Properties

Label 351.2.f.a.172.8
Level $351$
Weight $2$
Character 351.172
Analytic conductor $2.803$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(100,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.100"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.8
Character \(\chi\) \(=\) 351.172
Dual form 351.2.f.a.100.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.348782 - 0.604108i) q^{2} +(0.756702 + 1.31065i) q^{4} +(-1.44568 + 2.50399i) q^{5} -3.17282 q^{7} +2.45082 q^{8} +(1.00846 + 1.74670i) q^{10} +(1.15647 - 2.00306i) q^{11} +(0.0625290 + 3.60501i) q^{13} +(-1.10662 + 1.91673i) q^{14} +(-0.658602 + 1.14073i) q^{16} +(-2.69365 + 4.66554i) q^{17} +(-2.58760 + 4.48186i) q^{19} -4.37581 q^{20} +(-0.806710 - 1.39726i) q^{22} +6.54158 q^{23} +(-1.67999 - 2.90983i) q^{25} +(2.19962 + 1.21959i) q^{26} +(-2.40088 - 4.15845i) q^{28} +(2.01034 - 3.48201i) q^{29} +(4.23854 - 7.34137i) q^{31} +(2.91024 + 5.04068i) q^{32} +(1.87899 + 3.25451i) q^{34} +(4.58689 - 7.94473i) q^{35} +(-2.42323 - 4.19715i) q^{37} +(1.80502 + 3.12638i) q^{38} +(-3.54311 + 6.13685i) q^{40} -2.51431 q^{41} +5.98639 q^{43} +3.50041 q^{44} +(2.28159 - 3.95182i) q^{46} +(-0.521283 - 0.902888i) q^{47} +3.06680 q^{49} -2.34381 q^{50} +(-4.67758 + 2.80987i) q^{52} +1.29495 q^{53} +(3.34377 + 5.79158i) q^{55} -7.77603 q^{56} +(-1.40234 - 2.42892i) q^{58} +(-2.35226 - 4.07423i) q^{59} +7.43682 q^{61} +(-2.95665 - 5.12107i) q^{62} +1.42575 q^{64} +(-9.11732 - 5.05513i) q^{65} +8.36736 q^{67} -8.15316 q^{68} +(-3.19965 - 5.54196i) q^{70} +(0.680710 - 1.17903i) q^{71} +1.41722 q^{73} -3.38071 q^{74} -7.83218 q^{76} +(-3.66927 + 6.35536i) q^{77} +(-0.0365793 - 0.0633573i) q^{79} +(-1.90426 - 3.29827i) q^{80} +(-0.876947 + 1.51892i) q^{82} +(1.08808 + 1.88462i) q^{83} +(-7.78832 - 13.4898i) q^{85} +(2.08795 - 3.61643i) q^{86} +(2.83430 - 4.90915i) q^{88} +(0.0891486 + 0.154410i) q^{89} +(-0.198393 - 11.4381i) q^{91} +(4.95003 + 8.57371i) q^{92} -0.727256 q^{94} +(-7.48170 - 12.9587i) q^{95} +0.130900 q^{97} +(1.06965 - 1.85268i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - q^{2} - 9 q^{4} + 2 q^{5} - 6 q^{7} + 18 q^{8} + 3 q^{11} - 2 q^{14} - 3 q^{16} - 6 q^{17} - 3 q^{19} - 22 q^{20} + 9 q^{22} + 34 q^{23} - 6 q^{25} + 12 q^{26} - 12 q^{29} - 6 q^{31} - 19 q^{32}+ \cdots + 61 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.348782 0.604108i 0.246626 0.427169i −0.715962 0.698140i \(-0.754011\pi\)
0.962588 + 0.270971i \(0.0873448\pi\)
\(3\) 0 0
\(4\) 0.756702 + 1.31065i 0.378351 + 0.655324i
\(5\) −1.44568 + 2.50399i −0.646529 + 1.11982i 0.337417 + 0.941355i \(0.390447\pi\)
−0.983946 + 0.178465i \(0.942887\pi\)
\(6\) 0 0
\(7\) −3.17282 −1.19921 −0.599607 0.800295i \(-0.704676\pi\)
−0.599607 + 0.800295i \(0.704676\pi\)
\(8\) 2.45082 0.866497
\(9\) 0 0
\(10\) 1.00846 + 1.74670i 0.318902 + 0.552354i
\(11\) 1.15647 2.00306i 0.348688 0.603946i −0.637328 0.770592i \(-0.719961\pi\)
0.986017 + 0.166646i \(0.0532938\pi\)
\(12\) 0 0
\(13\) 0.0625290 + 3.60501i 0.0173424 + 0.999850i
\(14\) −1.10662 + 1.91673i −0.295757 + 0.512267i
\(15\) 0 0
\(16\) −0.658602 + 1.14073i −0.164651 + 0.285183i
\(17\) −2.69365 + 4.66554i −0.653306 + 1.13156i 0.329010 + 0.944326i \(0.393285\pi\)
−0.982316 + 0.187232i \(0.940048\pi\)
\(18\) 0 0
\(19\) −2.58760 + 4.48186i −0.593636 + 1.02821i 0.400101 + 0.916471i \(0.368975\pi\)
−0.993738 + 0.111738i \(0.964358\pi\)
\(20\) −4.37581 −0.978460
\(21\) 0 0
\(22\) −0.806710 1.39726i −0.171991 0.297898i
\(23\) 6.54158 1.36401 0.682007 0.731345i \(-0.261107\pi\)
0.682007 + 0.731345i \(0.261107\pi\)
\(24\) 0 0
\(25\) −1.67999 2.90983i −0.335999 0.581967i
\(26\) 2.19962 + 1.21959i 0.431382 + 0.239181i
\(27\) 0 0
\(28\) −2.40088 4.15845i −0.453724 0.785873i
\(29\) 2.01034 3.48201i 0.373311 0.646593i −0.616762 0.787150i \(-0.711556\pi\)
0.990073 + 0.140557i \(0.0448892\pi\)
\(30\) 0 0
\(31\) 4.23854 7.34137i 0.761264 1.31855i −0.180935 0.983495i \(-0.557912\pi\)
0.942199 0.335053i \(-0.108754\pi\)
\(32\) 2.91024 + 5.04068i 0.514463 + 0.891076i
\(33\) 0 0
\(34\) 1.87899 + 3.25451i 0.322244 + 0.558144i
\(35\) 4.58689 7.94473i 0.775326 1.34290i
\(36\) 0 0
\(37\) −2.42323 4.19715i −0.398376 0.690008i 0.595150 0.803615i \(-0.297093\pi\)
−0.993526 + 0.113607i \(0.963759\pi\)
\(38\) 1.80502 + 3.12638i 0.292812 + 0.507166i
\(39\) 0 0
\(40\) −3.54311 + 6.13685i −0.560215 + 0.970321i
\(41\) −2.51431 −0.392670 −0.196335 0.980537i \(-0.562904\pi\)
−0.196335 + 0.980537i \(0.562904\pi\)
\(42\) 0 0
\(43\) 5.98639 0.912917 0.456458 0.889745i \(-0.349118\pi\)
0.456458 + 0.889745i \(0.349118\pi\)
\(44\) 3.50041 0.527707
\(45\) 0 0
\(46\) 2.28159 3.95182i 0.336401 0.582664i
\(47\) −0.521283 0.902888i −0.0760369 0.131700i 0.825500 0.564402i \(-0.190893\pi\)
−0.901537 + 0.432703i \(0.857560\pi\)
\(48\) 0 0
\(49\) 3.06680 0.438115
\(50\) −2.34381 −0.331464
\(51\) 0 0
\(52\) −4.67758 + 2.80987i −0.648664 + 0.389659i
\(53\) 1.29495 0.177875 0.0889376 0.996037i \(-0.471653\pi\)
0.0889376 + 0.996037i \(0.471653\pi\)
\(54\) 0 0
\(55\) 3.34377 + 5.79158i 0.450874 + 0.780937i
\(56\) −7.77603 −1.03912
\(57\) 0 0
\(58\) −1.40234 2.42892i −0.184136 0.318933i
\(59\) −2.35226 4.07423i −0.306238 0.530419i 0.671298 0.741187i \(-0.265737\pi\)
−0.977536 + 0.210768i \(0.932404\pi\)
\(60\) 0 0
\(61\) 7.43682 0.952187 0.476094 0.879395i \(-0.342052\pi\)
0.476094 + 0.879395i \(0.342052\pi\)
\(62\) −2.95665 5.12107i −0.375495 0.650377i
\(63\) 0 0
\(64\) 1.42575 0.178218
\(65\) −9.11732 5.05513i −1.13086 0.627011i
\(66\) 0 0
\(67\) 8.36736 1.02224 0.511118 0.859510i \(-0.329231\pi\)
0.511118 + 0.859510i \(0.329231\pi\)
\(68\) −8.15316 −0.988716
\(69\) 0 0
\(70\) −3.19965 5.54196i −0.382431 0.662390i
\(71\) 0.680710 1.17903i 0.0807855 0.139925i −0.822802 0.568328i \(-0.807590\pi\)
0.903588 + 0.428403i \(0.140924\pi\)
\(72\) 0 0
