 0
\(808\) −21.4199 −0.753551
\(809\) −2.00874 + 3.47924i −0.0706235 + 0.122324i −0.899175 0.437590i \(-0.855832\pi\)
0.828551 + 0.559913i \(0.189166\pi\)
\(810\) 0 0
\(811\) 14.2338 0.499815 0.249908 0.968270i \(-0.419600\pi\)
0.249908 + 0.968270i \(0.419600\pi\)
\(812\) 9.65318 16.7198i 0.338760 0.586750i
\(813\) 0 0
\(814\) −3.90969 + 6.77177i −0.137034 + 0.237351i
\(815\) 37.9420 1.32905
\(816\) 0 0
\(817\) 30.9808 1.08388
\(818\) 9.43213 0.329787
\(819\) 0 0
\(820\) 11.0021 0.384212
\(821\) 49.6673 1.73340 0.866701 0.498828i \(-0.166236\pi\)
0.866701 + 0.498828i \(0.166236\pi\)
\(822\) 0 0
\(823\) 11.9719 0.417313 0.208656 0.977989i \(-0.433091\pi\)
0.208656 + 0.977989i \(0.433091\pi\)
\(824\) −21.5246 + 37.2817i −0.749844 + 1.29877i
\(825\) 0 0
\(826\) −5.20612 + 9.01727i −0.181144 + 0.313751i
\(827\) −35.1205 −1.22126 −0.610630 0.791916i \(-0.709084\pi\)
−0.610630 + 0.791916i \(0.709084\pi\)
\(828\) 0 0
\(829\) −25.4527 + 44.0853i −0.884008 + 1.53115i −0.0371606 + 0.999309i \(0.511831\pi\)
−0.846847 + 0.531837i \(0.821502\pi\)
\(830\) 4.38913 0.152349
\(831\) 0 0
\(832\) −4.49580 + 2.49271i −0.155864 + 0.0864191i
\(833\) −8.26089 + 14.3083i −0.286223 + 0.495753i
\(834\) 0 0
\(835\) 16.8204 0.582092
\(836\) −9.05767 15.6883i −0.313266 0.542593i
\(837\) 0 0
\(838\) 4.39670 + 7.61530i 0.151881 + 0.263066i
\(839\) −4.21345 + 7.29790i −0.145464 + 0.251952i −0.929546 0.368706i \(-0.879801\pi\)
0.784082 + 0.620658i \(0.213134\pi\)
\(840\) 0 0
\(841\) −12.8341 −0.442557
\(842\) −3.13696 5.43338i −0.108107 0.187247i
\(843\) 0 0
\(844\) −2.86950 4.97013i −0.0987724 0.171079i
\(845\) 17.6537 + 33.1841i 0.607305 + 1.14157i
\(846\) 0 0
\(847\) −8.96374 + 15.5256i −0.307998 + 0.533468i
\(848\) 1.70571 0.0585745
\(849\) 0 0
\(850\) 6.31339 10.9351i 0.216547 0.375071i
\(851\) 31.7035 1.08678
\(852\) 0 0
\(853\) 16.9960 + 29.4380i 0.581932 + 1.00794i 0.995250 + 0.0973495i \(0.0310365\pi\)
−0.413318 + 0.910587i \(0.635630\pi\)
\(854\) −8.22975 14.2543i −0.281616 0.487774i
\(855\) 0 0
\(856\) 15.2757 26.4583i 0.522112 0.904325i
\(857\) −26.4677 45.8435i −0.904121 1.56598i −0.822093 0.569353i \(-0.807194\pi\)
−0.0820272 0.996630i \(-0.526139\pi\)
\(858\) 0 0
\(859\) 2.49176 4.31585i 0.0850177 0.147255i −0.820381 0.571817i \(-0.806239\pi\)
0.905399 + 0.424562i \(0.139572\pi\)
\(860\) 13.0976 + 22.6858i 0.446626 + 0.773579i
\(861\) 0 0
\(862\) −5.61928 + 9.73288i −0.191393 + 0.331503i
\(863\) −40.1602 −1.36707 −0.683535 0.729918i \(-0.739558\pi\)
−0.683535 + 0.729918i \(0.739558\pi\)
\(864\) 0 0
\(865\) −26.1433 45.2816i −0.888900 1.53962i
\(866\) 9.43470 + 16.3414i 0.320604 + 0.555303i
\(867\) 0 0
\(868\) 20.3525 + 35.2515i 0.690808 + 1.19651i
\(869\) 0.0846057 + 0.146541i 0.00287005 + 0.00497108i
\(870\) 0 0
\(871\) 25.8616 + 15.5353i 0.876285 + 0.526394i
\(872\) 11.8725 0.402054
\(873\) 0 0
\(874\) 11.8077 20.4515i 0.399400 0.691782i
