Properties

Label 351.2.h.a.289.5
Level $351$
Weight $2$
Character 351.289
Analytic conductor $2.803$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(289,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.5
Character \(\chi\) \(=\) 351.289
Dual form 351.2.h.a.334.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.697564 q^{2} -1.51340 q^{4} +(-1.44568 - 2.50399i) q^{5} +(1.58641 + 2.74774i) q^{7} +2.45082 q^{8} +(1.00846 + 1.74670i) q^{10} -2.31294 q^{11} +(-3.15329 - 1.74835i) q^{13} +(-1.10662 - 1.91673i) q^{14} +1.31720 q^{16} +(-2.69365 + 4.66554i) q^{17} +(-2.58760 + 4.48186i) q^{19} +(2.18790 + 3.78956i) q^{20} +1.61342 q^{22} +(-3.27079 + 5.66518i) q^{23} +(-1.67999 + 2.90983i) q^{25} +(2.19962 + 1.21959i) q^{26} +(-2.40088 - 4.15845i) q^{28} -4.02068 q^{29} +(4.23854 + 7.34137i) q^{31} -5.82048 q^{32} +(1.87899 - 3.25451i) q^{34} +(4.58689 - 7.94473i) q^{35} +(-2.42323 - 4.19715i) q^{37} +(1.80502 - 3.12638i) q^{38} +(-3.54311 - 6.13685i) q^{40} +(1.25716 - 2.17746i) q^{41} +(-2.99320 - 5.18437i) q^{43} +3.50041 q^{44} +(2.28159 - 3.95182i) q^{46} +(-0.521283 + 0.902888i) q^{47} +(-1.53340 + 2.65593i) q^{49} +(1.17190 - 2.02979i) q^{50} +(4.77221 + 2.64597i) q^{52} +1.29495 q^{53} +(3.34377 + 5.79158i) q^{55} +(3.88801 + 6.73424i) q^{56} +2.80468 q^{58} +4.70451 q^{59} +(-3.71841 - 6.44047i) q^{61} +(-2.95665 - 5.12107i) q^{62} +1.42575 q^{64} +(0.180794 + 10.4234i) q^{65} +(-4.18368 + 7.24635i) q^{67} +(4.07658 - 7.06085i) q^{68} +(-3.19965 + 5.54196i) q^{70} +(0.680710 - 1.17903i) q^{71} +1.41722 q^{73} +(1.69036 + 2.92778i) q^{74} +(3.91609 - 6.78287i) q^{76} +(-3.66927 - 6.35536i) q^{77} +(-0.0365793 + 0.0633573i) q^{79} +(-1.90426 - 3.29827i) q^{80} +(-0.876947 + 1.51892i) q^{82} +(1.08808 - 1.88462i) q^{83} +15.5766 q^{85} +(2.08795 + 3.61643i) q^{86} -5.66860 q^{88} +(0.0891486 + 0.154410i) q^{89} +(-0.198393 - 11.4381i) q^{91} +(4.95003 - 8.57371i) q^{92} +(0.363628 - 0.629822i) q^{94} +14.9634 q^{95} +(-0.0654501 - 0.113363i) q^{97} +(1.06965 - 1.85268i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 18 q^{4} + 2 q^{5} + 3 q^{7} + 18 q^{8} - 6 q^{11} - 2 q^{14} + 6 q^{16} - 6 q^{17} - 3 q^{19} + 11 q^{20} - 18 q^{22} - 17 q^{23} - 6 q^{25} + 12 q^{26} + 24 q^{29} - 6 q^{31} + 38 q^{32}+ \cdots + 61 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.697564 −0.493252 −0.246626 0.969111i \(-0.579322\pi\)
−0.246626 + 0.969111i \(0.579322\pi\)
\(3\) 0 0
\(4\) −1.51340 −0.756702
\(5\) −1.44568 2.50399i −0.646529 1.11982i −0.983946 0.178465i \(-0.942887\pi\)
0.337417 0.941355i \(-0.390447\pi\)
\(6\) 0 0
\(7\) 1.58641 + 2.74774i 0.599607 + 1.03855i 0.992879 + 0.119128i \(0.0380098\pi\)
−0.393272 + 0.919422i \(0.628657\pi\)
\(8\) 2.45082 0.866497
\(9\) 0 0
\(10\) 1.00846 + 1.74670i 0.318902 + 0.552354i
\(11\) −2.31294 −0.697377 −0.348688 0.937239i \(-0.613373\pi\)
−0.348688 + 0.937239i \(0.613373\pi\)
\(12\) 0 0
\(13\) −3.15329 1.74835i −0.874566 0.484906i
\(14\) −1.10662 1.91673i −0.295757 0.512267i
\(15\) 0 0
\(16\) 1.31720 0.329301
\(17\) −2.69365 + 4.66554i −0.653306 + 1.13156i 0.329010 + 0.944326i \(0.393285\pi\)
−0.982316 + 0.187232i \(0.940048\pi\)
\(18\) 0 0
\(19\) −2.58760 + 4.48186i −0.593636 + 1.02821i 0.400101 + 0.916471i \(0.368975\pi\)
−0.993738 + 0.111738i \(0.964358\pi\)
\(20\) 2.18790 + 3.78956i 0.489230 + 0.847371i
\(21\) 0 0
\(22\) 1.61342 0.343982
\(23\) −3.27079 + 5.66518i −0.682007 + 1.18127i 0.292360 + 0.956308i \(0.405559\pi\)
−0.974367 + 0.224963i \(0.927774\pi\)
\(24\) 0 0
\(25\) −1.67999 + 2.90983i −0.335999 + 0.581967i
\(26\) 2.19962 + 1.21959i 0.431382 + 0.239181i
\(27\) 0 0
\(28\) −2.40088 4.15845i −0.453724 0.785873i
\(29\) −4.02068 −0.746621 −0.373311 0.927706i \(-0.621777\pi\)
−0.373311 + 0.927706i \(0.621777\pi\)
\(30\) 0 0
\(31\) 4.23854 + 7.34137i 0.761264 + 1.31855i 0.942199 + 0.335053i \(0.108754\pi\)
−0.180935 + 0.983495i \(0.557912\pi\)
\(32\) −5.82048 −1.02893
\(33\) 0 0
\(34\) 1.87899 3.25451i 0.322244 0.558144i
\(35\) 4.58689 7.94473i 0.775326 1.34290i
\(36\) 0 0
\(37\) −2.42323 4.19715i −0.398376 0.690008i 0.595150 0.803615i \(-0.297093\pi\)
−0.993526 + 0.113607i \(0.963759\pi\)
\(38\) 1.80502 3.12638i 0.292812 0.507166i
\(39\) 0 0
\(40\) −3.54311 6.13685i −0.560215 0.970321i
\(41\) 1.25716 2.17746i 0.196335 0.340062i −0.751002 0.660299i \(-0.770429\pi\)
0.947337 + 0.320237i \(0.103763\pi\)
\(42\) 0 0
\(43\) −2.99320 5.18437i −0.456458 0.790609i 0.542312 0.840177i \(-0.317549\pi\)
−0.998771 + 0.0495679i \(0.984216\pi\)
\(44\) 3.50041 0.527707
\(45\) 0 0
\(46\) 2.28159 3.95182i 0.336401 0.582664i
\(47\) −0.521283 + 0.902888i −0.0760369 + 0.131700i −0.901537 0.432703i \(-0.857560\pi\)
0.825500 + 0.564402i \(0.190893\pi\)
\(48\) 0 0
\(49\) −1.53340 + 2.65593i −0.219057 + 0.379418i
\(50\) 1.17190 2.02979i 0.165732 0.287056i
\(51\) 0 0
\(52\) 4.77221 + 2.64597i 0.661787 + 0.366929i
\(53\) 1.29495 0.177875 0.0889376 0.996037i \(-0.471653\pi\)
0.0889376 + 0.996037i \(0.471653\pi\)
\(54\) 0 0
\(55\) 3.34377 + 5.79158i 0.450874 + 0.780937i
\(56\) 3.88801 + 6.73424i 0.519558 + 0.899900i
\(57\) 0 0
\(58\) 2.80468 0.368272
\(59\) 4.70451 0.612475 0.306238 0.951955i \(-0.400930\pi\)
0.306238 + 0.951955i \(0.400930\pi\)
\(60\) 0 0
\(61\) −3.71841 6.44047i −0.476094 0.824618i 0.523531 0.852006i \(-0.324614\pi\)
−0.999625 + 0.0273883i \(0.991281\pi\)
\(62\) −2.95665 5.12107i −0.375495 0.650377i
\(63\) 0 0
\(64\) 1.42575 0.178218
\(65\) 0.180794 + 10.4234i 0.0224247 + 1.29286i
\(66\) 0 0
\(67\) −4.18368 + 7.24635i −0.511118 + 0.885283i 0.488799 + 0.872397i \(0.337435\pi\)
−0.999917 + 0.0128861i \(0.995898\pi\)
\(68\) 4.07658 7.06085i 0.494358 0.856253i
\(69\) 0 0
\(70\) −3.19965 + 5.54196i −0.382431 + 0.662390i
\(71\) 0.680710 1.17903i 0.0807855 0.139925i −0.822802 0.568328i \(-0.807590\pi\)
0.903588 + 0.428403i \(0.140924\pi\)