\(73\) 1.41722 0.165873 0.0829365 0.996555i \(-0.473570\pi\)
0.0829365 + 0.996555i \(0.473570\pi\)
\(74\) −3.38071 −0.393000
\(75\) 0 0
\(76\) −7.83218 −0.898412
\(77\) −3.66927 + 6.35536i −0.418152 + 0.724261i
\(78\) 0 0
\(79\) −0.0365793 0.0633573i −0.00411550 0.00712825i 0.863960 0.503560i \(-0.167977\pi\)
−0.868076 + 0.496432i \(0.834643\pi\)
\(80\) −1.90426 3.29827i −0.212903 0.368758i
\(81\) 0 0
\(82\) −0.876947 + 1.51892i −0.0968426 + 0.167736i
\(83\) 1.08808 + 1.88462i 0.119433 + 0.206863i 0.919543 0.392989i \(-0.128559\pi\)
−0.800110 + 0.599853i \(0.795226\pi\)
\(84\) 0 0
\(85\) −7.78832 13.4898i −0.844762 1.46317i
\(86\) 2.08795 3.61643i 0.225149 0.389969i
\(87\) 0 0
\(88\) 2.83430 4.90915i 0.302137 0.523317i
\(89\) 0.0891486 + 0.154410i 0.00944973 + 0.0163674i 0.870712 0.491794i \(-0.163659\pi\)
−0.861262 + 0.508161i \(0.830325\pi\)
\(90\) 0 0
\(91\) −0.198393 11.4381i −0.0207973 1.19903i
\(92\) 4.95003 + 8.57371i 0.516077 + 0.893871i
\(93\) 0 0
\(94\) −0.727256 −0.0750107
\(95\) −7.48170 12.9587i −0.767606 1.32953i
\(96\) 0 0
\(97\) 0.130900 0.0132909 0.00664545 0.999978i \(-0.497885\pi\)
0.00664545 + 0.999978i \(0.497885\pi\)
\(98\) 1.06965 1.85268i 0.108050 0.187149i
\(99\) 0 0
\(100\) 2.54251 4.40376i 0.254251 0.440376i
\(101\) 4.36995 7.56897i 0.434826 0.753141i −0.562455 0.826828i \(-0.690143\pi\)
0.997281 + 0.0736867i \(0.0234765\pi\)
\(102\) 0 0
\(103\) −8.78259 + 15.2119i −0.865375 + 1.49887i 0.00130026 + 0.999999i \(0.499586\pi\)
−0.866675 + 0.498874i \(0.833747\pi\)
\(104\) 0.153247 + 8.83524i 0.0150272 + 0.866367i
\(105\) 0 0
\(106\) 0.451655 0.782290i 0.0438686 0.0759827i
\(107\) 6.23288 + 10.7957i 0.602555 + 1.04366i 0.992433 + 0.122790i \(0.0391841\pi\)
−0.389877 + 0.920867i \(0.627483\pi\)
\(108\) 0 0
\(109\) 4.84430 0.463999 0.232000 0.972716i \(-0.425473\pi\)
0.232000 + 0.972716i \(0.425473\pi\)
\(110\) 4.66499 0.444789
\(111\) 0 0
\(112\) 2.08963 3.61934i 0.197451 0.341996i
\(113\) 3.07358 + 5.32360i 0.289138 + 0.500802i 0.973604 0.228243i \(-0.0732980\pi\)
−0.684466 + 0.729045i \(0.739965\pi\)
\(114\) 0 0
\(115\) −9.45705 + 16.3801i −0.881874 + 1.52745i
\(116\) 6.08491 0.564970
\(117\) 0 0
\(118\) −3.28170 −0.302105
\(119\) 8.54647 14.8029i 0.783454 1.35698i
\(120\) 0 0
\(121\) 2.82516 + 4.89332i 0.256833 + 0.444848i
\(122\) 2.59383 4.49264i 0.234834 0.406745i
\(123\) 0 0
\(124\) 12.8293 1.15210
\(125\) −4.74187 −0.424126
\(126\) 0 0
\(127\) −2.10206 3.64088i −0.186528 0.323076i 0.757562 0.652763i \(-0.226390\pi\)
−0.944090 + 0.329687i \(0.893057\pi\)
\(128\) −5.32321 + 9.22006i −0.470509 + 0.814946i
\(129\) 0 0
\(130\) −6.23380 + 3.74471i −0.546740 + 0.328433i
\(131\) −0.309051 + 0.535292i −0.0270019 + 0.0467687i −0.879211 0.476433i \(-0.841929\pi\)
0.852209 + 0.523202i \(0.175263\pi\)
\(132\) 0 0
\(133\) 8.21000 14.2201i 0.711897 1.23304i
\(134\) 2.91838 5.05479i 0.252110 0.436667i
\(135\) 0 0
\(136\) −6.60166 + 11.4344i −0.566087 + 0.980492i
\(137\) −18.9555 −1.61948 −0.809739 0.586791i \(-0.800391\pi\)
−0.809739 + 0.586791i \(0.800391\pi\)
\(138\) 0 0
\(139\) 1.51122 + 2.61752i 0.128180 + 0.222015i 0.922972 0.384868i \(-0.125753\pi\)
−0.794791 + 0.606883i \(0.792420\pi\)
\(140\) 13.8837 1.17338
\(141\) 0 0
\(142\) −0.474839 0.822445i −0.0398476 0.0690181i
\(143\) 7.29337 + 4.04383i 0.609902 + 0.338162i
\(144\) 0 0
\(145\) 5.81262 + 10.0678i 0.482712 + 0.836082i
\(146\) 0.494301 0.856154i 0.0409086 0.0708558i
\(147\) 0 0
\(148\) 3.66732 6.35199i 0.301452 0.522131i
\(149\) −2.86713 4.96601i −0.234884 0.406832i 0.724355 0.689428i \(-0.242138\pi\)
−0.959239 + 0.282596i \(0.908805\pi\)
\(150\) 0 0
\(151\) −1.05976 1.83556i −0.0862420 0.149376i 0.819678 0.572825i \(-0.194153\pi\)
−0.905920 + 0.423449i \(0.860819\pi\)
\(152\) −6.34175 + 10.9842i −0.514384 + 0.890940i
\(153\) 0 0
\(154\) 2.55955 + 4.43327i 0.206254 + 0.357243i
\(155\) 12.2552 + 21.2266i 0.984358 + 1.70496i
\(156\) 0 0
\(157\) 7.70204 13.3403i 0.614690 1.06467i −0.375749 0.926721i \(-0.622615\pi\)
0.990439 0.137952i \(-0.0440520\pi\)
\(158\) −0.0510328 −0.00405995
\(159\) 0 0
\(160\) −16.8291 −1.33046
\(161\) −20.7553 −1.63575
\(162\) 0 0
\(163\) −6.56126 + 11.3644i −0.513918 + 0.890131i 0.485952 + 0.873985i \(0.338473\pi\)
−0.999870 + 0.0161459i \(0.994860\pi\)
\(164\) −1.90259 3.29538i −0.148567 0.257326i
\(165\) 0 0
\(166\) 1.51801 0.117821
\(167\) 5.81744 0.450167 0.225084 0.974339i \(-0.427734\pi\)
0.225084 + 0.974339i \(0.427734\pi\)
\(168\) 0 0
\(169\) −12.9922 + 0.450835i −0.999398 + 0.0346796i
\(170\) −10.8657 −0.833361
\(171\) 0 0
\(172\) 4.52992 + 7.84605i 0.345403 + 0.598256i
\(173\) 18.0837 1.37488 0.687441 0.726240i \(-0.258734\pi\)
0.687441 + 0.726240i \(0.258734\pi\)
\(174\) 0 0
\(175\) 5.33032 + 9.23239i 0.402934 + 0.697903i
\(176\) 1.52331 + 2.63844i 0.114823 + 0.198880i
\(177\) 0 0
\(178\) 0.124374 0.00932220
\(179\) −10.9345 18.9391i −0.817283 1.41558i −0.907677 0.419670i \(-0.862146\pi\)
0.0903935 0.995906i \(-0.471188\pi\)
\(180\) 0 0
\(181\) −10.9883 −0.816754 −0.408377 0.912813i \(-0.633905\pi\)
−0.408377 + 0.912813i \(0.633905\pi\)
\(182\) −6.97901 3.86953i −0.517319 0.286829i
\(183\) 0 0
\(184\) 16.0323 1.18191
\(185\) 14.0129 1.03025
\(186\) 0 0
\(187\) 6.23024 + 10.7911i 0.455600 + 0.789123i
\(188\) 0.788912 1.36644i 0.0575373 0.0996575i
\(189\) 0 0
\(190\) −10.4379 −0.757246
\(191\) 17.9834 1.30124 0.650618 0.759405i \(-0.274510\pi\)
0.650618 + 0.759405i \(0.274510\pi\)
\(192\) 0 0
\(193\) 3.80167 0.273650 0.136825 0.990595i \(-0.456310\pi\)
0.136825 + 0.990595i \(0.456310\pi\)
\(194\) 0.0456556 0.0790778i 0.00327788 0.00567745i
\(195\) 0 0
\(196\) 2.32066 + 4.01950i 0.165761 + 0.287107i
\(197\) 12.3633 + 21.4139i 0.880848 + 1.52567i 0.850399 + 0.526138i \(0.176360\pi\)
0.0304487 + 0.999536i \(0.490306\pi\)
\(198\) 0 0
\(199\) 13.8440 23.9785i 0.981376 1.69979i 0.324329 0.945944i \(-0.394862\pi\)
