L(s) = 1 | − 0.697·2-s − 1.51·4-s + (−1.44 + 2.50i)5-s + (1.58 − 2.74i)7-s + 2.45·8-s + (1.00 − 1.74i)10-s − 2.31·11-s + (−3.15 + 1.74i)13-s + (−1.10 + 1.91i)14-s + 1.31·16-s + (−2.69 − 4.66i)17-s + (−2.58 − 4.48i)19-s + (2.18 − 3.78i)20-s + 1.61·22-s + (−3.27 − 5.66i)23-s + ⋯ |
L(s) = 1 | − 0.493·2-s − 0.756·4-s + (−0.646 + 1.11i)5-s + (0.599 − 1.03i)7-s + 0.866·8-s + (0.318 − 0.552i)10-s − 0.697·11-s + (−0.874 + 0.484i)13-s + (−0.295 + 0.512i)14-s + 0.329·16-s + (−0.653 − 1.13i)17-s + (−0.593 − 1.02i)19-s + (0.489 − 0.847i)20-s + 0.343·22-s + (−0.682 − 1.18i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.680 + 0.732i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.680 + 0.732i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0967788 - 0.221958i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0967788 - 0.221958i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (3.15 - 1.74i)T \) |
good | 2 | \( 1 + 0.697T + 2T^{2} \) |
| 5 | \( 1 + (1.44 - 2.50i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.58 + 2.74i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 2.31T + 11T^{2} \) |
| 17 | \( 1 + (2.69 + 4.66i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.58 + 4.48i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.27 + 5.66i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.02T + 29T^{2} \) |
| 31 | \( 1 + (-4.23 + 7.34i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.42 - 4.19i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.25 - 2.17i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.99 - 5.18i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.521 + 0.902i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 1.29T + 53T^{2} \) |
| 59 | \( 1 - 4.70T + 59T^{2} \) |
| 61 | \( 1 + (3.71 - 6.44i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.18 + 7.24i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.680 - 1.17i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 1.41T + 73T^{2} \) |
| 79 | \( 1 + (0.0365 + 0.0633i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.08 - 1.88i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.0891 + 0.154i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.0654 - 0.113i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95087934131835609097871955469, −10.30585743825819458618825396782, −9.388690523354714626216737346975, −8.156351228594031788508563427644, −7.47484832138338747378558453491, −6.73307561798293068702659275341, −4.81178055494986423332812271307, −4.20001640931380776677180264624, −2.58005756946408701739276668734, −0.19715882142248416146662610022,
1.81991496191392049256682899905, 3.90895305116516165445001140589, 4.97013920026392269139537106640, 5.63550578391304035159275107042, 7.60876819004339582221092413701, 8.362289425981901881013923928906, 8.726872407557133584602135298399, 9.847408148610641129274938429751, 10.75137941343724097063891444918, 12.09021863073290868375117981453