\(72\) 0 0
\(73\) 1.41722 0.165873 0.0829365 0.996555i \(-0.473570\pi\)
0.0829365 + 0.996555i \(0.473570\pi\)
\(74\) 1.69036 + 2.92778i 0.196500 + 0.340348i
\(75\) 0 0
\(76\) 3.91609 6.78287i 0.449206 0.778048i
\(77\) −3.66927 6.35536i −0.418152 0.724261i
\(78\) 0 0
\(79\) −0.0365793 + 0.0633573i −0.00411550 + 0.00712825i −0.868076 0.496432i \(-0.834643\pi\)
0.863960 + 0.503560i \(0.167977\pi\)
\(80\) −1.90426 3.29827i −0.212903 0.368758i
\(81\) 0 0
\(82\) −0.876947 + 1.51892i −0.0968426 + 0.167736i
\(83\) 1.08808 1.88462i 0.119433 0.206863i −0.800110 0.599853i \(-0.795226\pi\)
0.919543 + 0.392989i \(0.128559\pi\)
\(84\) 0 0
\(85\) 15.5766 1.68952
\(86\) 2.08795 + 3.61643i 0.225149 + 0.389969i
\(87\) 0 0
\(88\) −5.66860 −0.604275
\(89\) 0.0891486 + 0.154410i 0.00944973 + 0.0163674i 0.870712 0.491794i \(-0.163659\pi\)
−0.861262 + 0.508161i \(0.830325\pi\)
\(90\) 0 0
\(91\) −0.198393 11.4381i −0.0207973 1.19903i
\(92\) 4.95003 8.57371i 0.516077 0.893871i
\(93\) 0 0
\(94\) 0.363628 0.629822i 0.0375053 0.0649612i
\(95\) 14.9634 1.53521
\(96\) 0 0
\(97\) −0.0654501 0.113363i −0.00664545 0.0115103i 0.862684 0.505744i \(-0.168782\pi\)
−0.869329 + 0.494234i \(0.835449\pi\)
\(98\) 1.06965 1.85268i 0.108050 0.187149i
\(99\) 0 0
\(100\) 2.54251 4.40376i 0.254251 0.440376i
\(101\) −8.73990 −0.869652 −0.434826 0.900514i \(-0.643190\pi\)
−0.434826 + 0.900514i \(0.643190\pi\)
\(102\) 0 0
\(103\) −8.78259 15.2119i −0.865375 1.49887i −0.866675 0.498874i \(-0.833747\pi\)
0.00130026 0.999999i \(-0.499586\pi\)
\(104\) −7.72817 4.28490i −0.757809 0.420169i
\(105\) 0 0
\(106\) −0.903310 −0.0877373
\(107\) 6.23288 + 10.7957i 0.602555 + 1.04366i 0.992433 + 0.122790i \(0.0391841\pi\)
−0.389877 + 0.920867i \(0.627483\pi\)
\(108\) 0 0
\(109\) 4.84430 0.463999 0.232000 0.972716i \(-0.425473\pi\)
0.232000 + 0.972716i \(0.425473\pi\)
\(110\) −2.33249 4.04000i −0.222395 0.385199i
\(111\) 0 0
\(112\) 2.08963 + 3.61934i 0.197451 + 0.341996i
\(113\) −6.14716 −0.578276 −0.289138 0.957287i \(-0.593369\pi\)
−0.289138 + 0.957287i \(0.593369\pi\)
\(114\) 0 0
\(115\) 18.9141 1.76375
\(116\) 6.08491 0.564970
\(117\) 0 0
\(118\) −3.28170 −0.302105
\(119\) −17.0929 −1.56691
\(120\) 0 0
\(121\) −5.65032 −0.513666
\(122\) 2.59383 + 4.49264i 0.234834 + 0.406745i
\(123\) 0 0
\(124\) −6.41463 11.1105i −0.576051 0.997749i
\(125\) −4.74187 −0.424126
\(126\) 0 0
\(127\) −2.10206 3.64088i −0.186528 0.323076i 0.757562 0.652763i \(-0.226390\pi\)
−0.944090 + 0.329687i \(0.893057\pi\)
\(128\) 10.6464 0.941019
\(129\) 0 0
\(130\) −0.126115 7.27098i −0.0110610 0.637707i
\(131\) −0.309051 0.535292i −0.0270019 0.0467687i 0.852209 0.523202i \(-0.175263\pi\)
−0.879211 + 0.476433i \(0.841929\pi\)
\(132\) 0 0
\(133\) −16.4200 −1.42379
\(134\) 2.91838 5.05479i 0.252110 0.436667i
\(135\) 0 0
\(136\) −6.60166 + 11.4344i −0.566087 + 0.980492i
\(137\) 9.47775 + 16.4159i 0.809739 + 1.40251i 0.913045 + 0.407859i \(0.133724\pi\)
−0.103306 + 0.994650i \(0.532942\pi\)
\(138\) 0 0
\(139\) −3.02245 −0.256361 −0.128180 0.991751i \(-0.540914\pi\)
−0.128180 + 0.991751i \(0.540914\pi\)
\(140\) −6.94183 + 12.0236i −0.586691 + 1.01618i
\(141\) 0 0
\(142\) −0.474839 + 0.822445i −0.0398476 + 0.0690181i
\(143\) 7.29337 + 4.04383i 0.609902 + 0.338162i
\(144\) 0 0
\(145\) 5.81262 + 10.0678i 0.482712 + 0.836082i
\(146\) −0.988601 −0.0818172
\(147\) 0 0
\(148\) 3.66732 + 6.35199i 0.301452 + 0.522131i
\(149\) 5.73426 0.469769 0.234884 0.972023i \(-0.424529\pi\)
0.234884 + 0.972023i \(0.424529\pi\)
\(150\) 0 0
\(151\) −1.05976 + 1.83556i −0.0862420 + 0.149376i −0.905920 0.423449i \(-0.860819\pi\)
0.819678 + 0.572825i \(0.194153\pi\)
\(152\) −6.34175 + 10.9842i −0.514384 + 0.890940i
\(153\) 0 0
\(154\) 2.55955 + 4.43327i 0.206254 + 0.357243i
\(155\) 12.2552 21.2266i 0.984358 1.70496i
\(156\) 0 0
\(157\) 7.70204 + 13.3403i 0.614690 + 1.06467i 0.990439 + 0.137952i \(0.0440520\pi\)
−0.375749 + 0.926721i \(0.622615\pi\)
\(158\) 0.0255164 0.0441957i 0.00202998 0.00351602i
\(159\) 0 0
\(160\) 8.41457 + 14.5745i 0.665230 + 1.15221i
\(161\) −20.7553 −1.63575
\(162\) 0 0
\(163\) −6.56126 + 11.3644i −0.513918 + 0.890131i 0.485952 + 0.873985i \(0.338473\pi\)
−0.999870 + 0.0161459i \(0.994860\pi\)
\(164\) −1.90259 + 3.29538i −0.148567 + 0.257326i
\(165\) 0 0
\(166\) −0.759007 + 1.31464i −0.0589104 + 0.102036i
\(167\) −2.90872 + 5.03805i −0.225084 + 0.389856i −0.956345 0.292242i \(-0.905599\pi\)
0.731261 + 0.682098i \(0.238932\pi\)
\(168\) 0 0
\(169\) 6.88652 + 11.0261i 0.529733 + 0.848165i
\(170\) −10.8657 −0.833361
\(171\) 0 0
\(172\) 4.52992 + 7.84605i 0.345403 + 0.598256i
\(173\) −9.04187 15.6610i −0.687441 1.19068i −0.972663 0.232221i \(-0.925401\pi\)
0.285222 0.958461i \(-0.407933\pi\)
\(174\) 0 0
\(175\) −10.6606 −0.805869
\(176\) −3.04661 −0.229647
\(177\) 0 0
\(178\) −0.0621868 0.107711i −0.00466110 0.00807326i
\(179\) −10.9345 18.9391i −0.817283 1.41558i −0.907677 0.419670i \(-0.862146\pi\)
0.0903935 0.995906i \(-0.471188\pi\)
\(180\) 0 0
\(181\) −10.9883 −0.816754 −0.408377 0.912813i \(-0.633905\pi\)
−0.408377 + 0.912813i \(0.633905\pi\)
\(182\) 0.138392 + 7.97877i 0.0102583 + 0.591426i
\(183\) 0 0
\(184\) −8.01613 + 13.8843i −0.590957 + 1.02357i
\(185\) −7.00643 + 12.1355i −0.515123 + 0.892220i
\(186\) 0 0
\(187\) 6.23024 10.7911i 0.455600 0.789123i
\(188\) 0.788912 1.36644i 0.0575373 0.0996575i
\(189\) 0 0
\(190\) −10.4379 −0.757246
\(191\) −8.99172 15.5741i −0.650618 1.12690i −0.982973 0.183749i \(-0.941177\pi\)
0.332355 0.943154i \(-0.392157\pi\)
\(192\) 0 0
\(193\) −1.90083 + 3.29234i −0.136825 + 0.236988i −0.926293 0.376804i \(-0.877023\pi\)
0.789468 + 0.613792i \(0.210356\pi\)
\(194\) 0.0456556 + 0.0790778i 0.00327788 + 0.00567745i
\(195\) 0 0
\(196\) 2.32066 4.01950i 0.165761 0.287107i
\(197\) 12.3633 + 21.4139i 0.880848 + 1.52567i 0.850399 + 0.526138i \(0.176360\pi\)