0.657047 0.753849i \(-0.271805\pi\)
\(200\) −4.11737 7.13149i −0.291142 0.504273i
\(201\) 0 0
\(202\) −3.04832 5.27984i −0.214479 0.371488i
\(203\) −6.37845 + 11.0478i −0.447679 + 0.775403i
\(204\) 0 0
\(205\) 3.63490 6.29583i 0.253872 0.439720i
\(206\) 6.12642 + 10.6113i 0.426848 + 0.739322i
\(207\) 0 0
\(208\) −4.15353 2.30294i −0.287996 0.159680i
\(209\) 5.98496 + 10.3663i 0.413988 + 0.717049i
\(210\) 0 0
\(211\) −3.79212 −0.261060 −0.130530 0.991444i \(-0.541668\pi\)
−0.130530 + 0.991444i \(0.541668\pi\)
\(212\) 0.979892 + 1.69722i 0.0672993 + 0.116566i
\(213\) 0 0
\(214\) 8.69566 0.594423
\(215\) −8.65442 + 14.9899i −0.590227 + 1.02230i
\(216\) 0 0
\(217\) −13.4481 + 23.2929i −0.912919 + 1.58122i
\(218\) 1.68960 2.92648i 0.114434 0.198206i
\(219\) 0 0
\(220\) −5.06048 + 8.76501i −0.341178 + 0.590937i
\(221\) −16.9877 9.41890i −1.14272 0.633584i
\(222\) 0 0
\(223\) −0.555329 + 0.961858i −0.0371876 + 0.0644108i −0.884020 0.467449i \(-0.845173\pi\)
0.846833 + 0.531860i \(0.178507\pi\)
\(224\) −9.23368 15.9932i −0.616951 1.06859i
\(225\) 0 0
\(226\) 4.28803 0.285236
\(227\) 8.34446 0.553841 0.276921 0.960893i \(-0.410686\pi\)
0.276921 + 0.960893i \(0.410686\pi\)
\(228\) 0 0
\(229\) −3.79878 + 6.57968i −0.251030 + 0.434797i −0.963810 0.266591i \(-0.914103\pi\)
0.712779 + 0.701388i \(0.247436\pi\)
\(230\) 6.59689 + 11.4262i 0.434986 + 0.753418i
\(231\) 0 0
\(232\) 4.92699 8.53379i 0.323473 0.560271i
\(233\) −0.767797 −0.0503001 −0.0251500 0.999684i \(-0.508006\pi\)
−0.0251500 + 0.999684i \(0.508006\pi\)
\(234\) 0 0
\(235\) 3.01444 0.196640
\(236\) 3.55992 6.16596i 0.231731 0.401370i
\(237\) 0 0
\(238\) −5.96171 10.3260i −0.386440 0.669334i
\(239\) 10.6216 18.3972i 0.687055 1.19001i −0.285732 0.958310i \(-0.592237\pi\)
0.972786 0.231704i \(-0.0744300\pi\)
\(240\) 0 0
\(241\) −22.8611 −1.47261 −0.736306 0.676649i \(-0.763431\pi\)
−0.736306 + 0.676649i \(0.763431\pi\)
\(242\) 3.94146 0.253367
\(243\) 0 0
\(244\) 5.62746 + 9.74704i 0.360261 + 0.623991i
\(245\) −4.43362 + 7.67926i −0.283254 + 0.490610i
\(246\) 0 0
\(247\) −16.3189 9.04808i −1.03835 0.575716i
\(248\) 10.3879 17.9924i 0.659633 1.14252i
\(249\) 0 0
\(250\) −1.65388 + 2.86460i −0.104601 + 0.181173i
\(251\) −8.21662 + 14.2316i −0.518629 + 0.898291i 0.481137 + 0.876645i \(0.340224\pi\)
−0.999766 + 0.0216457i \(0.993109\pi\)
\(252\) 0 0
\(253\) 7.56513 13.1032i 0.475616 0.823791i
\(254\) −2.93265 −0.184011
\(255\) 0 0
\(256\) 5.13902 + 8.90105i 0.321189 + 0.556315i
\(257\) 3.65314 0.227877 0.113938 0.993488i \(-0.463653\pi\)
0.113938 + 0.993488i \(0.463653\pi\)
\(258\) 0 0
\(259\) 7.68847 + 13.3168i 0.477738 + 0.827467i
\(260\) −0.273615 15.7748i −0.0169689 0.978313i
\(261\) 0 0
\(262\) 0.215583 + 0.373400i 0.0133187 + 0.0230688i
\(263\) −12.4449 + 21.5552i −0.767384 + 1.32915i 0.171593 + 0.985168i \(0.445109\pi\)
−0.938977 + 0.343980i \(0.888225\pi\)
\(264\) 0 0
\(265\) −1.87209 + 3.24255i −0.115001 + 0.199188i
\(266\) −5.72700 9.91945i −0.351145 0.608201i
\(267\) 0 0
\(268\) 6.33161 + 10.9667i 0.386764 + 0.669896i
\(269\) 4.43529 7.68215i 0.270424 0.468389i −0.698546 0.715565i \(-0.746169\pi\)
0.968971 + 0.247176i \(0.0795027\pi\)
\(270\) 0 0
\(271\) −5.20415 9.01385i −0.316129 0.547552i 0.663548 0.748134i \(-0.269050\pi\)
−0.979677 + 0.200582i \(0.935717\pi\)
\(272\) −3.54809 6.14547i −0.215134 0.372624i
\(273\) 0 0
\(274\) −6.61133 + 11.4512i −0.399405 + 0.691790i
\(275\) −7.77144 −0.468635
\(276\) 0 0
\(277\) −24.8624 −1.49384 −0.746918 0.664916i \(-0.768467\pi\)
−0.746918 + 0.664916i \(0.768467\pi\)
\(278\) 2.10835 0.126450
\(279\) 0 0
\(280\) 11.2417 19.4711i 0.671818 1.16362i
\(281\) 5.46747 + 9.46994i 0.326162 + 0.564929i 0.981747 0.190192i \(-0.0609112\pi\)
−0.655585 + 0.755122i \(0.727578\pi\)
\(282\) 0 0
\(283\) 29.6384 1.76182 0.880909 0.473285i \(-0.156932\pi\)
0.880909 + 0.473285i \(0.156932\pi\)
\(284\) 2.06038 0.122261
\(285\) 0 0
\(286\) 4.98670 2.99557i 0.294870 0.177132i
\(287\) 7.97747 0.470895
\(288\) 0 0
\(289\) −6.01149 10.4122i −0.353617 0.612482i
\(290\) 8.10935 0.476197
\(291\) 0 0
\(292\) 1.07241 + 1.85748i 0.0627583 + 0.108701i
\(293\) −7.63814 13.2296i −0.446225 0.772884i 0.551912 0.833902i \(-0.313898\pi\)
−0.998137 + 0.0610186i \(0.980565\pi\)
\(294\) 0 0
\(295\) 13.6025 0.791966
\(296\) −5.93890 10.2865i −0.345192 0.597890i
\(297\) 0 0
\(298\) −4.00001 −0.231714
\(299\) 0.409038 + 23.5825i 0.0236553 + 1.36381i
\(300\) 0 0
\(301\) −18.9938 −1.09478
\(302\) −1.47850 −0.0850781
\(303\) 0 0
\(304\) −3.40840 5.90352i −0.195485 0.338590i
\(305\) −10.7513 + 18.6218i −0.615616 + 1.06628i
\(306\) 0 0
\(307\) −2.96530 −0.169238 −0.0846192 0.996413i \(-0.526967\pi\)
−0.0846192 + 0.996413i \(0.526967\pi\)
\(308\) −11.1062 −0.632833
\(309\) 0 0
\(310\) 17.0975 0.971074
\(311\) −0.483334 + 0.837159i −0.0274073 + 0.0474709i −0.879404 0.476077i \(-0.842058\pi\)
0.851996 + 0.523548i \(0.175392\pi\)
\(312\) 0 0
\(313\) −1.56622 2.71277i −0.0885279 0.153335i 0.818361 0.574704i \(-0.194883\pi\)
−0.906889 + 0.421369i \(0.861550\pi\)
\(314\) −5.37266 9.30572i −0.303197 0.525152i
\(315\) 0 0
\(316\) 0.0553594 0.0958852i 0.00311421 0.00539397i
\(317\) −14.5827 25.2580i −0.819046 1.41863i −0.906386 0.422451i \(-0.861170\pi\)
0.0873393 0.996179i \(-0.472164\pi\)
\(318\) 0 0
\(319\) −4.64979 8.05367i −0.260338 0.450919i
\(320\) −2.06118 + 3.57006i −0.115223 + 0.199573i
\(321\) 0 0
\(322\) −7.23907 + 12.5384i −0.403417 + 0.698739i
\(323\) −13.9402 24.1451i −0.775652 1.34347i
\(324\) 0 0
\(325\) 10.3849 6.23834i 0.576052 0.346041i
\(326\) 4.57690 + 7.92742i 0.253491 + 0.439059i
\(327\) 0 0
\(328\) −6.16214 −0.340247
\(329\) 1.65394 + 2.86470i 0.0911845 + 0.157936i
\(330\) 0 0
\(331\) 7.15450 0.393247 0.196624 0.980479i \(-0.437002\pi\)
0.196624 + 0.980479i \(0.437002\pi\)
