Properties

Label 490.4.a.h
Level 490490
Weight 44
Character orbit 490.a
Self dual yes
Analytic conductor 28.91128.911
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,4,Mod(1,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 490=2572 490 = 2 \cdot 5 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,10,4,-5,-20,0,-8,73,10,53] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 28.910935902828.9109359028
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2q2+10q3+4q45q520q68q8+73q9+10q10+53q11+40q12+25q1350q15+16q16+14q17146q1895q1920q20106q22++3869q99+O(q100) q - 2 q^{2} + 10 q^{3} + 4 q^{4} - 5 q^{5} - 20 q^{6} - 8 q^{8} + 73 q^{9} + 10 q^{10} + 53 q^{11} + 40 q^{12} + 25 q^{13} - 50 q^{15} + 16 q^{16} + 14 q^{17} - 146 q^{18} - 95 q^{19} - 20 q^{20} - 106 q^{22}+ \cdots + 3869 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−2.00000 10.0000 4.00000 −5.00000 −20.0000 0 −8.00000 73.0000 10.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.a.h 1
5.b even 2 1 2450.4.a.v 1
7.b odd 2 1 490.4.a.a 1
7.c even 3 2 70.4.e.b 2
7.d odd 6 2 490.4.e.s 2
21.h odd 6 2 630.4.k.c 2
28.g odd 6 2 560.4.q.g 2
35.c odd 2 1 2450.4.a.bq 1
35.j even 6 2 350.4.e.d 2
35.l odd 12 4 350.4.j.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.e.b 2 7.c even 3 2
350.4.e.d 2 35.j even 6 2
350.4.j.a 4 35.l odd 12 4
490.4.a.a 1 7.b odd 2 1
490.4.a.h 1 1.a even 1 1 trivial
490.4.e.s 2 7.d odd 6 2
560.4.q.g 2 28.g odd 6 2
630.4.k.c 2 21.h odd 6 2
2450.4.a.v 1 5.b even 2 1
2450.4.a.bq 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(490))S_{4}^{\mathrm{new}}(\Gamma_0(490)):

T310 T_{3} - 10 Copy content Toggle raw display
T1153 T_{11} - 53 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T10 T - 10 Copy content Toggle raw display
55 T+5 T + 5 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T53 T - 53 Copy content Toggle raw display
1313 T25 T - 25 Copy content Toggle raw display
1717 T14 T - 14 Copy content Toggle raw display
1919 T+95 T + 95 Copy content Toggle raw display
2323 T1 T - 1 Copy content Toggle raw display
2929 T+206 T + 206 Copy content Toggle raw display
3131 T108 T - 108 Copy content Toggle raw display
3737 T+57 T + 57 Copy content Toggle raw display
4141 T243 T - 243 Copy content Toggle raw display
4343 T434 T - 434 Copy content Toggle raw display
4747 T+231 T + 231 Copy content Toggle raw display
5353 T263 T - 263 Copy content Toggle raw display
5959 T24 T - 24 Copy content Toggle raw display
6161 T116 T - 116 Copy content Toggle raw display
6767 T+204 T + 204 Copy content Toggle raw display
7171 T484 T - 484 Copy content Toggle raw display
7373 T+692 T + 692 Copy content Toggle raw display
7979 T466 T - 466 Copy content Toggle raw display
8383 T228 T - 228 Copy content Toggle raw display
8989 T+362 T + 362 Copy content Toggle raw display
9797 T854 T - 854 Copy content Toggle raw display
show more
show less