0.0304487 + 0.999536i \(0.490306\pi\)
\(198\) 0 0
\(199\) 13.8440 23.9785i 0.981376 1.69979i 0.324329 0.945944i \(-0.394862\pi\)
0.657047 0.753849i \(-0.271805\pi\)
\(200\) −4.11737 + 7.13149i −0.291142 + 0.504273i
\(201\) 0 0
\(202\) 6.09664 0.428958
\(203\) −6.37845 11.0478i −0.447679 0.775403i
\(204\) 0 0
\(205\) −7.26980 −0.507745
\(206\) 6.12642 + 10.6113i 0.426848 + 0.739322i
\(207\) 0 0
\(208\) −4.15353 2.30294i −0.287996 0.159680i
\(209\) 5.98496 10.3663i 0.413988 0.717049i
\(210\) 0 0
\(211\) 1.89606 3.28407i 0.130530 0.226085i −0.793351 0.608764i \(-0.791665\pi\)
0.923881 + 0.382680i \(0.124999\pi\)
\(212\) −1.95978 −0.134599
\(213\) 0 0
\(214\) −4.34783 7.53066i −0.297212 0.514786i
\(215\) −8.65442 + 14.9899i −0.590227 + 1.02230i
\(216\) 0 0
\(217\) −13.4481 + 23.2929i −0.912919 + 1.58122i
\(218\) −3.37921 −0.228869
\(219\) 0 0
\(220\) −5.06048 8.76501i −0.341178 0.590937i
\(221\) 16.6509 10.0024i 1.12006 0.672831i
\(222\) 0 0
\(223\) 1.11066 0.0743751 0.0371876 0.999308i \(-0.488160\pi\)
0.0371876 + 0.999308i \(0.488160\pi\)
\(224\) −9.23368 15.9932i −0.616951 1.06859i
\(225\) 0 0
\(226\) 4.28803 0.285236
\(227\) −4.17223 7.22651i −0.276921 0.479641i 0.693697 0.720267i \(-0.255981\pi\)
−0.970618 + 0.240626i \(0.922647\pi\)
\(228\) 0 0
\(229\) −3.79878 6.57968i −0.251030 0.434797i 0.712779 0.701388i \(-0.247436\pi\)
−0.963810 + 0.266591i \(0.914103\pi\)
\(230\) −13.1938 −0.869973
\(231\) 0 0
\(232\) −9.85397 −0.646945
\(233\) −0.767797 −0.0503001 −0.0251500 0.999684i \(-0.508006\pi\)
−0.0251500 + 0.999684i \(0.508006\pi\)
\(234\) 0 0
\(235\) 3.01444 0.196640
\(236\) −7.11983 −0.463462
\(237\) 0 0
\(238\) 11.9234 0.772880
\(239\) 10.6216 + 18.3972i 0.687055 + 1.19001i 0.972786 + 0.231704i \(0.0744300\pi\)
−0.285732 + 0.958310i \(0.592237\pi\)
\(240\) 0 0
\(241\) 11.4305 + 19.7983i 0.736306 + 1.27532i 0.954148 + 0.299335i \(0.0967648\pi\)
−0.217842 + 0.975984i \(0.569902\pi\)
\(242\) 3.94146 0.253367
\(243\) 0 0
\(244\) 5.62746 + 9.74704i 0.360261 + 0.623991i
\(245\) 8.86725 0.566508
\(246\) 0 0
\(247\) 15.9953 9.60857i 1.01776 0.611379i
\(248\) 10.3879 + 17.9924i 0.659633 + 1.14252i
\(249\) 0 0
\(250\) 3.30776 0.209201
\(251\) −8.21662 + 14.2316i −0.518629 + 0.898291i 0.481137 + 0.876645i \(0.340224\pi\)
−0.999766 + 0.0216457i \(0.993109\pi\)
\(252\) 0 0
\(253\) 7.56513 13.1032i 0.475616 0.823791i
\(254\) 1.46632 + 2.53975i 0.0920053 + 0.159358i
\(255\) 0 0
\(256\) −10.2780 −0.642378
\(257\) −1.82657 + 3.16372i −0.113938 + 0.197347i −0.917355 0.398070i \(-0.869680\pi\)
0.803416 + 0.595417i \(0.203013\pi\)
\(258\) 0 0
\(259\) 7.68847 13.3168i 0.477738 0.827467i
\(260\) −0.273615 15.7748i −0.0169689 0.978313i
\(261\) 0 0
\(262\) 0.215583 + 0.373400i 0.0133187 + 0.0230688i
\(263\) 24.8898 1.53477 0.767384 0.641188i \(-0.221558\pi\)
0.767384 + 0.641188i \(0.221558\pi\)
\(264\) 0 0
\(265\) −1.87209 3.24255i −0.115001 0.199188i
\(266\) 11.4540 0.702290
\(267\) 0 0
\(268\) 6.33161 10.9667i 0.386764 0.669896i
\(269\) 4.43529 7.68215i 0.270424 0.468389i −0.698546 0.715565i \(-0.746169\pi\)
0.968971 + 0.247176i \(0.0795027\pi\)
\(270\) 0 0
\(271\) −5.20415 9.01385i −0.316129 0.547552i 0.663548 0.748134i \(-0.269050\pi\)
−0.979677 + 0.200582i \(0.935717\pi\)
\(272\) −3.54809 + 6.14547i −0.215134 + 0.372624i
\(273\) 0 0
\(274\) −6.61133 11.4512i −0.399405 0.691790i
\(275\) 3.88572 6.73026i 0.234318 0.405850i
\(276\) 0 0
\(277\) 12.4312 + 21.5315i 0.746918 + 1.29370i 0.949293 + 0.314392i \(0.101801\pi\)
−0.202375 + 0.979308i \(0.564866\pi\)
\(278\) 2.10835 0.126450
\(279\) 0 0
\(280\) 11.2417 19.4711i 0.671818 1.16362i
\(281\) 5.46747 9.46994i 0.326162 0.564929i −0.655585 0.755122i \(-0.727578\pi\)
0.981747 + 0.190192i \(0.0609112\pi\)
\(282\) 0 0
\(283\) −14.8192 + 25.6676i −0.880909 + 1.52578i −0.0305780 + 0.999532i \(0.509735\pi\)
−0.850331 + 0.526248i \(0.823599\pi\)
\(284\) −1.03019 + 1.78434i −0.0611306 + 0.105881i
\(285\) 0 0
\(286\) −5.08759 2.82083i −0.300835 0.166799i
\(287\) 7.97747 0.470895
\(288\) 0 0
\(289\) −6.01149 10.4122i −0.353617 0.612482i
\(290\) −4.05467 7.02290i −0.238099 0.412399i
\(291\) 0 0
\(292\) −2.14483 −0.125517
\(293\) 15.2763 0.892449 0.446225 0.894921i \(-0.352768\pi\)
0.446225 + 0.894921i \(0.352768\pi\)
\(294\) 0 0
\(295\) −6.80123 11.7801i −0.395983 0.685863i
\(296\) −5.93890 10.2865i −0.345192 0.597890i
\(297\) 0 0
\(298\) −4.00001 −0.231714
\(299\) 20.2185 12.1455i 1.16927 0.702391i
\(300\) 0 0
\(301\) 9.49688 16.4491i 0.547391 0.948110i
\(302\) 0.739250 1.28042i 0.0425391 0.0736798i
\(303\) 0 0
\(304\) −3.40840 + 5.90352i −0.195485 + 0.338590i
\(305\) −10.7513 + 18.6218i −0.615616 + 1.06628i
\(306\) 0 0
\(307\) −2.96530 −0.169238 −0.0846192 0.996413i \(-0.526967\pi\)
−0.0846192 + 0.996413i \(0.526967\pi\)
\(308\) 5.55309 + 9.61823i 0.316417 + 0.548050i
\(309\) 0 0
\(310\) −8.54876 + 14.8069i −0.485537 + 0.840974i
\(311\) −0.483334 0.837159i −0.0274073 0.0474709i 0.851996 0.523548i \(-0.175392\pi\)
−0.879404 + 0.476077i \(0.842058\pi\)
\(312\) 0 0
\(313\) −1.56622 + 2.71277i −0.0885279 + 0.153335i −0.906889 0.421369i \(-0.861550\pi\)
0.818361 + 0.574704i \(0.194883\pi\)
\(314\) −5.37266 9.30572i −0.303197 0.525152i
\(315\) 0 0
\(316\) 0.0553594 0.0958852i 0.00311421 0.00539397i
\(317\) −14.5827 + 25.2580i −0.819046 + 1.41863i 0.0873393 + 0.996179i \(0.472164\pi\)
−0.906386 + 0.422451i \(0.861170\pi\)
\(318\) 0 0
\(319\) 9.29957 0.520676
\(320\) −2.06118 3.57006i −0.115223 0.199573i
\(321\) 0 0
\(322\) 14.4781 0.806835
\(323\) −13.9402 24.1451i −0.775652 1.34347i
\(324\) 0 0
\(325\) 10.3849 6.23834i 0.576052 0.346041i
\(326\) 4.57690 7.92742i 0.253491 0.439059i
\(327\) 0 0
\(328\) 3.08107 5.33657i 0.170124 0.294663i
\(329\) −3.30787 −0.182369
\(330\) 0 0
\(331\) −3.57725 6.19598i −0.196624 0.340562i 0.750808 0.660520i \(-0.229664\pi\)