\(332\) −1.64671 + 2.85219i −0.0903750 + 0.156534i
\(333\) 0 0
\(334\) 2.02902 3.51436i 0.111023 0.192297i
\(335\) −12.0966 + 20.9518i −0.660905 + 1.14472i
\(336\) 0 0
\(337\) −7.36818 + 12.7621i −0.401370 + 0.695194i −0.993892 0.110361i \(-0.964799\pi\)
0.592521 + 0.805555i \(0.298133\pi\)
\(338\) −4.25908 + 8.00592i −0.231664 + 0.435465i
\(339\) 0 0
\(340\) 11.7869 20.4155i 0.639233 1.10718i
\(341\) −9.80348 16.9801i −0.530888 0.919525i
\(342\) 0 0
\(343\) 12.4793 0.673821
\(344\) 14.6716 0.791039
\(345\) 0 0
\(346\) 6.30728 10.9245i 0.339081 0.587306i
\(347\) −9.95655 17.2453i −0.534496 0.925774i −0.999188 0.0403011i \(-0.987168\pi\)
0.464692 0.885472i \(-0.346165\pi\)
\(348\) 0 0
\(349\) 13.8845 24.0487i 0.743221 1.28730i −0.207801 0.978171i \(-0.566630\pi\)
0.951021 0.309125i \(-0.100036\pi\)
\(350\) 7.43648 0.397496
\(351\) 0 0
\(352\) 13.4624 0.717549
\(353\) 14.2852 24.7427i 0.760326 1.31692i −0.182357 0.983232i \(-0.558373\pi\)
0.942683 0.333691i \(-0.108294\pi\)
\(354\) 0 0
\(355\) 1.96818 + 3.40899i 0.104460 + 0.180930i
\(356\) −0.134918 + 0.233685i −0.00715064 + 0.0123853i
\(357\) 0 0
\(358\) −15.2550 −0.806253
\(359\) 15.4518 0.815515 0.407757 0.913090i \(-0.366311\pi\)
0.407757 + 0.913090i \(0.366311\pi\)
\(360\) 0 0
\(361\) −3.89136 6.74004i −0.204809 0.354739i
\(362\) −3.83252 + 6.63812i −0.201433 + 0.348892i
\(363\) 0 0
\(364\) 14.8411 8.91523i 0.777886 0.467285i
\(365\) −2.04885 + 3.54871i −0.107242 + 0.185748i
\(366\) 0 0
\(367\) −0.235591 + 0.408055i −0.0122977 + 0.0213003i −0.872109 0.489312i \(-0.837248\pi\)
0.859811 + 0.510612i \(0.170581\pi\)
\(368\) −4.30830 + 7.46220i −0.224586 + 0.388994i
\(369\) 0 0
\(370\) 4.88743 8.46528i 0.254086 0.440089i
\(371\) −4.10865 −0.213310
\(372\) 0 0
\(373\) −16.1744 28.0148i −0.837478 1.45055i −0.891997 0.452041i \(-0.850696\pi\)
0.0545197 0.998513i \(-0.482637\pi\)
\(374\) 8.69198 0.449451
\(375\) 0 0
\(376\) −1.27757 2.21282i −0.0658857 0.114117i
\(377\) 12.6784 + 7.02956i 0.652970 + 0.362041i
\(378\) 0 0
\(379\) 0.713364 + 1.23558i 0.0366430 + 0.0634676i 0.883765 0.467930i \(-0.155000\pi\)
−0.847122 + 0.531398i \(0.821667\pi\)
\(380\) 11.3228 19.6117i 0.580849 1.00606i
\(381\) 0 0
\(382\) 6.27229 10.8639i 0.320919 0.555847i
\(383\) −7.97219 13.8082i −0.407360 0.705568i 0.587233 0.809418i \(-0.300217\pi\)
−0.994593 + 0.103850i \(0.966884\pi\)
\(384\) 0 0
\(385\) −10.6092 18.3757i −0.540695 0.936510i
\(386\) 1.32595 2.29662i 0.0674892 0.116895i
\(387\) 0 0
\(388\) 0.0990524 + 0.171564i 0.00502863 + 0.00870984i
\(389\) −10.0545 17.4150i −0.509785 0.882973i −0.999936 0.0113357i \(-0.996392\pi\)
0.490151 0.871638i \(-0.336942\pi\)
\(390\) 0 0
\(391\) −17.6207 + 30.5200i −0.891119 + 1.54346i
\(392\) 7.51619 0.379625
\(393\) 0 0
\(394\) 17.2484 0.868960
\(395\) 0.211528 0.0106431
\(396\) 0 0
\(397\) 1.77422 3.07304i 0.0890454 0.154231i −0.818062 0.575129i \(-0.804952\pi\)
0.907108 + 0.420898i \(0.138285\pi\)
\(398\) −9.65708 16.7266i −0.484066 0.838427i
\(399\) 0 0
\(400\) 4.42579 0.221290
\(401\) −26.6424 −1.33046 −0.665229 0.746640i \(-0.731666\pi\)
−0.665229 + 0.746640i \(0.731666\pi\)
\(402\) 0 0
\(403\) 26.7307 + 14.8209i 1.33155 + 0.738283i
\(404\) 13.2270 0.658068
\(405\) 0 0
\(406\) 4.44937 + 7.70654i 0.220819 + 0.382469i
\(407\) −11.2095 −0.555636
\(408\) 0 0
\(409\) 6.76077 + 11.7100i 0.334299 + 0.579022i 0.983350 0.181723i \(-0.0581673\pi\)
−0.649051 + 0.760745i \(0.724834\pi\)
\(410\) −2.53557 4.39174i −0.125223 0.216893i
\(411\) 0 0
\(412\) −26.5832 −1.30966
\(413\) 7.46329 + 12.9268i 0.367245 + 0.636086i
\(414\) 0 0
\(415\) −6.29209 −0.308866
\(416\) −17.9897 + 10.8066i −0.882020 + 0.529839i
\(417\) 0 0
\(418\) 8.34978 0.408401
\(419\) 12.6059 0.615837 0.307918 0.951413i \(-0.400368\pi\)
0.307918 + 0.951413i \(0.400368\pi\)
\(420\) 0 0
\(421\) 4.49703 + 7.78908i 0.219172 + 0.379617i 0.954555 0.298035i \(-0.0963312\pi\)
−0.735383 + 0.677651i \(0.762998\pi\)
\(422\) −1.32262 + 2.29085i −0.0643842 + 0.111517i
\(423\) 0 0
\(424\) 3.17370 0.154128
\(425\) 18.1013 0.878040
\(426\) 0 0
\(427\) −23.5957 −1.14188
\(428\) −9.43287 + 16.3382i −0.455955 + 0.789737i
\(429\) 0 0
\(430\) 6.03701 + 10.4564i 0.291131 + 0.504253i
\(431\) 8.05558 + 13.9527i 0.388024 + 0.672077i 0.992184 0.124786i \(-0.0398245\pi\)
−0.604160 + 0.796863i \(0.706491\pi\)
\(432\) 0 0
\(433\) −13.5252 + 23.4264i −0.649981 + 1.12580i 0.333146 + 0.942875i \(0.391890\pi\)
−0.983127 + 0.182924i \(0.941444\pi\)
\(434\) 9.38093 + 16.2482i 0.450299 + 0.779941i
\(435\) 0 0
\(436\) 3.66569 + 6.34916i 0.175555 + 0.304070i
\(437\) −16.9270 + 29.3184i −0.809729 + 1.40249i
\(438\) 0 0
\(439\) −1.15165 + 1.99471i −0.0549651 + 0.0952024i −0.892199 0.451643i \(-0.850838\pi\)
0.837234 + 0.546845i \(0.184171\pi\)
\(440\) 8.19499 + 14.1941i 0.390681 + 0.676679i
\(441\) 0 0
\(442\) −11.6150 + 6.97728i −0.552471 + 0.331875i
\(443\) −13.1481 22.7731i −0.624683 1.08198i −0.988602 0.150552i \(-0.951895\pi\)
0.363919 0.931431i \(-0.381439\pi\)
\(444\) 0 0
\(445\) −0.515522 −0.0244381
\(446\) 0.387377 + 0.670957i 0.0183428 + 0.0317707i
\(447\) 0 0
\(448\) −4.52364 −0.213722
\(449\) 4.46646 7.73613i 0.210785 0.365091i −0.741175 0.671311i \(-0.765731\pi\)
0.951960 + 0.306221i \(0.0990646\pi\)
\(450\) 0 0
\(451\) −2.90772 + 5.03633i −0.136919 + 0.237151i
\(452\) −4.65157 + 8.05676i −0.218791 + 0.378958i
\(453\) 0 0
\(454\) 2.91040 5.04095i 0.136592 0.236584i
\(455\) 28.9276 + 16.0390i 1.35615 + 0.751921i
\(456\) 0 0
\(457\) −9.44075 + 16.3519i −0.441620 + 0.764907i −0.997810 0.0661475i \(-0.978929\pi\)
0.556190 + 0.831055i \(0.312263\pi\)
\(458\) 2.64989 + 4.58974i 0.123821 + 0.214465i
\(459\) 0 0
\(460\) −28.6247 −1.33463
\(461\) 23.2255 1.08172 0.540860 0.841113i \(-0.318099\pi\)
0.540860 + 0.841113i \(0.318099\pi\)
\(462\) 0 0
\(463\) 1.15005 1.99194i 0.0534473 0.0925735i −0.838064 0.545572i \(-0.816312\pi\)