\(875\) −7.52256 + 13.0295i −0.254309 + 0.440476i
\(876\) 0 0
\(877\) 8.10431 0.273663 0.136832 0.990594i \(-0.456308\pi\)
0.136832 + 0.990594i \(0.456308\pi\)
\(878\) −1.60669 −0.0542233
\(879\) 0 0
\(880\) 4.40443 7.62870i 0.148473 0.257163i
\(881\) −8.71424 + 15.0935i −0.293590 + 0.508513i −0.974656 0.223709i \(-0.928183\pi\)
0.681066 + 0.732222i \(0.261517\pi\)
\(882\) 0 0
\(883\) 7.78098 0.261851 0.130925 0.991392i \(-0.458205\pi\)
0.130925 + 0.991392i \(0.458205\pi\)
\(884\) −25.1995 15.1376i −0.847551 0.509133i
\(885\) 0 0
\(886\) 9.17161 + 15.8857i 0.308126 + 0.533690i
\(887\) 15.9757 + 27.6708i 0.536413 + 0.929094i 0.999094 + 0.0425694i \(0.0135544\pi\)
−0.462681 + 0.886525i \(0.653112\pi\)
\(888\) 0 0
\(889\) 6.66948 + 11.5519i 0.223687 + 0.387437i
\(890\) −0.179805 0.311431i −0.00602707 0.0104392i
\(891\) 0 0
\(892\) −1.68087 −0.0562799
\(893\) −2.69774 + 4.67263i −0.0902765 + 0.156364i
\(894\) 0 0
\(895\) −31.6156 54.7599i −1.05679 1.83042i
\(896\) 16.8896 29.2536i 0.564242 0.977295i
\(897\) 0 0
\(898\) −3.11564 5.39644i −0.103970 0.180082i
\(899\) −17.0418 + 29.5173i −0.568376 + 0.984456i
\(900\) 0 0
\(901\) −3.48814 6.04164i −0.116207 0.201276i
\(902\) 2.02832 + 3.51316i 0.0675358 + 0.116975i
\(903\) 0 0
\(904\) −15.0656 −0.501074
\(905\) 15.8856 27.5147i 0.528055 0.914618i
\(906\) 0 0
\(907\) 20.5686 0.682969 0.341484 0.939887i \(-0.389070\pi\)
0.341484 + 0.939887i \(0.389070\pi\)
\(908\) 6.31427 10.9366i 0.209547 0.362945i
\(909\) 0 0
\(910\) 19.7787 + 11.8813i 0.655659 + 0.393861i
\(911\) 18.5114 + 32.0627i 0.613311 + 1.06229i 0.990678 + 0.136222i \(0.0434960\pi\)
−0.377368 + 0.926064i \(0.623171\pi\)
\(912\) 0 0
\(913\) −2.51667 4.35900i −0.0832895 0.144262i
\(914\) −13.1710 −0.435659
\(915\) 0 0
\(916\) 5.74909 9.95772i 0.189955 0.329012i
\(917\) 0.980564 + 1.69839i 0.0323811 + 0.0560857i
\(918\) 0 0
\(919\) 9.27825 + 16.0704i 0.306061 + 0.530114i 0.977497 0.210949i \(-0.0676554\pi\)
−0.671436 + 0.741063i \(0.734322\pi\)
\(920\) 46.3551 1.52828
\(921\) 0 0
\(922\) 8.10063 14.0307i 0.266780 0.462077i
\(923\) −4.20783 2.52769i −0.138502 0.0831999i
\(924\) 0 0
\(925\) 16.2840 0.535416
\(926\) −0.802232 + 1.38951i −0.0263630 + 0.0456620i
\(927\) 0 0
\(928\) 23.4023 0.768218
\(929\) −24.1312 + 41.7964i −0.791718 + 1.37130i 0.133185 + 0.991091i \(0.457480\pi\)
−0.924903 + 0.380204i \(0.875854\pi\)
\(930\) 0 0
\(931\) −7.93566 + 13.7450i −0.260081 + 0.450473i
\(932\) 1.16199 0.0380622
\(933\) 0 0
\(934\) −15.6752 −0.512908
\(935\) −36.0278 −1.17823
\(936\) 0 0
\(937\) 37.7556 1.23342 0.616711 0.787190i \(-0.288465\pi\)
0.616711 + 0.787190i \(0.288465\pi\)
\(938\) 18.5190 0.604668
\(939\) 0 0
\(940\) −4.56206 −0.148798
\(941\) 20.6525 35.7713i 0.673254 1.16611i −0.303722 0.952761i \(-0.598230\pi\)
0.976976 0.213349i \(-0.0684371\pi\)
\(942\) 0 0
\(943\) 8.22380 14.2440i 0.267804 0.463850i
\(944\) 6.19681 0.201689
\(945\) 0 0
\(946\) −4.82929 + 8.36457i −0.157014 + 0.271956i