−0.947432 + 0.319959i \(0.896331\pi\)
\(332\) −1.64671 + 2.85219i −0.0903750 + 0.156534i
\(333\) 0 0
\(334\) 2.02902 3.51436i 0.111023 0.192297i
\(335\) 24.1931 1.32181
\(336\) 0 0
\(337\) −7.36818 12.7621i −0.401370 0.695194i 0.592521 0.805555i \(-0.298133\pi\)
−0.993892 + 0.110361i \(0.964799\pi\)
\(338\) −4.80379 7.69143i −0.261292 0.418359i
\(339\) 0 0
\(340\) −23.5738 −1.27847
\(341\) −9.80348 16.9801i −0.530888 0.919525i
\(342\) 0 0
\(343\) 12.4793 0.673821
\(344\) −7.33580 12.7060i −0.395520 0.685060i
\(345\) 0 0
\(346\) 6.30728 + 10.9245i 0.339081 + 0.587306i
\(347\) 19.9131 1.06899 0.534496 0.845171i \(-0.320502\pi\)
0.534496 + 0.845171i \(0.320502\pi\)
\(348\) 0 0
\(349\) −27.7690 −1.48644 −0.743221 0.669046i \(-0.766703\pi\)
−0.743221 + 0.669046i \(0.766703\pi\)
\(350\) 7.43648 0.397496
\(351\) 0 0
\(352\) 13.4624 0.717549
\(353\) −28.5705 −1.52065 −0.760326 0.649542i \(-0.774961\pi\)
−0.760326 + 0.649542i \(0.774961\pi\)
\(354\) 0 0
\(355\) −3.93636 −0.208920
\(356\) −0.134918 0.233685i −0.00715064 0.0123853i
\(357\) 0 0
\(358\) 7.62751 + 13.2112i 0.403127 + 0.698236i
\(359\) 15.4518 0.815515 0.407757 0.913090i \(-0.366311\pi\)
0.407757 + 0.913090i \(0.366311\pi\)
\(360\) 0 0
\(361\) −3.89136 6.74004i −0.204809 0.354739i
\(362\) 7.66504 0.402866
\(363\) 0 0
\(364\) 0.300249 + 17.3104i 0.0157373 + 0.907312i
\(365\) −2.04885 3.54871i −0.107242 0.185748i
\(366\) 0 0
\(367\) 0.471182 0.0245955 0.0122977 0.999924i \(-0.496085\pi\)
0.0122977 + 0.999924i \(0.496085\pi\)
\(368\) −4.30830 + 7.46220i −0.224586 + 0.388994i
\(369\) 0 0
\(370\) 4.88743 8.46528i 0.254086 0.440089i
\(371\) 2.05432 + 3.55819i 0.106655 + 0.184732i
\(372\) 0 0
\(373\) 32.3488 1.67496 0.837478 0.546472i \(-0.184029\pi\)
0.837478 + 0.546472i \(0.184029\pi\)
\(374\) −4.34599 + 7.52747i −0.224726 + 0.389236i
\(375\) 0 0
\(376\) −1.27757 + 2.21282i −0.0658857 + 0.114117i
\(377\) 12.6784 + 7.02956i 0.652970 + 0.362041i
\(378\) 0 0
\(379\) 0.713364 + 1.23558i 0.0366430 + 0.0634676i 0.883765 0.467930i \(-0.155000\pi\)
−0.847122 + 0.531398i \(0.821667\pi\)
\(380\) −22.6457 −1.16170
\(381\) 0 0
\(382\) 6.27229 + 10.8639i 0.320919 + 0.555847i
\(383\) 15.9444 0.814719 0.407360 0.913268i \(-0.366450\pi\)
0.407360 + 0.913268i \(0.366450\pi\)
\(384\) 0 0
\(385\) −10.6092 + 18.3757i −0.540695 + 0.936510i
\(386\) 1.32595 2.29662i 0.0674892 0.116895i
\(387\) 0 0
\(388\) 0.0990524 + 0.171564i 0.00502863 + 0.00870984i
\(389\) −10.0545 + 17.4150i −0.509785 + 0.882973i 0.490151 + 0.871638i \(0.336942\pi\)
−0.999936 + 0.0113357i \(0.996392\pi\)
\(390\) 0 0
\(391\) −17.6207 30.5200i −0.891119 1.54346i
\(392\) −3.75810 + 6.50921i −0.189813 + 0.328765i
\(393\) 0 0
\(394\) −8.62418 14.9375i −0.434480 0.752542i
\(395\) 0.211528 0.0106431
\(396\) 0 0
\(397\) 1.77422 3.07304i 0.0890454 0.154231i −0.818062 0.575129i \(-0.804952\pi\)
0.907108 + 0.420898i \(0.138285\pi\)
\(398\) −9.65708 + 16.7266i −0.484066 + 0.838427i
\(399\) 0 0
\(400\) −2.21290 + 3.83285i −0.110645 + 0.191642i
\(401\) 13.3212 23.0730i 0.665229 1.15221i −0.313994 0.949425i \(-0.601667\pi\)
0.979223 0.202785i \(-0.0649994\pi\)
\(402\) 0 0
\(403\) −0.530063 30.5600i −0.0264043 1.52230i
\(404\) 13.2270 0.658068
\(405\) 0 0
\(406\) 4.44937 + 7.70654i 0.220819 + 0.382469i
\(407\) 5.60477 + 9.70775i 0.277818 + 0.481195i
\(408\) 0 0
\(409\) −13.5215 −0.668597 −0.334299 0.942467i \(-0.608499\pi\)
−0.334299 + 0.942467i \(0.608499\pi\)
\(410\) 5.07115 0.250446
\(411\) 0 0
\(412\) 13.2916 + 23.0218i 0.654831 + 1.13420i
\(413\) 7.46329 + 12.9268i 0.367245 + 0.636086i
\(414\) 0 0
\(415\) −6.29209 −0.308866
\(416\) 18.3537 + 10.1763i 0.899864 + 0.498932i
\(417\) 0 0
\(418\) −4.17489 + 7.23112i −0.204201 + 0.353686i
\(419\) −6.30293 + 10.9170i −0.307918 + 0.533330i −0.977907 0.209041i \(-0.932966\pi\)
0.669988 + 0.742372i \(0.266299\pi\)
\(420\) 0 0
\(421\) 4.49703 7.78908i 0.219172 0.379617i −0.735383 0.677651i \(-0.762998\pi\)
0.954555 + 0.298035i \(0.0963312\pi\)
\(422\) −1.32262 + 2.29085i −0.0643842 + 0.111517i
\(423\) 0 0
\(424\) 3.17370 0.154128
\(425\) −9.05063 15.6761i −0.439020 0.760405i
\(426\) 0 0
\(427\) 11.7979 20.4345i 0.570938 0.988894i
\(428\) −9.43287 16.3382i −0.455955 0.789737i
\(429\) 0 0
\(430\) 6.03701 10.4564i 0.291131 0.504253i
\(431\) 8.05558 + 13.9527i 0.388024 + 0.672077i 0.992184 0.124786i \(-0.0398245\pi\)
−0.604160 + 0.796863i \(0.706491\pi\)
\(432\) 0 0
\(433\) −13.5252 + 23.4264i −0.649981 + 1.12580i 0.333146 + 0.942875i \(0.391890\pi\)
−0.983127 + 0.182924i \(0.941444\pi\)
\(434\) 9.38093 16.2482i 0.450299 0.779941i
\(435\) 0 0
\(436\) −7.33138 −0.351110
\(437\) −16.9270 29.3184i −0.809729 1.40249i
\(438\) 0 0
\(439\) 2.30329 0.109930 0.0549651 0.998488i \(-0.482495\pi\)
0.0549651 + 0.998488i \(0.482495\pi\)
\(440\) 8.19499 + 14.1941i 0.390681 + 0.676679i
\(441\) 0 0
\(442\) −11.6150 + 6.97728i −0.552471 + 0.331875i
\(443\) −13.1481 + 22.7731i −0.624683 + 1.08198i 0.363919 + 0.931431i \(0.381439\pi\)
−0.988602 + 0.150552i \(0.951895\pi\)
\(444\) 0 0
\(445\) 0.257761 0.446455i 0.0122190 0.0211640i
\(446\) −0.774754 −0.0366857
\(447\) 0 0
\(448\) 2.26182 + 3.91759i 0.106861 + 0.185089i
\(449\) 4.46646 7.73613i 0.210785 0.365091i −0.741175 0.671311i \(-0.765731\pi\)
0.951960 + 0.306221i \(0.0990646\pi\)
\(450\) 0 0
\(451\) −2.90772 + 5.03633i −0.136919 + 0.237151i
\(452\) 9.30314 0.437583
\(453\) 0 0
\(454\) 2.91040 + 5.04095i 0.136592 + 0.236584i
\(455\) −28.3540 + 17.0326i −1.32926 + 0.798499i
\(456\) 0 0
\(457\) 18.8815 0.883239 0.441620 0.897202i \(-0.354404\pi\)
0.441620 + 0.897202i \(0.354404\pi\)
\(458\) 2.64989 + 4.58974i 0.123821 + 0.214465i
\(459\) 0 0
\(460\) −28.6247 −1.33463
\(461\) −11.6128 20.1139i −0.540860 0.936797i −0.998855 0.0478419i \(-0.984766\pi\)
0.457995 0.888955i \(-0.348568\pi\)
\(462\) 0 0