0.891511 + 0.452999i \(0.149646\pi\)
\(464\) 2.64803 + 4.58652i 0.122932 + 0.212924i
\(465\) 0 0
\(466\) −0.267794 + 0.463832i −0.0124053 + 0.0214866i
\(467\) 22.4713 1.03985 0.519925 0.854212i \(-0.325960\pi\)
0.519925 + 0.854212i \(0.325960\pi\)
\(468\) 0 0
\(469\) −26.5482 −1.22588
\(470\) 1.05138 1.82104i 0.0484966 0.0839985i
\(471\) 0 0
\(472\) −5.76497 9.98521i −0.265354 0.459607i
\(473\) 6.92308 11.9911i 0.318323 0.551352i
\(474\) 0 0
\(475\) 17.3886 0.797845
\(476\) 25.8685 1.18568
\(477\) 0 0
\(478\) −7.40925 12.8332i −0.338891 0.586976i
\(479\) −2.43604 + 4.21935i −0.111306 + 0.192787i −0.916297 0.400500i \(-0.868837\pi\)
0.804991 + 0.593287i \(0.202170\pi\)
\(480\) 0 0
\(481\) 14.9793 8.99820i 0.682995 0.410283i
\(482\) −7.97353 + 13.8106i −0.363184 + 0.629054i
\(483\) 0 0
\(484\) −4.27561 + 7.40558i −0.194346 + 0.336617i
\(485\) −0.189240 + 0.327773i −0.00859294 + 0.0148834i
\(486\) 0 0
\(487\) −6.17126 + 10.6889i −0.279647 + 0.484362i −0.971297 0.237870i \(-0.923551\pi\)
0.691650 + 0.722233i \(0.256884\pi\)
\(488\) 18.2263 0.825067
\(489\) 0 0
\(490\) 3.09273 + 5.35677i 0.139715 + 0.241994i
\(491\) 28.1584 1.27077 0.635386 0.772194i \(-0.280841\pi\)
0.635386 + 0.772194i \(0.280841\pi\)
\(492\) 0 0
\(493\) 10.8303 + 18.7586i 0.487772 + 0.844846i
\(494\) −11.1578 + 6.70259i −0.502012 + 0.301564i
\(495\) 0 0
\(496\) 5.58303 + 9.67008i 0.250685 + 0.434200i
\(497\) −2.15977 + 3.74084i −0.0968791 + 0.167799i
\(498\) 0 0
\(499\) 12.0417 20.8568i 0.539061 0.933681i −0.459894 0.887974i \(-0.652113\pi\)
0.998955 0.0457069i \(-0.0145540\pi\)
\(500\) −3.58819 6.21492i −0.160469 0.277940i
\(501\) 0 0
\(502\) 5.73162 + 9.92745i 0.255815 + 0.443084i
\(503\) 1.66703 2.88738i 0.0743291 0.128742i −0.826465 0.562988i \(-0.809652\pi\)
0.900794 + 0.434246i \(0.142985\pi\)
\(504\) 0 0
\(505\) 12.6351 + 21.8847i 0.562255 + 0.973855i
\(506\) −5.27716 9.14031i −0.234598 0.406336i
\(507\) 0 0
\(508\) 3.18127 5.51013i 0.141146 0.244472i
\(509\) −34.1316 −1.51286 −0.756429 0.654076i \(-0.773058\pi\)
−0.756429 + 0.654076i \(0.773058\pi\)
\(510\) 0 0
\(511\) −4.49659 −0.198917
\(512\) −14.1232 −0.624165
\(513\) 0 0
\(514\) 1.27415 2.20689i 0.0562004 0.0973419i
\(515\) −25.3937 43.9831i −1.11898 1.93813i
\(516\) 0 0
\(517\) −2.41139 −0.106053
\(518\) 10.7264 0.471291
\(519\) 0 0
\(520\) −22.3449 12.3892i −0.979891 0.543303i
\(521\) −42.5774 −1.86535 −0.932675 0.360719i \(-0.882531\pi\)
−0.932675 + 0.360719i \(0.882531\pi\)
\(522\) 0 0
\(523\) −1.45092 2.51307i −0.0634443 0.109889i 0.832559 0.553937i \(-0.186875\pi\)
−0.896003 + 0.444048i \(0.853542\pi\)
\(524\) −0.935439 −0.0408648
\(525\) 0 0
\(526\) 8.68109 + 15.0361i 0.378514 + 0.655605i
\(527\) 22.8343 + 39.5501i 0.994677 + 1.72283i
\(528\) 0 0
\(529\) 19.7923 0.860535
\(530\) 1.30590 + 2.26188i 0.0567247 + 0.0982500i
\(531\) 0 0
\(532\) 24.8501 1.07739
\(533\) −0.157217 9.06412i −0.00680984 0.392611i
\(534\) 0 0
\(535\) −36.0431 −1.55828
\(536\) 20.5069 0.885765
\(537\) 0 0
\(538\) −3.09390 5.35879i −0.133387 0.231034i
\(539\) 3.54666 6.14300i 0.152765 0.264598i
\(540\) 0 0
\(541\) 22.6048 0.971857 0.485929 0.873999i \(-0.338482\pi\)
0.485929 + 0.873999i \(0.338482\pi\)
\(542\) −7.26045 −0.311863
\(543\) 0 0
\(544\) −31.3567 −1.34441
\(545\) −7.00331 + 12.1301i −0.299989 + 0.519596i
\(546\) 0 0
\(547\) −18.1136 31.3737i −0.774481 1.34144i −0.935085 0.354422i \(-0.884678\pi\)
0.160604 0.987019i \(-0.448656\pi\)
\(548\) −14.3437 24.8440i −0.612731 1.06128i
\(549\) 0 0
\(550\) −2.71054 + 4.69479i −0.115578 + 0.200186i
\(551\) 10.4039 + 18.0201i 0.443222 + 0.767682i
\(552\) 0 0
\(553\) 0.116060 + 0.201021i 0.00493536 + 0.00854830i
\(554\) −8.67155 + 15.0196i −0.368419 + 0.638120i
\(555\) 0 0
\(556\) −2.28709 + 3.96136i −0.0969944 + 0.167999i
\(557\) −1.08919 1.88653i −0.0461503 0.0799347i 0.842027 0.539435i \(-0.181362\pi\)
−0.888178 + 0.459500i \(0.848029\pi\)
\(558\) 0 0
\(559\) 0.374323 + 21.5810i 0.0158322 + 0.912779i
\(560\) 6.04188 + 10.4648i 0.255316 + 0.442220i
\(561\) 0 0
\(562\) 7.62782 0.321760
\(563\) 3.82852 + 6.63120i 0.161353 + 0.279472i 0.935354 0.353713i \(-0.115081\pi\)
−0.774001 + 0.633184i \(0.781748\pi\)
\(564\) 0 0
\(565\) −17.7737 −0.747744
\(566\) 10.3373 17.9048i 0.434510 0.752594i
\(567\) 0 0
\(568\) 1.66830 2.88958i 0.0700004 0.121244i
\(569\) −13.2970 + 23.0311i −0.557440 + 0.965514i 0.440269 + 0.897866i \(0.354883\pi\)
−0.997709 + 0.0676486i \(0.978450\pi\)
\(570\) 0 0
\(571\) 21.6621 37.5199i 0.906531 1.57016i 0.0876825 0.996148i \(-0.472054\pi\)
0.818849 0.574010i \(-0.194613\pi\)
\(572\) 0.218877 + 12.6190i 0.00915171 + 0.527627i
\(573\) 0 0
\(574\) 2.78240 4.81925i 0.116135 0.201152i
\(575\) −10.9898 19.0349i −0.458307 0.793811i
\(576\) 0 0
\(577\) −24.5681 −1.02278 −0.511392 0.859348i \(-0.670870\pi\)
−0.511392 + 0.859348i \(0.670870\pi\)
\(578\) −8.38679 −0.348844
\(579\) 0 0
\(580\) −8.79685 + 15.2366i −0.365269 + 0.632665i
\(581\) −3.45229 5.97955i −0.143225 0.248073i
\(582\) 0 0
\(583\) 1.49757 2.59387i 0.0620230 0.107427i
\(584\) 3.47336 0.143729
\(585\) 0 0
\(586\) −10.6562 −0.440202
\(587\) −6.97935 + 12.0886i −0.288069 + 0.498950i −0.973349 0.229330i \(-0.926347\pi\)
0.685280 + 0.728280i \(0.259680\pi\)
\(588\) 0 0
\(589\) 21.9353 + 37.9931i 0.903829 + 1.56548i
\(590\) 4.74429 8.21735i 0.195319 0.338303i
\(591\) 0 0
\(592\) 6.38377 0.262371
\(593\) 42.3659 1.73976 0.869880 0.493263i \(-0.164196\pi\)
0.869880 + 0.493263i \(0.164196\pi\)
\(594\) 0 0
\(595\) 24.7110 + 42.8006i 1.01305 + 1.75465i
\(596\) 4.33913 7.51559i 0.177738 0.307851i
\(597\) 0 0
\(598\) 14.3890 + 7.97803i 0.588411 + 0.326246i
\(599\) 0.140194 0.242822i 0.00572815 0.00992145i −0.863147 0.504953i \(-0.831510\pi\)
0.868875 + 0.495031i \(0.164843\pi\)
\(600\) 0 0
\(601\) −8.78997 + 15.2247i −0.358550 + 0.621028i −0.987719 0.156241i \(-0.950062\pi\)
