gp: [N,k,chi] = [350,4,Mod(51,350)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("350.51");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(350, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [2,-2,10,-4,0,-40,-28]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 350 Z ) × \left(\mathbb{Z}/350\mathbb{Z}\right)^\times ( Z / 3 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 350 , [ χ ] ) S_{4}^{\mathrm{new}}(350, [\chi]) S 4 n e w ( 3 5 0 , [ χ ] ) :
T 3 2 − 10 T 3 + 100 T_{3}^{2} - 10T_{3} + 100 T 3 2 − 1 0 T 3 + 1 0 0
T3^2 - 10*T3 + 100
T 11 2 + 53 T 11 + 2809 T_{11}^{2} + 53T_{11} + 2809 T 1 1 2 + 5 3 T 1 1 + 2 8 0 9
T11^2 + 53*T11 + 2809
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
3 3 3
T 2 − 10 T + 100 T^{2} - 10T + 100 T 2 − 1 0 T + 1 0 0
T^2 - 10*T + 100
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 28 T + 343 T^{2} + 28T + 343 T 2 + 2 8 T + 3 4 3
T^2 + 28*T + 343
11 11 1 1
T 2 + 53 T + 2809 T^{2} + 53T + 2809 T 2 + 5 3 T + 2 8 0 9
T^2 + 53*T + 2809
13 13 1 3
( T + 25 ) 2 (T + 25)^{2} ( T + 2 5 ) 2
(T + 25)^2
17 17 1 7
T 2 − 14 T + 196 T^{2} - 14T + 196 T 2 − 1 4 T + 1 9 6
T^2 - 14*T + 196
19 19 1 9
T 2 − 95 T + 9025 T^{2} - 95T + 9025 T 2 − 9 5 T + 9 0 2 5
T^2 - 95*T + 9025
23 23 2 3
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
29 29 2 9
( T + 206 ) 2 (T + 206)^{2} ( T + 2 0 6 ) 2
(T + 206)^2
31 31 3 1
T 2 + 108 T + 11664 T^{2} + 108T + 11664 T 2 + 1 0 8 T + 1 1 6 6 4
T^2 + 108*T + 11664
37 37 3 7
T 2 + 57 T + 3249 T^{2} + 57T + 3249 T 2 + 5 7 T + 3 2 4 9
T^2 + 57*T + 3249
41 41 4 1
( T − 243 ) 2 (T - 243)^{2} ( T − 2 4 3 ) 2
(T - 243)^2
43 43 4 3
( T + 434 ) 2 (T + 434)^{2} ( T + 4 3 4 ) 2
(T + 434)^2
47 47 4 7
T 2 + 231 T + 53361 T^{2} + 231T + 53361 T 2 + 2 3 1 T + 5 3 3 6 1
T^2 + 231*T + 53361
53 53 5 3
T 2 − 263 T + 69169 T^{2} - 263T + 69169 T 2 − 2 6 3 T + 6 9 1 6 9
T^2 - 263*T + 69169
59 59 5 9
T 2 + 24 T + 576 T^{2} + 24T + 576 T 2 + 2 4 T + 5 7 6
T^2 + 24*T + 576
61 61 6 1
T 2 + 116 T + 13456 T^{2} + 116T + 13456 T 2 + 1 1 6 T + 1 3 4 5 6
T^2 + 116*T + 13456
67 67 6 7
T 2 + 204 T + 41616 T^{2} + 204T + 41616 T 2 + 2 0 4 T + 4 1 6 1 6
T^2 + 204*T + 41616
71 71 7 1
( T − 484 ) 2 (T - 484)^{2} ( T − 4 8 4 ) 2
(T - 484)^2
73 73 7 3
T 2 + 692 T + 478864 T^{2} + 692T + 478864 T 2 + 6 9 2 T + 4 7 8 8 6 4
T^2 + 692*T + 478864
79 79 7 9
T 2 + 466 T + 217156 T^{2} + 466T + 217156 T 2 + 4 6 6 T + 2 1 7 1 5 6
T^2 + 466*T + 217156
83 83 8 3
( T + 228 ) 2 (T + 228)^{2} ( T + 2 2 8 ) 2
(T + 228)^2
89 89 8 9
T 2 − 362 T + 131044 T^{2} - 362T + 131044 T 2 − 3 6 2 T + 1 3 1 0 4 4
T^2 - 362*T + 131044
97 97 9 7
( T + 854 ) 2 (T + 854)^{2} ( T + 8 5 4 ) 2
(T + 854)^2
show more
show less