\(463\) 1.15005 + 1.99194i 0.0534473 + 0.0925735i 0.891511 0.452999i \(-0.149646\pi\)
−0.838064 + 0.545572i \(0.816312\pi\)
\(464\) −5.29606 −0.245863
\(465\) 0 0
\(466\) 0.535587 0.0248106
\(467\) 22.4713 1.03985 0.519925 0.854212i \(-0.325960\pi\)
0.519925 + 0.854212i \(0.325960\pi\)
\(468\) 0 0
\(469\) −26.5482 −1.22588
\(470\) −2.10276 −0.0969931
\(471\) 0 0
\(472\) 11.5299 0.530708
\(473\) 6.92308 + 11.9911i 0.318323 + 0.551352i
\(474\) 0 0
\(475\) −8.69431 15.0590i −0.398922 0.690954i
\(476\) 25.8685 1.18568
\(477\) 0 0
\(478\) −7.40925 12.8332i −0.338891 0.586976i
\(479\) 4.87209 0.222611 0.111306 0.993786i \(-0.464497\pi\)
0.111306 + 0.993786i \(0.464497\pi\)
\(480\) 0 0
\(481\) 0.303044 + 17.4715i 0.0138176 + 0.796632i
\(482\) −7.97353 13.8106i −0.363184 0.629054i
\(483\) 0 0
\(484\) 8.55123 0.388692
\(485\) −0.189240 + 0.327773i −0.00859294 + 0.0148834i
\(486\) 0 0
\(487\) −6.17126 + 10.6889i −0.279647 + 0.484362i −0.971297 0.237870i \(-0.923551\pi\)
0.691650 + 0.722233i \(0.256884\pi\)
\(488\) −9.11316 15.7845i −0.412534 0.714529i
\(489\) 0 0
\(490\) −6.18547 −0.279431
\(491\) −14.0792 + 24.3859i −0.635386 + 1.10052i 0.351047 + 0.936358i \(0.385826\pi\)
−0.986433 + 0.164164i \(0.947507\pi\)
\(492\) 0 0
\(493\) 10.8303 18.7586i 0.487772 0.844846i
\(494\) −11.1578 + 6.70259i −0.502012 + 0.301564i
\(495\) 0 0
\(496\) 5.58303 + 9.67008i 0.250685 + 0.434200i
\(497\) 4.31955 0.193758
\(498\) 0 0
\(499\) 12.0417 + 20.8568i 0.539061 + 0.933681i 0.998955 + 0.0457069i \(0.0145540\pi\)
−0.459894 + 0.887974i \(0.652113\pi\)
\(500\) 7.17637 0.320937
\(501\) 0 0
\(502\) 5.73162 9.92745i 0.255815 0.443084i
\(503\) 1.66703 2.88738i 0.0743291 0.128742i −0.826465 0.562988i \(-0.809652\pi\)
0.900794 + 0.434246i \(0.142985\pi\)
\(504\) 0 0
\(505\) 12.6351 + 21.8847i 0.562255 + 0.973855i
\(506\) −5.27716 + 9.14031i −0.234598 + 0.406336i
\(507\) 0 0
\(508\) 3.18127 + 5.51013i 0.141146 + 0.244472i
\(509\) 17.0658 29.5589i 0.756429 1.31017i −0.188232 0.982125i \(-0.560276\pi\)
0.944661 0.328048i \(-0.106391\pi\)
\(510\) 0 0
\(511\) 2.24829 + 3.89416i 0.0994587 + 0.172267i
\(512\) −14.1232 −0.624165
\(513\) 0 0
\(514\) 1.27415 2.20689i 0.0562004 0.0973419i
\(515\) −25.3937 + 43.9831i −1.11898 + 1.93813i
\(516\) 0 0
\(517\) 1.20569 2.08832i 0.0530264 0.0918443i
\(518\) −5.36320 + 9.28933i −0.235645 + 0.408150i
\(519\) 0 0
\(520\) 0.443094 + 25.5459i 0.0194310 + 1.12026i
\(521\) −42.5774 −1.86535 −0.932675 0.360719i \(-0.882531\pi\)
−0.932675 + 0.360719i \(0.882531\pi\)
\(522\) 0 0
\(523\) −1.45092 2.51307i −0.0634443 0.109889i 0.832559 0.553937i \(-0.186875\pi\)
−0.896003 + 0.444048i \(0.853542\pi\)
\(524\) 0.467719 + 0.810114i 0.0204324 + 0.0353900i
\(525\) 0 0
\(526\) −17.3622 −0.757027
\(527\) −45.6686 −1.98935
\(528\) 0 0
\(529\) −9.89616 17.1406i −0.430268 0.745245i
\(530\) 1.30590 + 2.26188i 0.0567247 + 0.0982500i
\(531\) 0 0
\(532\) 24.8501 1.07739
\(533\) −7.77115 + 4.66822i −0.336606 + 0.202203i
\(534\) 0 0
\(535\) 18.0215 31.2142i 0.779139 1.34951i
\(536\) −10.2535 + 17.7595i −0.442882 + 0.767095i
\(537\) 0 0
\(538\) −3.09390 + 5.35879i −0.133387 + 0.231034i
\(539\) 3.54666 6.14300i 0.152765 0.264598i
\(540\) 0 0
\(541\) 22.6048 0.971857 0.485929 0.873999i \(-0.338482\pi\)
0.485929 + 0.873999i \(0.338482\pi\)
\(542\) 3.63022 + 6.28773i 0.155931 + 0.270081i
\(543\) 0 0
\(544\) 15.6783 27.1557i 0.672203 1.16429i
\(545\) −7.00331 12.1301i −0.299989 0.519596i
\(546\) 0 0
\(547\) −18.1136 + 31.3737i −0.774481 + 1.34144i 0.160604 + 0.987019i \(0.448656\pi\)
−0.935085 + 0.354422i \(0.884678\pi\)
\(548\) −14.3437 24.8440i −0.612731 1.06128i
\(549\) 0 0
\(550\) −2.71054 + 4.69479i −0.115578 + 0.200186i
\(551\) 10.4039 18.0201i 0.443222 0.767682i
\(552\) 0 0
\(553\) −0.232120 −0.00987073
\(554\) −8.67155 15.0196i −0.368419 0.638120i
\(555\) 0 0
\(556\) 4.57419 0.193989
\(557\) −1.08919 1.88653i −0.0461503 0.0799347i 0.842027 0.539435i \(-0.181362\pi\)
−0.888178 + 0.459500i \(0.848029\pi\)
\(558\) 0 0
\(559\) 0.374323 + 21.5810i 0.0158322 + 0.912779i
\(560\) 6.04188 10.4648i 0.255316 0.442220i
\(561\) 0 0
\(562\) −3.81391 + 6.60588i −0.160880 + 0.278652i
\(563\) −7.65705 −0.322706 −0.161353 0.986897i \(-0.551586\pi\)
−0.161353 + 0.986897i \(0.551586\pi\)
\(564\) 0 0
\(565\) 8.88684 + 15.3925i 0.373872 + 0.647565i
\(566\) 10.3373 17.9048i 0.434510 0.752594i
\(567\) 0 0
\(568\) 1.66830 2.88958i 0.0700004 0.121244i
\(569\) 26.5940 1.11488 0.557440 0.830217i \(-0.311784\pi\)
0.557440 + 0.830217i \(0.311784\pi\)
\(570\) 0 0
\(571\) 21.6621 + 37.5199i 0.906531 + 1.57016i 0.818849 + 0.574010i \(0.194613\pi\)
0.0876825 + 0.996148i \(0.472054\pi\)
\(572\) −11.0378 6.11995i −0.461515 0.255888i
\(573\) 0 0
\(574\) −5.56479 −0.232270
\(575\) −10.9898 19.0349i −0.458307 0.793811i
\(576\) 0 0
\(577\) −24.5681 −1.02278 −0.511392 0.859348i \(-0.670870\pi\)
−0.511392 + 0.859348i \(0.670870\pi\)
\(578\) 4.19339 + 7.26317i 0.174422 + 0.302108i
\(579\) 0 0
\(580\) −8.79685 15.2366i −0.365269 0.632665i
\(581\) 6.90459 0.286451
\(582\) 0 0
\(583\) −2.99514 −0.124046
\(584\) 3.47336 0.143729
\(585\) 0 0
\(586\) −10.6562 −0.440202
\(587\) 13.9587 0.576138 0.288069 0.957610i \(-0.406987\pi\)
0.288069 + 0.957610i \(0.406987\pi\)
\(588\) 0 0
\(589\) −43.8706 −1.80766
\(590\) 4.74429 + 8.21735i 0.195319 + 0.338303i
\(591\) 0 0
\(592\) −3.19189 5.52851i −0.131186 0.227220i
\(593\) 42.3659 1.73976 0.869880 0.493263i \(-0.164196\pi\)
0.869880 + 0.493263i \(0.164196\pi\)
\(594\) 0 0
\(595\) 24.7110 + 42.8006i 1.01305 + 1.75465i
\(596\) −8.67826 −0.355475
\(597\) 0 0
\(598\) −14.1037 + 8.47224i −0.576743 + 0.346456i
\(599\) 0.140194 + 0.242822i 0.00572815 + 0.00992145i 0.868875 0.495031i \(-0.164843\pi\)
−0.863147 + 0.504953i \(0.831510\pi\)
\(600\) 0 0
\(601\) 17.5799 0.717101 0.358550 0.933510i \(-0.383271\pi\)
0.358550 + 0.933510i \(0.383271\pi\)