0.629168 + 0.777269i \(0.283396\pi\)
\(602\) −6.62468 + 11.4743i −0.270002 + 0.467657i
\(603\) 0 0
\(604\) 1.60385 2.77794i 0.0652596 0.113033i
\(605\) −16.3371 −0.664199
\(606\) 0 0
\(607\) 20.0915 + 34.7995i 0.815489 + 1.41247i 0.908976 + 0.416848i \(0.136865\pi\)
−0.0934872 + 0.995620i \(0.529801\pi\)
\(608\) −30.1222 −1.22162
\(609\) 0 0
\(610\) 7.49970 + 12.9899i 0.303654 + 0.525944i
\(611\) 3.22232 1.93569i 0.130361 0.0783095i
\(612\) 0 0
\(613\) 12.3197 + 21.3384i 0.497589 + 0.861849i 0.999996 0.00278192i \(-0.000885515\pi\)
−0.502407 + 0.864631i \(0.667552\pi\)
\(614\) −1.03424 + 1.79136i −0.0417386 + 0.0722934i
\(615\) 0 0
\(616\) −8.99273 + 15.5759i −0.362327 + 0.627570i
\(617\) 18.0518 + 31.2667i 0.726739 + 1.25875i 0.958254 + 0.285918i \(0.0922986\pi\)
−0.231515 + 0.972831i \(0.574368\pi\)
\(618\) 0 0
\(619\) −19.1602 33.1865i −0.770114 1.33388i −0.937500 0.347986i \(-0.886866\pi\)
0.167386 0.985892i \(-0.446468\pi\)
\(620\) −18.5470 + 32.1244i −0.744867 + 1.29015i
\(621\) 0 0
\(622\) 0.337156 + 0.583971i 0.0135187 + 0.0234151i
\(623\) −0.282853 0.489915i −0.0113323 0.0196280i
\(624\) 0 0
\(625\) 15.2552 26.4228i 0.610208 1.05691i
\(626\) −2.18507 −0.0873331
\(627\) 0 0
\(628\) 23.3126 0.930274
\(629\) 26.1093 1.04105
\(630\) 0 0
\(631\) 4.85653 8.41176i 0.193335 0.334867i −0.753018 0.658000i \(-0.771403\pi\)
0.946354 + 0.323133i \(0.104736\pi\)
\(632\) −0.0896495 0.155278i −0.00356607 0.00617661i
\(633\) 0 0
\(634\) −20.3447 −0.807992
\(635\) 12.1557 0.482383
\(636\) 0 0
\(637\) 0.191764 + 11.0559i 0.00759797 + 0.438049i
\(638\) −6.48704 −0.256825
\(639\) 0 0
\(640\) −15.3913 26.6586i −0.608396 1.05377i
\(641\) 29.9584 1.18329 0.591643 0.806200i \(-0.298479\pi\)
0.591643 + 0.806200i \(0.298479\pi\)
\(642\) 0 0
\(643\) −9.27872 16.0712i −0.365917 0.633787i 0.623006 0.782217i \(-0.285911\pi\)
−0.988923 + 0.148430i \(0.952578\pi\)
\(644\) −15.7056 27.2029i −0.618886 1.07194i
\(645\) 0 0
\(646\) −19.4483 −0.765184
\(647\) −17.4909 30.2951i −0.687637 1.19102i −0.972600 0.232484i \(-0.925315\pi\)
0.284963 0.958538i \(-0.408019\pi\)
\(648\) 0 0
\(649\) −10.8812 −0.427126
\(650\) −0.146556 8.44944i −0.00574839 0.331414i
\(651\) 0 0
\(652\) −19.8597 −0.777765
\(653\) 15.6864 0.613858 0.306929 0.951732i \(-0.400699\pi\)
0.306929 + 0.951732i \(0.400699\pi\)
\(654\) 0 0
\(655\) −0.893579 1.54772i −0.0349150 0.0604746i
\(656\) 1.65593 2.86816i 0.0646533 0.111983i
\(657\) 0 0
\(658\) 2.30745 0.0899539
\(659\) −22.3025 −0.868783 −0.434391 0.900724i \(-0.643037\pi\)
−0.434391 + 0.900724i \(0.643037\pi\)
\(660\) 0 0
\(661\) 16.6050 0.645859 0.322930 0.946423i \(-0.395332\pi\)
0.322930 + 0.946423i \(0.395332\pi\)
\(662\) 2.49536 4.32209i 0.0969849 0.167983i
\(663\) 0 0
\(664\) 2.66670 + 4.61886i 0.103488 + 0.179246i
\(665\) 23.7381 + 41.1156i 0.920524 + 1.59439i
\(666\) 0 0
\(667\) 13.1508 22.7779i 0.509201 0.881962i
\(668\) 4.40207 + 7.62462i 0.170321 + 0.295005i
\(669\) 0 0
\(670\) 8.43811 + 14.6152i 0.325993 + 0.564636i
\(671\) 8.60045 14.8964i 0.332017 0.575069i
\(672\) 0 0
\(673\) 4.31242 7.46933i 0.166232 0.287922i −0.770860 0.637004i \(-0.780173\pi\)
0.937092 + 0.349083i \(0.113507\pi\)
\(674\) 5.13978 + 8.90235i 0.197977 + 0.342906i
\(675\) 0 0
\(676\) −10.4221 16.6870i −0.400850 0.641808i
\(677\) −11.5236 19.9595i −0.442888 0.767105i 0.555014 0.831841i \(-0.312713\pi\)
−0.997902 + 0.0647358i \(0.979380\pi\)
\(678\) 0 0
\(679\) −0.415323 −0.0159386
\(680\) −19.0878 33.0610i −0.731984 1.26783i
\(681\) 0 0
\(682\) −13.6771 −0.523723
\(683\) 13.6294 23.6068i 0.521514 0.903289i −0.478172 0.878266i \(-0.658701\pi\)
0.999687 0.0250235i \(-0.00796605\pi\)
\(684\) 0 0
\(685\) 27.4036 47.4645i 1.04704 1.81352i
\(686\) 4.35257 7.53886i 0.166182 0.287835i
\(687\) 0 0
\(688\) −3.94265 + 6.82888i −0.150312 + 0.260348i
\(689\) 0.0809719 + 4.66831i 0.00308478 + 0.177848i
\(690\) 0 0
\(691\) 10.6237 18.4008i 0.404144 0.699998i −0.590077 0.807347i \(-0.700903\pi\)
0.994221 + 0.107349i \(0.0342361\pi\)
\(692\) 13.6840 + 23.7014i 0.520188 + 0.900992i
\(693\) 0 0
\(694\) −13.8907 −0.527282
\(695\) −8.73900 −0.331489
\(696\) 0 0
\(697\) 6.77268 11.7306i 0.256533 0.444329i
\(698\) −9.68533 16.7755i −0.366595 0.634961i
\(699\) 0 0
\(700\) −8.06694 + 13.9723i −0.304902 + 0.528105i
\(701\) −10.1915 −0.384928 −0.192464 0.981304i \(-0.561648\pi\)
−0.192464 + 0.981304i \(0.561648\pi\)
\(702\) 0 0
\(703\) 25.0814 0.945962
\(704\) 1.64883 2.85586i 0.0621427 0.107634i
\(705\) 0 0
\(706\) −9.96486 17.2596i −0.375032 0.649575i
\(707\) −13.8651 + 24.0150i −0.521450 + 0.903177i
\(708\) 0 0
\(709\) 25.7338 0.966454 0.483227 0.875495i \(-0.339465\pi\)
0.483227 + 0.875495i \(0.339465\pi\)
\(710\) 2.74586 0.103050
\(711\) 0 0
\(712\) 0.218487 + 0.378431i 0.00818816 + 0.0141823i
\(713\) 27.7268 48.0242i 1.03838 1.79852i
\(714\) 0 0
\(715\) −20.6696 + 12.4165i −0.773000 + 0.464350i
\(716\) 16.5483 28.6626i 0.618440 1.07117i
\(717\) 0 0
\(718\) 5.38931 9.33455i 0.201127 0.348362i
\(719\) 8.35595 14.4729i 0.311624 0.539749i −0.667090 0.744977i \(-0.732460\pi\)
0.978714 + 0.205228i \(0.0657936\pi\)
\(720\) 0 0
\(721\) 27.8656 48.2646i 1.03777 1.79747i
\(722\) −5.42895 −0.202044
\(723\) 0 0
\(724\) −8.31488 14.4018i −0.309020 0.535238i
\(725\) −13.5094 −0.501728
\(726\) 0 0
\(727\) −20.7535 35.9461i −0.769705 1.33317i −0.937723 0.347384i \(-0.887070\pi\)
0.168018 0.985784i \(-0.446263\pi\)
\(728\) −0.486227 28.0327i −0.0180208 1.03896i
\(729\) 0 0
\(730\) 1.42920 + 2.47545i 0.0528972 + 0.0916206i
\(731\) −16.1252 + 27.9297i −0.596414 + 1.03302i
\(732\) 0 0
\(733\) −18.6541 + 32.3098i −0.689003 + 1.19339i 0.283157 + 0.959073i \(0.408618\pi\)
−0.972161 + 0.234315i \(0.924715\pi\)
\(734\) 0.164340 + 0.284644i 0.00606588 + 0.0105064i
\(735\) 0 0
\(736\) 19.0376 + 32.9741i 0.701735 + 1.21544i