\(947\) 1.76757 0.0574382 0.0287191 0.999588i \(-0.490857\pi\)
0.0287191 + 0.999588i \(0.490857\pi\)
\(948\) 0 0
\(949\) −4.46891 + 2.47780i −0.145067 + 0.0804328i
\(950\) 6.06483 10.5046i 0.196769 0.340814i
\(951\) 0 0
\(952\) −41.8918 −1.35772
\(953\) −17.6033 30.4898i −0.570228 0.987663i −0.996542 0.0830881i \(-0.973522\pi\)
0.426315 0.904575i \(-0.359812\pi\)
\(954\) 0 0
\(955\) −25.9983 45.0304i −0.841286 1.45715i
\(956\) −16.0748 + 27.8424i −0.519896 + 0.900486i
\(957\) 0 0
\(958\) −3.39859 −0.109804
\(959\) −30.0712 52.0849i −0.971050 1.68191i
\(960\) 0 0
\(961\) −20.4304 35.3866i −0.659047 1.14150i
\(962\) −0.211392 + 12.1875i −0.00681556 + 0.392941i
\(963\) 0 0
\(964\) −17.2990 + 29.9628i −0.557164 + 0.965037i
\(965\) 10.9920 0.353845
\(966\) 0 0
\(967\) −26.6427 + 46.1466i −0.856773 + 1.48397i 0.0182182 + 0.999834i \(0.494201\pi\)
−0.874991 + 0.484140i \(0.839133\pi\)
\(968\) −13.8479 −0.445090
\(969\) 0 0
\(970\) 0.132007 + 0.228643i 0.00423849 + 0.00734127i
\(971\) −24.0513 41.6582i −0.771844 1.33687i −0.936551 0.350531i \(-0.886001\pi\)
0.164707 0.986343i \(-0.447332\pi\)
\(972\) 0 0
\(973\) −4.79485 + 8.30492i −0.153716 + 0.266243i
\(974\) 4.30485 + 7.45622i 0.137936 + 0.238913i
\(975\) 0 0
\(976\) −4.89791 + 8.48342i −0.156778 + 0.271548i
\(977\) −27.8719 48.2755i −0.891700 1.54447i −0.837836 0.545922i \(-0.816179\pi\)
−0.0538646 0.998548i \(-0.517154\pi\)
\(978\) 0 0
\(979\) −0.206195 + 0.357140i −0.00659002 + 0.0114143i
\(980\) −13.4197 −0.428678
\(981\) 0 0
\(982\) 9.82115 + 17.0107i 0.313406 + 0.542834i
\(983\) 11.9465 + 20.6920i 0.381035 + 0.659973i 0.991211 0.132294i \(-0.0422343\pi\)
−0.610175 + 0.792267i \(0.708901\pi\)
\(984\) 0 0
\(985\) 35.7468 + 61.9153i 1.13899 + 1.97278i
\(986\) −7.55482 13.0853i −0.240594 0.416722i
\(987\) 0 0
\(988\) −24.2074 14.5417i −0.770141 0.462632i
\(989\) 39.1605 1.24523
\(990\) 0 0
\(991\) 15.5487 26.9312i 0.493922 0.855498i −0.506054 0.862502i \(-0.668896\pi\)
0.999975 + 0.00700424i \(0.00222954\pi\)
\(992\) −24.6703 + 42.7303i −0.783284 + 1.35669i
\(993\) 0 0
\(994\) −3.01316 −0.0955716
\(995\) −80.0562 −2.53795
\(996\) 0 0
\(997\) −10.5392 + 18.2545i −0.333781 + 0.578125i −0.983250 0.182263i \(-0.941658\pi\)
0.649469 + 0.760388i \(0.274991\pi\)
\(998\) −8.39986 + 14.5490i −0.265893 + 0.460540i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.h.a.334.5 24
3.2 odd 2 117.2.h.a.22.8 yes 24
9.2 odd 6 117.2.f.a.61.5 24
9.7 even 3 351.2.f.a.100.8 24
13.3 even 3 351.2.f.a.172.8 24
39.29 odd 6 117.2.f.a.94.5 yes 24
117.16 even 3 inner 351.2.h.a.289.5 24
117.29 odd 6 117.2.h.a.16.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.5 24 9.2 odd 6
117.2.f.a.94.5 yes 24 39.29 odd 6
117.2.h.a.16.8 yes 24 117.29 odd 6
117.2.h.a.22.8 yes 24 3.2 odd 2
351.2.f.a.100.8 24 9.7 even 3
351.2.f.a.172.8 24 13.3 even 3
351.2.h.a.289.5 24 117.16 even 3 inner
351.2.h.a.334.5 24 1.1 even 1 trivial