\(602\) −6.62468 + 11.4743i −0.270002 + 0.467657i
\(603\) 0 0
\(604\) 1.60385 2.77794i 0.0652596 0.113033i
\(605\) 8.16857 + 14.1484i 0.332100 + 0.575214i
\(606\) 0 0
\(607\) −40.1830 −1.63098 −0.815489 0.578773i \(-0.803532\pi\)
−0.815489 + 0.578773i \(0.803532\pi\)
\(608\) 15.0611 26.0866i 0.610808 1.05795i
\(609\) 0 0
\(610\) 7.49970 12.9899i 0.303654 0.525944i
\(611\) 3.22232 1.93569i 0.130361 0.0783095i
\(612\) 0 0
\(613\) 12.3197 + 21.3384i 0.497589 + 0.861849i 0.999996 0.00278192i \(-0.000885515\pi\)
−0.502407 + 0.864631i \(0.667552\pi\)
\(614\) 2.06848 0.0834772
\(615\) 0 0
\(616\) −8.99273 15.5759i −0.362327 0.627570i
\(617\) −36.1037 −1.45348 −0.726739 0.686913i \(-0.758965\pi\)
−0.726739 + 0.686913i \(0.758965\pi\)
\(618\) 0 0
\(619\) −19.1602 + 33.1865i −0.770114 + 1.33388i 0.167386 + 0.985892i \(0.446468\pi\)
−0.937500 + 0.347986i \(0.886866\pi\)
\(620\) −18.5470 + 32.1244i −0.744867 + 1.29015i
\(621\) 0 0
\(622\) 0.337156 + 0.583971i 0.0135187 + 0.0234151i
\(623\) −0.282853 + 0.489915i −0.0113323 + 0.0196280i
\(624\) 0 0
\(625\) 15.2552 + 26.4228i 0.610208 + 1.05691i
\(626\) 1.09254 1.89233i 0.0436665 0.0756327i
\(627\) 0 0
\(628\) −11.6563 20.1893i −0.465137 0.805641i
\(629\) 26.1093 1.04105
\(630\) 0 0
\(631\) 4.85653 8.41176i 0.193335 0.334867i −0.753018 0.658000i \(-0.771403\pi\)
0.946354 + 0.323133i \(0.104736\pi\)
\(632\) −0.0896495 + 0.155278i −0.00356607 + 0.00617661i
\(633\) 0 0
\(634\) 10.1724 17.6191i 0.403996 0.699742i
\(635\) −6.07783 + 10.5271i −0.241191 + 0.417756i
\(636\) 0 0
\(637\) 9.47877 5.69400i 0.375562 0.225604i
\(638\) −6.48704 −0.256825
\(639\) 0 0
\(640\) −15.3913 26.6586i −0.608396 1.05377i
\(641\) −14.9792 25.9448i −0.591643 1.02476i −0.994011 0.109278i \(-0.965146\pi\)
0.402368 0.915478i \(-0.368187\pi\)
\(642\) 0 0
\(643\) 18.5574 0.731834 0.365917 0.930647i \(-0.380755\pi\)
0.365917 + 0.930647i \(0.380755\pi\)
\(644\) 31.4111 1.23777
\(645\) 0 0
\(646\) 9.72416 + 16.8427i 0.382592 + 0.662669i
\(647\) −17.4909 30.2951i −0.687637 1.19102i −0.972600 0.232484i \(-0.925315\pi\)
0.284963 0.958538i \(-0.408019\pi\)
\(648\) 0 0
\(649\) −10.8812 −0.427126
\(650\) −7.24415 + 4.35164i −0.284139 + 0.170685i
\(651\) 0 0
\(652\) 9.92984 17.1990i 0.388883 0.673565i
\(653\) −7.84322 + 13.5849i −0.306929 + 0.531616i −0.977689 0.210058i \(-0.932635\pi\)
0.670760 + 0.741674i \(0.265968\pi\)
\(654\) 0 0
\(655\) −0.893579 + 1.54772i −0.0349150 + 0.0604746i
\(656\) 1.65593 2.86816i 0.0646533 0.111983i
\(657\) 0 0
\(658\) 2.30745 0.0899539
\(659\) 11.1513 + 19.3146i 0.434391 + 0.752388i 0.997246 0.0741680i \(-0.0236301\pi\)
−0.562854 + 0.826556i \(0.690297\pi\)
\(660\) 0 0
\(661\) −8.30249 + 14.3803i −0.322930 + 0.559330i −0.981091 0.193546i \(-0.938001\pi\)
0.658162 + 0.752877i \(0.271334\pi\)
\(662\) 2.49536 + 4.32209i 0.0969849 + 0.167983i
\(663\) 0 0
\(664\) 2.66670 4.61886i 0.103488 0.179246i
\(665\) 23.7381 + 41.1156i 0.920524 + 1.59439i
\(666\) 0 0
\(667\) 13.1508 22.7779i 0.509201 0.881962i
\(668\) 4.40207 7.62462i 0.170321 0.295005i
\(669\) 0 0
\(670\) −16.8762 −0.651986
\(671\) 8.60045 + 14.8964i 0.332017 + 0.575069i
\(672\) 0 0
\(673\) −8.62484 −0.332463 −0.166232 0.986087i \(-0.553160\pi\)
−0.166232 + 0.986087i \(0.553160\pi\)
\(674\) 5.13978 + 8.90235i 0.197977 + 0.342906i
\(675\) 0 0
\(676\) −10.4221 16.6870i −0.400850 0.641808i
\(677\) −11.5236 + 19.9595i −0.442888 + 0.767105i −0.997902 0.0647358i \(-0.979380\pi\)
0.555014 + 0.831841i \(0.312713\pi\)
\(678\) 0 0
\(679\) 0.207661 0.359680i 0.00796931 0.0138033i
\(680\) 38.1756 1.46397
\(681\) 0 0
\(682\) 6.83855 + 11.8447i 0.261862 + 0.453557i
\(683\) 13.6294 23.6068i 0.521514 0.903289i −0.478172 0.878266i \(-0.658701\pi\)
0.999687 0.0250235i \(-0.00796605\pi\)
\(684\) 0 0
\(685\) 27.4036 47.4645i 1.04704 1.81352i
\(686\) −8.70513 −0.332363
\(687\) 0 0
\(688\) −3.94265 6.82888i −0.150312 0.260348i
\(689\) −4.08336 2.26403i −0.155564 0.0862527i
\(690\) 0 0
\(691\) −21.2474 −0.808288 −0.404144 0.914695i \(-0.632431\pi\)
−0.404144 + 0.914695i \(0.632431\pi\)
\(692\) 13.6840 + 23.7014i 0.520188 + 0.900992i
\(693\) 0 0
\(694\) −13.8907 −0.527282
\(695\) 4.36950 + 7.56820i 0.165745 + 0.287078i
\(696\) 0 0
\(697\) 6.77268 + 11.7306i 0.256533 + 0.444329i
\(698\) 19.3707 0.733190
\(699\) 0 0
\(700\) 16.1339 0.609803
\(701\) −10.1915 −0.384928 −0.192464 0.981304i \(-0.561648\pi\)
−0.192464 + 0.981304i \(0.561648\pi\)
\(702\) 0 0
\(703\) 25.0814 0.945962
\(704\) −3.29766 −0.124285
\(705\) 0 0
\(706\) 19.9297 0.750065
\(707\) −13.8651 24.0150i −0.521450 0.903177i
\(708\) 0 0
\(709\) −12.8669 22.2861i −0.483227 0.836973i 0.516588 0.856234i \(-0.327202\pi\)
−0.999814 + 0.0192609i \(0.993869\pi\)
\(710\) 2.74586 0.103050
\(711\) 0 0
\(712\) 0.218487 + 0.378431i 0.00818816 + 0.0141823i
\(713\) −55.4535 −2.07675
\(714\) 0 0
\(715\) −0.418165 24.1087i −0.0156385 0.901612i
\(716\) 16.5483 + 28.6626i 0.618440 + 1.07117i
\(717\) 0 0
\(718\) −10.7786 −0.402254
\(719\) 8.35595 14.4729i 0.311624 0.539749i −0.667090 0.744977i \(-0.732460\pi\)
0.978714 + 0.205228i \(0.0657936\pi\)
\(720\) 0 0
\(721\) 27.8656 48.2646i 1.03777 1.79747i
\(722\) 2.71447 + 4.70161i 0.101022 + 0.174976i
\(723\) 0 0
\(724\) 16.6298 0.618040
\(725\) 6.75471 11.6995i 0.250864 0.434509i
\(726\) 0 0
\(727\) −20.7535 + 35.9461i −0.769705 + 1.33317i 0.168018 + 0.985784i \(0.446263\pi\)
−0.937723 + 0.347384i \(0.887070\pi\)
\(728\) −0.486227 28.0327i −0.0180208 1.03896i
\(729\) 0 0
\(730\) 1.42920 + 2.47545i 0.0528972 + 0.0916206i
\(731\) 32.2505 1.19283
\(732\) 0 0
\(733\) −18.6541 32.3098i −0.689003 1.19339i −0.972161 0.234315i \(-0.924715\pi\)
0.283157 0.959073i \(-0.408618\pi\)
\(734\) −0.328679 −0.0121318
\(735\) 0 0
\(736\) 19.0376 32.9741i 0.701735 1.21544i
\(737\) 9.67659 16.7604i 0.356442 0.617375i
\(738\) 0 0