\(737\) 9.67659 16.7604i 0.356442 0.617375i
\(738\) 0 0
\(739\) −17.9464 31.0841i −0.660169 1.14345i −0.980571 0.196165i \(-0.937151\pi\)
0.320401 0.947282i \(-0.396182\pi\)
\(740\) 10.6036 + 18.3659i 0.389795 + 0.675145i
\(741\) 0 0
\(742\) −1.43302 + 2.48207i −0.0526079 + 0.0911195i
\(743\) 1.50358 0.0551609 0.0275804 0.999620i \(-0.491220\pi\)
0.0275804 + 0.999620i \(0.491220\pi\)
\(744\) 0 0
\(745\) 16.5798 0.607438
\(746\) −22.5653 −0.826175
\(747\) 0 0
\(748\) −9.42888 + 16.3313i −0.344754 + 0.597131i
\(749\) −19.7758 34.2527i −0.722593 1.25157i
\(750\) 0 0
\(751\) 4.21831 0.153928 0.0769642 0.997034i \(-0.475477\pi\)
0.0769642 + 0.997034i \(0.475477\pi\)
\(752\) 1.37327 0.0500781
\(753\) 0 0
\(754\) 8.66860 5.20732i 0.315692 0.189640i
\(755\) 6.12830 0.223032
\(756\) 0 0
\(757\) −3.70611 6.41918i −0.134701 0.233309i 0.790782 0.612098i \(-0.209674\pi\)
−0.925483 + 0.378789i \(0.876341\pi\)
\(758\) 0.995234 0.0361485
\(759\) 0 0
\(760\) −18.3363 31.7594i −0.665128 1.15204i
\(761\) 18.2564 + 31.6210i 0.661795 + 1.14626i 0.980144 + 0.198288i \(0.0635383\pi\)
−0.318349 + 0.947974i \(0.603128\pi\)
\(762\) 0 0
\(763\) −15.3701 −0.556435
\(764\) 13.6081 + 23.5699i 0.492324 + 0.852730i
\(765\) 0 0
\(766\) −11.1222 −0.401862
\(767\) 14.5405 8.73466i 0.525029 0.315390i
\(768\) 0 0
\(769\) 16.0012 0.577018 0.288509 0.957477i \(-0.406840\pi\)
0.288509 + 0.957477i \(0.406840\pi\)
\(770\) −14.8012 −0.533397
\(771\) 0 0
\(772\) 2.87673 + 4.98264i 0.103536 + 0.179329i
\(773\) −14.3128 + 24.7905i −0.514796 + 0.891652i 0.485057 + 0.874483i \(0.338799\pi\)
−0.999853 + 0.0171698i \(0.994534\pi\)
\(774\) 0 0
\(775\) −28.4829 −1.02314
\(776\) 0.320813 0.0115165
\(777\) 0 0
\(778\) −14.0273 −0.502905
\(779\) 6.50604 11.2688i 0.233103 0.403746i
\(780\) 0 0
\(781\) −1.57444 2.72701i −0.0563379 0.0975801i
\(782\) 12.2916 + 21.2896i 0.439546 + 0.761316i
\(783\) 0 0
\(784\) −2.01980 + 3.49840i −0.0721358 + 0.124943i
\(785\) 22.2694 + 38.5717i 0.794829 + 1.37668i
\(786\) 0 0
\(787\) 2.87553 + 4.98057i 0.102502 + 0.177538i 0.912715 0.408597i \(-0.133982\pi\)
−0.810213 + 0.586135i \(0.800649\pi\)
\(788\) −18.7107 + 32.4078i −0.666540 + 1.15448i
\(789\) 0 0
\(790\) 0.0737773 0.127786i 0.00262488 0.00454642i
\(791\) −9.75192 16.8908i −0.346738 0.600569i
\(792\) 0 0
\(793\) 0.465017 + 26.8098i 0.0165132 + 0.952044i
\(794\) −1.23763 2.14364i −0.0439218 0.0760748i
\(795\) 0 0
\(796\) 41.9032 1.48522
\(797\) −26.9581 46.6928i −0.954905 1.65394i −0.734585 0.678517i \(-0.762623\pi\)
−0.220320 0.975428i \(-0.570710\pi\)
\(798\) 0 0
\(799\) 5.61661 0.198701
\(800\) 9.77837 16.9366i 0.345718 0.598801i
\(801\) 0 0
\(802\) −9.29238 + 16.0949i −0.328125 + 0.568330i
\(803\) 1.63897 2.83878i 0.0578380 0.100178i
\(804\) 0 0
\(805\) 30.0055 51.9711i 1.05756 1.83174i
\(806\) 18.2766 10.9790i 0.643767 0.386718i
\(807\) 0 0
\(808\) 10.7100 18.5502i 0.376776 0.652594i
\(809\) −2.00874 3.47924i −0.0706235 0.122324i 0.828551 0.559913i \(-0.189166\pi\)
−0.899175 + 0.437590i \(0.855832\pi\)
\(810\) 0 0
\(811\) 14.2338 0.499815 0.249908 0.968270i \(-0.419600\pi\)
0.249908 + 0.968270i \(0.419600\pi\)
\(812\) −19.3064 −0.677520
\(813\) 0 0
\(814\) −3.90969 + 6.77177i −0.137034 + 0.237351i
\(815\) −18.9710 32.8587i −0.664525 1.15099i
\(816\) 0 0
\(817\) −15.4904 + 26.8302i −0.541941 + 0.938669i
\(818\) 9.43213 0.329787
\(819\) 0 0
\(820\) 11.0021 0.384212
\(821\) −24.8337 + 43.0132i −0.866701 + 1.50117i −0.00135317 + 0.999999i \(0.500431\pi\)
−0.865348 + 0.501171i \(0.832903\pi\)
\(822\) 0 0
\(823\) −5.98593 10.3679i −0.208656 0.361403i 0.742635 0.669696i \(-0.233576\pi\)
−0.951292 + 0.308293i \(0.900242\pi\)
\(824\) −21.5246 + 37.2817i −0.749844 + 1.29877i
\(825\) 0 0
\(826\) 10.4122 0.362288
\(827\) −35.1205 −1.22126 −0.610630 0.791916i \(-0.709084\pi\)
−0.610630 + 0.791916i \(0.709084\pi\)
\(828\) 0 0
\(829\) −25.4527 44.0853i −0.884008 1.53115i −0.846847 0.531837i \(-0.821502\pi\)
−0.0371606 0.999309i \(-0.511831\pi\)
\(830\) −2.19457 + 3.80110i −0.0761745 + 0.131938i
\(831\) 0 0
\(832\) 0.0891505 + 5.13983i 0.00309074 + 0.178192i
\(833\) −8.26089 + 14.3083i −0.286223 + 0.495753i
\(834\) 0 0
\(835\) −8.41018 + 14.5669i −0.291046 + 0.504107i
\(836\) −9.05767 + 15.6883i −0.313266 + 0.542593i
\(837\) 0 0
\(838\) 4.39670 7.61530i 0.151881 0.263066i
\(839\) 8.42689 0.290929 0.145464 0.989364i \(-0.453532\pi\)
0.145464 + 0.989364i \(0.453532\pi\)
\(840\) 0 0
\(841\) 6.41707 + 11.1147i 0.221278 + 0.383265i
\(842\) 6.27393 0.216214
\(843\) 0 0
\(844\) −2.86950 4.97013i −0.0987724 0.171079i
\(845\) 17.6537 33.1841i 0.607305 1.14157i
\(846\) 0 0
\(847\) −8.96374 15.5256i −0.307998 0.533468i
\(848\) −0.852857 + 1.47719i −0.0292872 + 0.0507270i
\(849\) 0 0
\(850\) 6.31339 10.9351i 0.216547 0.375071i
\(851\) −15.8517 27.4560i −0.543391 0.941180i
\(852\) 0 0
\(853\) 16.9960 + 29.4380i 0.581932 + 1.00794i 0.995250 + 0.0973495i \(0.0310365\pi\)
−0.413318 + 0.910587i \(0.635630\pi\)
\(854\) −8.22975 + 14.2543i −0.281616 + 0.487774i
\(855\) 0 0
\(856\) 15.2757 + 26.4583i 0.522112 + 0.904325i
\(857\) −26.4677 45.8435i −0.904121 1.56598i −0.822093 0.569353i \(-0.807194\pi\)
−0.0820272 0.996630i \(-0.526139\pi\)
\(858\) 0 0
\(859\) 2.49176 4.31585i 0.0850177 0.147255i −0.820381 0.571817i \(-0.806239\pi\)
0.905399 + 0.424562i \(0.139572\pi\)
\(860\) −26.1953 −0.893252
\(861\) 0 0
\(862\) 11.2386 0.382787
\(863\) −40.1602 −1.36707 −0.683535 0.729918i \(-0.739558\pi\)
−0.683535 + 0.729918i \(0.739558\pi\)
\(864\) 0 0
\(865\) −26.1433 + 45.2816i −0.888900 + 1.53962i
\(866\) 9.43470 + 16.3414i 0.320604 + 0.555303i
\(867\) 0 0
\(868\) −40.7050 −1.38162
\(869\) −0.169211 −0.00574010
\(870\) 0 0
\(871\) 0.523203 + 30.1644i 0.0177280 + 1.02208i
\(872\) 11.8725 0.402054
\(873\) 0 0
\(874\) 11.8077 + 20.4515i 0.399400 + 0.691782i
\(875\) 15.0451 0.508618
