Properties

Label 350.4.e.d
Level 350350
Weight 44
Character orbit 350.e
Analytic conductor 20.65120.651
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(51,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.51"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 4, names="a")
 
Level: N N == 350=2527 350 = 2 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 350.e (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,10,-4,0,-40,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.650668502020.6506685020
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2ζ6q2+(10ζ6+10)q3+(4ζ64)q420q6+(14ζ621)q7+8q873ζ6q9+(53ζ653)q11+40ζ6q1225q13++3869q99+O(q100) q - 2 \zeta_{6} q^{2} + ( - 10 \zeta_{6} + 10) q^{3} + (4 \zeta_{6} - 4) q^{4} - 20 q^{6} + (14 \zeta_{6} - 21) q^{7} + 8 q^{8} - 73 \zeta_{6} q^{9} + (53 \zeta_{6} - 53) q^{11} + 40 \zeta_{6} q^{12} - 25 q^{13} + \cdots + 3869 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+10q34q440q628q7+16q873q953q11+40q1250q13+70q1416q16+14q17146q18+95q19+70q21+212q22+q23++7738q99+O(q100) 2 q - 2 q^{2} + 10 q^{3} - 4 q^{4} - 40 q^{6} - 28 q^{7} + 16 q^{8} - 73 q^{9} - 53 q^{11} + 40 q^{12} - 50 q^{13} + 70 q^{14} - 16 q^{16} + 14 q^{17} - 146 q^{18} + 95 q^{19} + 70 q^{21} + 212 q^{22} + q^{23}+ \cdots + 7738 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/350Z)×\left(\mathbb{Z}/350\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
51.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.00000 + 1.73205i 5.00000 + 8.66025i −2.00000 3.46410i 0 −20.0000 −14.0000 12.1244i 8.00000 −36.5000 + 63.2199i 0
151.1 −1.00000 1.73205i 5.00000 8.66025i −2.00000 + 3.46410i 0 −20.0000 −14.0000 + 12.1244i 8.00000 −36.5000 63.2199i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.4.e.d 2
5.b even 2 1 70.4.e.b 2
5.c odd 4 2 350.4.j.a 4
7.c even 3 1 inner 350.4.e.d 2
7.c even 3 1 2450.4.a.v 1
7.d odd 6 1 2450.4.a.bq 1
15.d odd 2 1 630.4.k.c 2
20.d odd 2 1 560.4.q.g 2
35.c odd 2 1 490.4.e.s 2
35.i odd 6 1 490.4.a.a 1
35.i odd 6 1 490.4.e.s 2
35.j even 6 1 70.4.e.b 2
35.j even 6 1 490.4.a.h 1
35.l odd 12 2 350.4.j.a 4
105.o odd 6 1 630.4.k.c 2
140.p odd 6 1 560.4.q.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.e.b 2 5.b even 2 1
70.4.e.b 2 35.j even 6 1
350.4.e.d 2 1.a even 1 1 trivial
350.4.e.d 2 7.c even 3 1 inner
350.4.j.a 4 5.c odd 4 2
350.4.j.a 4 35.l odd 12 2
490.4.a.a 1 35.i odd 6 1
490.4.a.h 1 35.j even 6 1
490.4.e.s 2 35.c odd 2 1
490.4.e.s 2 35.i odd 6 1
560.4.q.g 2 20.d odd 2 1
560.4.q.g 2 140.p odd 6 1
630.4.k.c 2 15.d odd 2 1
630.4.k.c 2 105.o odd 6 1
2450.4.a.v 1 7.c even 3 1
2450.4.a.bq 1 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(350,[χ])S_{4}^{\mathrm{new}}(350, [\chi]):

T3210T3+100 T_{3}^{2} - 10T_{3} + 100 Copy content Toggle raw display
T112+53T11+2809 T_{11}^{2} + 53T_{11} + 2809 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
33 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+28T+343 T^{2} + 28T + 343 Copy content Toggle raw display
1111 T2+53T+2809 T^{2} + 53T + 2809 Copy content Toggle raw display
1313 (T+25)2 (T + 25)^{2} Copy content Toggle raw display
1717 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
1919 T295T+9025 T^{2} - 95T + 9025 Copy content Toggle raw display
2323 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2929 (T+206)2 (T + 206)^{2} Copy content Toggle raw display
3131 T2+108T+11664 T^{2} + 108T + 11664 Copy content Toggle raw display
3737 T2+57T+3249 T^{2} + 57T + 3249 Copy content Toggle raw display
4141 (T243)2 (T - 243)^{2} Copy content Toggle raw display
4343 (T+434)2 (T + 434)^{2} Copy content Toggle raw display
4747 T2+231T+53361 T^{2} + 231T + 53361 Copy content Toggle raw display
5353 T2263T+69169 T^{2} - 263T + 69169 Copy content Toggle raw display
5959 T2+24T+576 T^{2} + 24T + 576 Copy content Toggle raw display
6161 T2+116T+13456 T^{2} + 116T + 13456 Copy content Toggle raw display
6767 T2+204T+41616 T^{2} + 204T + 41616 Copy content Toggle raw display
7171 (T484)2 (T - 484)^{2} Copy content Toggle raw display
7373 T2+692T+478864 T^{2} + 692T + 478864 Copy content Toggle raw display
7979 T2+466T+217156 T^{2} + 466T + 217156 Copy content Toggle raw display
8383 (T+228)2 (T + 228)^{2} Copy content Toggle raw display
8989 T2362T+131044 T^{2} - 362T + 131044 Copy content Toggle raw display
9797 (T+854)2 (T + 854)^{2} Copy content Toggle raw display
show more
show less