\(739\) −17.9464 31.0841i −0.660169 1.14345i −0.980571 0.196165i \(-0.937151\pi\)
0.320401 0.947282i \(-0.396182\pi\)
\(740\) 10.6036 18.3659i 0.389795 0.675145i
\(741\) 0 0
\(742\) −1.43302 2.48207i −0.0526079 0.0911195i
\(743\) −0.751788 + 1.30214i −0.0275804 + 0.0477707i −0.879486 0.475924i \(-0.842114\pi\)
0.851906 + 0.523695i \(0.175447\pi\)
\(744\) 0 0
\(745\) −8.28992 14.3586i −0.303719 0.526057i
\(746\) −22.5653 −0.826175
\(747\) 0 0
\(748\) −9.42888 + 16.3313i −0.344754 + 0.597131i
\(749\) −19.7758 + 34.2527i −0.722593 + 1.25157i
\(750\) 0 0
\(751\) −2.10916 + 3.65317i −0.0769642 + 0.133306i −0.901939 0.431864i \(-0.857856\pi\)
0.824975 + 0.565170i \(0.191189\pi\)
\(752\) −0.686636 + 1.18929i −0.0250390 + 0.0433689i
\(753\) 0 0
\(754\) −8.84398 4.90357i −0.322079 0.178577i
\(755\) 6.12830 0.223032
\(756\) 0 0
\(757\) −3.70611 6.41918i −0.134701 0.233309i 0.790782 0.612098i \(-0.209674\pi\)
−0.925483 + 0.378789i \(0.876341\pi\)
\(758\) −0.497617 0.861898i −0.0180743 0.0313055i
\(759\) 0 0
\(760\) 36.6726 1.33026
\(761\) −36.5128 −1.32359 −0.661795 0.749685i \(-0.730205\pi\)
−0.661795 + 0.749685i \(0.730205\pi\)
\(762\) 0 0
\(763\) 7.68505 + 13.3109i 0.278217 + 0.481887i
\(764\) 13.6081 + 23.5699i 0.492324 + 0.852730i
\(765\) 0 0
\(766\) −11.1222 −0.401862
\(767\) −14.8347 8.22515i −0.535650 0.296993i
\(768\) 0 0
\(769\) −8.00060 + 13.8575i −0.288509 + 0.499712i −0.973454 0.228882i \(-0.926493\pi\)
0.684945 + 0.728595i \(0.259826\pi\)
\(770\) 7.40059 12.8182i 0.266699 0.461936i
\(771\) 0 0
\(772\) 2.87673 4.98264i 0.103536 0.179329i
\(773\) −14.3128 + 24.7905i −0.514796 + 0.891652i 0.485057 + 0.874483i \(0.338799\pi\)
−0.999853 + 0.0171698i \(0.994534\pi\)
\(774\) 0 0
\(775\) −28.4829 −1.02314
\(776\) −0.160407 0.277832i −0.00575826 0.00997360i
\(777\) 0 0
\(778\) 7.01367 12.1480i 0.251452 0.435528i
\(779\) 6.50604 + 11.2688i 0.233103 + 0.403746i
\(780\) 0 0
\(781\) −1.57444 + 2.72701i −0.0563379 + 0.0975801i
\(782\) 12.2916 + 21.2896i 0.439546 + 0.761316i
\(783\) 0 0
\(784\) −2.01980 + 3.49840i −0.0721358 + 0.124943i
\(785\) 22.2694 38.5717i 0.794829 1.37668i
\(786\) 0 0
\(787\) −5.75106 −0.205003 −0.102502 0.994733i \(-0.532685\pi\)
−0.102502 + 0.994733i \(0.532685\pi\)
\(788\) −18.7107 32.4078i −0.666540 1.15448i
\(789\) 0 0
\(790\) −0.147555 −0.00524975
\(791\) −9.75192 16.8908i −0.346738 0.600569i
\(792\) 0 0
\(793\) 0.465017 + 26.8098i 0.0165132 + 0.952044i
\(794\) −1.23763 + 2.14364i −0.0439218 + 0.0760748i
\(795\) 0 0
\(796\) −20.9516 + 36.2892i −0.742610 + 1.28624i
\(797\) 53.9162 1.90981 0.954905 0.296911i \(-0.0959565\pi\)
0.954905 + 0.296911i \(0.0959565\pi\)
\(798\) 0 0
\(799\) −2.80830 4.86413i −0.0993507 0.172080i
\(800\) 9.77837 16.9366i 0.345718 0.598801i
\(801\) 0 0
\(802\) −9.29238 + 16.0949i −0.328125 + 0.568330i
\(803\) −3.27794 −0.115676
\(804\) 0 0
\(805\) 30.0055 + 51.9711i 1.05756 + 1.83174i
\(806\) 0.369753 + 21.3175i 0.0130240 + 0.750877i
\(807\) 0 0
\(808\) −21.4199 −0.753551
\(809\) −2.00874 3.47924i −0.0706235 0.122324i 0.828551 0.559913i \(-0.189166\pi\)
−0.899175 + 0.437590i \(0.855832\pi\)
\(810\) 0 0
\(811\) 14.2338 0.499815 0.249908 0.968270i \(-0.419600\pi\)
0.249908 + 0.968270i \(0.419600\pi\)
\(812\) 9.65318 + 16.7198i 0.338760 + 0.586750i
\(813\) 0 0
\(814\) −3.90969 6.77177i −0.137034 0.237351i
\(815\) 37.9420 1.32905
\(816\) 0 0
\(817\) 30.9808 1.08388
\(818\) 9.43213 0.329787
\(819\) 0 0
\(820\) 11.0021 0.384212
\(821\) 49.6673 1.73340 0.866701 0.498828i \(-0.166236\pi\)
0.866701 + 0.498828i \(0.166236\pi\)
\(822\) 0 0
\(823\) 11.9719 0.417313 0.208656 0.977989i \(-0.433091\pi\)
0.208656 + 0.977989i \(0.433091\pi\)
\(824\) −21.5246 37.2817i −0.749844 1.29877i
\(825\) 0 0
\(826\) −5.20612 9.01727i −0.181144 0.313751i
\(827\) −35.1205 −1.22126 −0.610630 0.791916i \(-0.709084\pi\)
−0.610630 + 0.791916i \(0.709084\pi\)
\(828\) 0 0
\(829\) −25.4527 44.0853i −0.884008 1.53115i −0.846847 0.531837i \(-0.821502\pi\)
−0.0371606 0.999309i \(-0.511831\pi\)
\(830\) 4.38913 0.152349
\(831\) 0 0
\(832\) −4.49580 2.49271i −0.155864 0.0864191i
\(833\) −8.26089 14.3083i −0.286223 0.495753i
\(834\) 0 0
\(835\) 16.8204 0.582092
\(836\) −9.05767 + 15.6883i −0.313266 + 0.542593i
\(837\) 0 0
\(838\) 4.39670 7.61530i 0.151881 0.263066i
\(839\) −4.21345 7.29790i −0.145464 0.251952i 0.784082 0.620658i \(-0.213134\pi\)
−0.929546 + 0.368706i \(0.879801\pi\)
\(840\) 0 0
\(841\) −12.8341 −0.442557
\(842\) −3.13696 + 5.43338i −0.108107 + 0.187247i
\(843\) 0 0
\(844\) −2.86950 + 4.97013i −0.0987724 + 0.171079i
\(845\) 17.6537 33.1841i 0.607305 1.14157i
\(846\) 0 0
\(847\) −8.96374 15.5256i −0.307998 0.533468i
\(848\) 1.70571 0.0585745
\(849\) 0 0
\(850\) 6.31339 + 10.9351i 0.216547 + 0.375071i
\(851\) 31.7035 1.08678
\(852\) 0 0
\(853\) 16.9960 29.4380i 0.581932 1.00794i −0.413318 0.910587i \(-0.635630\pi\)
0.995250 0.0973495i \(-0.0310365\pi\)
\(854\) −8.22975 + 14.2543i −0.281616 + 0.487774i
\(855\) 0 0
\(856\) 15.2757 + 26.4583i 0.522112 + 0.904325i
\(857\) −26.4677 + 45.8435i −0.904121 + 1.56598i −0.0820272 + 0.996630i \(0.526139\pi\)
−0.822093 + 0.569353i \(0.807194\pi\)
\(858\) 0 0
\(859\) 2.49176 + 4.31585i 0.0850177 + 0.147255i 0.905399 0.424562i \(-0.139572\pi\)
−0.820381 + 0.571817i \(0.806239\pi\)
\(860\) 13.0976 22.6858i 0.446626 0.773579i
\(861\) 0 0
\(862\) −5.61928 9.73288i −0.191393 0.331503i
\(863\) −40.1602 −1.36707 −0.683535 0.729918i \(-0.739558\pi\)
−0.683535 + 0.729918i \(0.739558\pi\)
\(864\) 0 0
\(865\) −26.1433 + 45.2816i −0.888900 + 1.53962i
\(866\) 9.43470 16.3414i 0.320604 0.555303i
\(867\) 0 0
\(868\) 20.3525 35.2515i 0.690808 1.19651i
\(869\) 0.0846057 0.146541i 0.00287005 0.00497108i
\(870\) 0 0
\(871\) 25.8616 15.5353i 0.876285 0.526394i
\(872\) 11.8725 0.402054
\(873\) 0 0
\(874\) 11.8077 + 20.4515i 0.399400 + 0.691782i