\(876\) 0 0
\(877\) −4.05215 7.01854i −0.136832 0.236999i 0.789464 0.613797i \(-0.210359\pi\)
−0.926296 + 0.376798i \(0.877025\pi\)
\(878\) 0.803347 + 1.39144i 0.0271117 + 0.0469588i
\(879\) 0 0
\(880\) −8.80886 −0.296947
\(881\) −8.71424 15.0935i −0.293590 0.508513i 0.681066 0.732222i \(-0.261517\pi\)
−0.974656 + 0.223709i \(0.928183\pi\)
\(882\) 0 0
\(883\) 7.78098 0.261851 0.130925 0.991392i \(-0.458205\pi\)
0.130925 + 0.991392i \(0.458205\pi\)
\(884\) −0.509809 29.3922i −0.0171467 0.988568i
\(885\) 0 0
\(886\) −18.3432 −0.616253
\(887\) −31.9515 −1.07283 −0.536413 0.843956i \(-0.680221\pi\)
−0.536413 + 0.843956i \(0.680221\pi\)
\(888\) 0 0
\(889\) 6.66948 + 11.5519i 0.223687 + 0.387437i
\(890\) −0.179805 + 0.311431i −0.00602707 + 0.0104392i
\(891\) 0 0
\(892\) −1.68087 −0.0562799
\(893\) 5.39549 0.180553
\(894\) 0 0
\(895\) 63.2313 2.11359
\(896\) 16.8896 29.2536i 0.564242 0.977295i
\(897\) 0 0
\(898\) −3.11564 5.39644i −0.103970 0.180082i
\(899\) −17.0418 29.5173i −0.568376 0.984456i
\(900\) 0 0
\(901\) −3.48814 + 6.04164i −0.116207 + 0.201276i
\(902\) 2.02832 + 3.51316i 0.0675358 + 0.116975i
\(903\) 0 0
\(904\) 7.53280 + 13.0472i 0.250537 + 0.433943i
\(905\) 15.8856 27.5147i 0.528055 0.914618i
\(906\) 0 0
\(907\) −10.2843 + 17.8129i −0.341484 + 0.591468i −0.984709 0.174210i \(-0.944263\pi\)
0.643224 + 0.765678i \(0.277596\pi\)
\(908\) 6.31427 + 10.9366i 0.209547 + 0.362945i
\(909\) 0 0
\(910\) 19.7787 11.8813i 0.655659 0.393861i
\(911\) 18.5114 + 32.0627i 0.613311 + 1.06229i 0.990678 + 0.136222i \(0.0434960\pi\)
−0.377368 + 0.926064i \(0.623171\pi\)
\(912\) 0 0
\(913\) 5.03333 0.166579
\(914\) 6.58552 + 11.4065i 0.217830 + 0.377292i
\(915\) 0 0
\(916\) −11.4982 −0.379911
\(917\) 0.980564 1.69839i 0.0323811 0.0560857i
\(918\) 0 0
\(919\) 9.27825 16.0704i 0.306061 0.530114i −0.671436 0.741063i \(-0.734322\pi\)
0.977497 + 0.210949i \(0.0676554\pi\)
\(920\) −23.1776 + 40.1447i −0.764142 + 1.32353i
\(921\) 0 0
\(922\) 8.10063 14.0307i 0.266780 0.462077i
\(923\) 4.29296 + 2.38024i 0.141305 + 0.0783467i
\(924\) 0 0
\(925\) −8.14201 + 14.1024i −0.267708 + 0.463683i
\(926\) −0.802232 1.38951i −0.0263630 0.0456620i
\(927\) 0 0
\(928\) 23.4023 0.768218
\(929\) 48.2623 1.58344 0.791718 0.610887i \(-0.209187\pi\)
0.791718 + 0.610887i \(0.209187\pi\)
\(930\) 0 0
\(931\) −7.93566 + 13.7450i −0.260081 + 0.450473i
\(932\) −0.580994 1.00631i −0.0190311 0.0329628i
\(933\) 0 0
\(934\) 7.83760 13.5751i 0.256454 0.444191i
\(935\) −36.0278 −1.17823
\(936\) 0 0
\(937\) 37.7556 1.23342 0.616711 0.787190i \(-0.288465\pi\)
0.616711 + 0.787190i \(0.288465\pi\)
\(938\) −9.25952 + 16.0380i −0.302334 + 0.523658i
\(939\) 0 0
\(940\) 2.28103 + 3.95086i 0.0743990 + 0.128863i
\(941\) 20.6525 35.7713i 0.673254 1.16611i −0.303722 0.952761i \(-0.598230\pi\)
0.976976 0.213349i \(-0.0684371\pi\)
\(942\) 0 0
\(943\) −16.4476 −0.535607
\(944\) 6.19681 0.201689
\(945\) 0 0
\(946\) −4.82929 8.36457i −0.157014 0.271956i
\(947\) −0.883784 + 1.53076i −0.0287191 + 0.0497430i −0.880028 0.474922i \(-0.842476\pi\)
0.851309 + 0.524665i \(0.175810\pi\)
\(948\) 0 0
\(949\) 0.0886173 + 5.10909i 0.00287664 + 0.165848i
\(950\) 6.06483 10.5046i 0.196769 0.340814i
\(951\) 0 0
\(952\) 20.9459 36.2793i 0.678860 1.17582i
\(953\) −17.6033 + 30.4898i −0.570228 + 0.987663i 0.426315 + 0.904575i \(0.359812\pi\)
−0.996542 + 0.0830881i \(0.973522\pi\)
\(954\) 0 0
\(955\) −25.9983 + 45.0304i −0.841286 + 1.45715i
\(956\) 32.1496 1.03979
\(957\) 0 0
\(958\) 1.69930 + 2.94327i 0.0549018 + 0.0950926i
\(959\) 60.1424 1.94210
\(960\) 0 0
\(961\) −20.4304 35.3866i −0.659047 1.14150i
\(962\) −0.211392 12.1875i −0.00681556 0.392941i
\(963\) 0 0
\(964\) −17.2990 29.9628i −0.557164 0.965037i
\(965\) −5.49600 + 9.51935i −0.176923 + 0.306439i
\(966\) 0 0
\(967\) −26.6427 + 46.1466i −0.856773 + 1.48397i 0.0182182 + 0.999834i \(0.494201\pi\)
−0.874991 + 0.484140i \(0.839133\pi\)
\(968\) 6.92397 + 11.9927i 0.222545 + 0.385459i
\(969\) 0 0
\(970\) 0.132007 + 0.228643i 0.00423849 + 0.00734127i
\(971\) −24.0513 + 41.6582i −0.771844 + 1.33687i 0.164707 + 0.986343i \(0.447332\pi\)
−0.936551 + 0.350531i \(0.886001\pi\)
\(972\) 0 0
\(973\) −4.79485 8.30492i −0.153716 0.266243i
\(974\) 4.30485 + 7.45622i 0.137936 + 0.238913i
\(975\) 0 0
\(976\) −4.89791 + 8.48342i −0.156778 + 0.271548i
\(977\) 55.7438 1.78340 0.891700 0.452626i \(-0.149513\pi\)
0.891700 + 0.452626i \(0.149513\pi\)
\(978\) 0 0
\(979\) 0.412390 0.0131800
\(980\) −13.4197 −0.428678
\(981\) 0 0
\(982\) 9.82115 17.0107i 0.313406 0.542834i
\(983\) 11.9465 + 20.6920i 0.381035 + 0.659973i 0.991211 0.132294i \(-0.0422343\pi\)
−0.610175 + 0.792267i \(0.708901\pi\)
\(984\) 0 0
\(985\) −71.4936 −2.27797
\(986\) 15.1096 0.481189
\(987\) 0 0
\(988\) −0.489738 28.2351i −0.0155806 0.898277i
\(989\) 39.1605 1.24523
\(990\) 0 0
\(991\) 15.5487 + 26.9312i 0.493922 + 0.855498i 0.999975 0.00700424i \(-0.00222954\pi\)
−0.506054 + 0.862502i \(0.668896\pi\)
\(992\) 49.3407 1.56657
\(993\) 0 0
\(994\) 1.50658 + 2.60947i 0.0477858 + 0.0827674i
\(995\) 40.0281 + 69.3307i 1.26898 + 2.19793i
\(996\) 0 0
\(997\) 21.0784 0.667561 0.333781 0.942651i \(-0.391676\pi\)
0.333781 + 0.942651i \(0.391676\pi\)
\(998\) −8.39986 14.5490i −0.265893 0.460540i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.f.a.172.8 24
3.2 odd 2 117.2.f.a.94.5 yes 24
9.2 odd 6 117.2.h.a.16.8 yes 24
9.7 even 3 351.2.h.a.289.5 24
13.9 even 3 351.2.h.a.334.5 24
39.35 odd 6 117.2.h.a.22.8 yes 24
117.61 even 3 inner 351.2.f.a.100.8 24
117.74 odd 6 117.2.f.a.61.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.5 24 117.74 odd 6
117.2.f.a.94.5 yes 24 3.2 odd 2
117.2.h.a.16.8 yes 24 9.2 odd 6
117.2.h.a.22.8 yes 24 39.35 odd 6
351.2.f.a.100.8 24 117.61 even 3 inner
351.2.f.a.172.8 24 1.1 even 1 trivial
351.2.h.a.289.5 24 9.7 even 3
351.2.h.a.334.5 24 13.9 even 3