\(875\) −7.52256 13.0295i −0.254309 0.440476i
\(876\) 0 0
\(877\) 8.10431 0.273663 0.136832 0.990594i \(-0.456308\pi\)
0.136832 + 0.990594i \(0.456308\pi\)
\(878\) −1.60669 −0.0542233
\(879\) 0 0
\(880\) 4.40443 + 7.62870i 0.148473 + 0.257163i
\(881\) −8.71424 15.0935i −0.293590 0.508513i 0.681066 0.732222i \(-0.261517\pi\)
−0.974656 + 0.223709i \(0.928183\pi\)
\(882\) 0 0
\(883\) 7.78098 0.261851 0.130925 0.991392i \(-0.458205\pi\)
0.130925 + 0.991392i \(0.458205\pi\)
\(884\) −25.1995 + 15.1376i −0.847551 + 0.509133i
\(885\) 0 0
\(886\) 9.17161 15.8857i 0.308126 0.533690i
\(887\) 15.9757 27.6708i 0.536413 0.929094i −0.462681 0.886525i \(-0.653112\pi\)
0.999094 0.0425694i \(-0.0135544\pi\)
\(888\) 0 0
\(889\) 6.66948 11.5519i 0.223687 0.387437i
\(890\) −0.179805 + 0.311431i −0.00602707 + 0.0104392i
\(891\) 0 0
\(892\) −1.68087 −0.0562799
\(893\) −2.69774 4.67263i −0.0902765 0.156364i
\(894\) 0 0
\(895\) −31.6156 + 54.7599i −1.05679 + 1.83042i
\(896\) 16.8896 + 29.2536i 0.564242 + 0.977295i
\(897\) 0 0
\(898\) −3.11564 + 5.39644i −0.103970 + 0.180082i
\(899\) −17.0418 29.5173i −0.568376 0.984456i
\(900\) 0 0
\(901\) −3.48814 + 6.04164i −0.116207 + 0.201276i
\(902\) 2.02832 3.51316i 0.0675358 0.116975i
\(903\) 0 0
\(904\) −15.0656 −0.501074
\(905\) 15.8856 + 27.5147i 0.528055 + 0.914618i
\(906\) 0 0
\(907\) 20.5686 0.682969 0.341484 0.939887i \(-0.389070\pi\)
0.341484 + 0.939887i \(0.389070\pi\)
\(908\) 6.31427 + 10.9366i 0.209547 + 0.362945i
\(909\) 0 0
\(910\) 19.7787 11.8813i 0.655659 0.393861i
\(911\) 18.5114 32.0627i 0.613311 1.06229i −0.377368 0.926064i \(-0.623171\pi\)
0.990678 0.136222i \(-0.0434960\pi\)
\(912\) 0 0
\(913\) −2.51667 + 4.35900i −0.0832895 + 0.144262i
\(914\) −13.1710 −0.435659
\(915\) 0 0
\(916\) 5.74909 + 9.95772i 0.189955 + 0.329012i
\(917\) 0.980564 1.69839i 0.0323811 0.0560857i
\(918\) 0 0
\(919\) 9.27825 16.0704i 0.306061 0.530114i −0.671436 0.741063i \(-0.734322\pi\)
0.977497 + 0.210949i \(0.0676554\pi\)
\(920\) 46.3551 1.52828
\(921\) 0 0
\(922\) 8.10063 + 14.0307i 0.266780 + 0.462077i
\(923\) −4.20783 + 2.52769i −0.138502 + 0.0831999i
\(924\) 0 0
\(925\) 16.2840 0.535416
\(926\) −0.802232 1.38951i −0.0263630 0.0456620i
\(927\) 0 0
\(928\) 23.4023 0.768218
\(929\) −24.1312 41.7964i −0.791718 1.37130i −0.924903 0.380204i \(-0.875854\pi\)
0.133185 0.991091i \(-0.457480\pi\)
\(930\) 0 0
\(931\) −7.93566 13.7450i −0.260081 0.450473i
\(932\) 1.16199 0.0380622
\(933\) 0 0
\(934\) −15.6752 −0.512908
\(935\) −36.0278 −1.17823
\(936\) 0 0
\(937\) 37.7556 1.23342 0.616711 0.787190i \(-0.288465\pi\)
0.616711 + 0.787190i \(0.288465\pi\)
\(938\) 18.5190 0.604668
\(939\) 0 0
\(940\) −4.56206 −0.148798
\(941\) 20.6525 + 35.7713i 0.673254 + 1.16611i 0.976976 + 0.213349i \(0.0684371\pi\)
−0.303722 + 0.952761i \(0.598230\pi\)
\(942\) 0 0
\(943\) 8.22380 + 14.2440i 0.267804 + 0.463850i
\(944\) 6.19681 0.201689
\(945\) 0 0
\(946\) −4.82929 8.36457i −0.157014 0.271956i
\(947\) 1.76757 0.0574382 0.0287191 0.999588i \(-0.490857\pi\)
0.0287191 + 0.999588i \(0.490857\pi\)
\(948\) 0 0
\(949\) −4.46891 2.47780i −0.145067 0.0804328i
\(950\) 6.06483 + 10.5046i 0.196769 + 0.340814i
\(951\) 0 0
\(952\) −41.8918 −1.35772
\(953\) −17.6033 + 30.4898i −0.570228 + 0.987663i 0.426315 + 0.904575i \(0.359812\pi\)
−0.996542 + 0.0830881i \(0.973522\pi\)
\(954\) 0 0
\(955\) −25.9983 + 45.0304i −0.841286 + 1.45715i
\(956\) −16.0748 27.8424i −0.519896 0.900486i
\(957\) 0 0
\(958\) −3.39859 −0.109804
\(959\) −30.0712 + 52.0849i −0.971050 + 1.68191i
\(960\) 0 0
\(961\) −20.4304 + 35.3866i −0.659047 + 1.14150i
\(962\) −0.211392 12.1875i −0.00681556 0.392941i
\(963\) 0 0
\(964\) −17.2990 29.9628i −0.557164 0.965037i
\(965\) 10.9920 0.353845
\(966\) 0 0
\(967\) −26.6427 46.1466i −0.856773 1.48397i −0.874991 0.484140i \(-0.839133\pi\)
0.0182182 0.999834i \(-0.494201\pi\)
\(968\) −13.8479 −0.445090
\(969\) 0 0
\(970\) 0.132007 0.228643i 0.00423849 0.00734127i
\(971\) −24.0513 + 41.6582i −0.771844 + 1.33687i 0.164707 + 0.986343i \(0.447332\pi\)
−0.936551 + 0.350531i \(0.886001\pi\)
\(972\) 0 0
\(973\) −4.79485 8.30492i −0.153716 0.266243i
\(974\) 4.30485 7.45622i 0.137936 0.238913i
\(975\) 0 0
\(976\) −4.89791 8.48342i −0.156778 0.271548i
\(977\) −27.8719 + 48.2755i −0.891700 + 1.54447i −0.0538646 + 0.998548i \(0.517154\pi\)
−0.837836 + 0.545922i \(0.816179\pi\)
\(978\) 0 0
\(979\) −0.206195 0.357140i −0.00659002 0.0114143i
\(980\) −13.4197 −0.428678
\(981\) 0 0
\(982\) 9.82115 17.0107i 0.313406 0.542834i
\(983\) 11.9465 20.6920i 0.381035 0.659973i −0.610175 0.792267i \(-0.708901\pi\)
0.991211 + 0.132294i \(0.0422343\pi\)
\(984\) 0 0
\(985\) 35.7468 61.9153i 1.13899 1.97278i
\(986\) −7.55482 + 13.0853i −0.240594 + 0.416722i
\(987\) 0 0
\(988\) −24.2074 + 14.5417i −0.770141 + 0.462632i
\(989\) 39.1605 1.24523
\(990\) 0 0
\(991\) 15.5487 + 26.9312i 0.493922 + 0.855498i 0.999975 0.00700424i \(-0.00222954\pi\)
−0.506054 + 0.862502i \(0.668896\pi\)
\(992\) −24.6703 42.7303i −0.783284 1.35669i
\(993\) 0 0
\(994\) −3.01316 −0.0955716
\(995\) −80.0562 −2.53795
\(996\) 0 0
\(997\) −10.5392 18.2545i −0.333781 0.578125i 0.649469 0.760388i \(-0.274991\pi\)
−0.983250 + 0.182263i \(0.941658\pi\)
\(998\) −8.39986 14.5490i −0.265893 0.460540i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.h.a.289.5 24
3.2 odd 2 117.2.h.a.16.8 yes 24
9.4 even 3 351.2.f.a.172.8 24
9.5 odd 6 117.2.f.a.94.5 yes 24
13.9 even 3 351.2.f.a.100.8 24
39.35 odd 6 117.2.f.a.61.5 24
117.22 even 3 inner 351.2.h.a.334.5 24
117.113 odd 6 117.2.h.a.22.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.5 24 39.35 odd 6
117.2.f.a.94.5 yes 24 9.5 odd 6
117.2.h.a.16.8 yes 24 3.2 odd 2
117.2.h.a.22.8 yes 24 117.113 odd 6
351.2.f.a.100.8 24 13.9 even 3
351.2.f.a.172.8 24 9.4 even 3
351.2.h.a.289.5 24 1.1 even 1 trivial
351.2.h.a.334.5 24 117.22 even 3 inner