gp: [N,k,chi] = [490,4,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-2,10,4,-5,-20,0,-8,73,10,53]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 490 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(490)) S 4 n e w ( Γ 0 ( 4 9 0 ) ) :
T 3 − 10 T_{3} - 10 T 3 − 1 0
T3 - 10
T 11 − 53 T_{11} - 53 T 1 1 − 5 3
T11 - 53
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T − 10 T - 10 T − 1 0
T - 10
5 5 5
T + 5 T + 5 T + 5
T + 5
7 7 7
T T T
T
11 11 1 1
T − 53 T - 53 T − 5 3
T - 53
13 13 1 3
T − 25 T - 25 T − 2 5
T - 25
17 17 1 7
T − 14 T - 14 T − 1 4
T - 14
19 19 1 9
T + 95 T + 95 T + 9 5
T + 95
23 23 2 3
T − 1 T - 1 T − 1
T - 1
29 29 2 9
T + 206 T + 206 T + 2 0 6
T + 206
31 31 3 1
T − 108 T - 108 T − 1 0 8
T - 108
37 37 3 7
T + 57 T + 57 T + 5 7
T + 57
41 41 4 1
T − 243 T - 243 T − 2 4 3
T - 243
43 43 4 3
T − 434 T - 434 T − 4 3 4
T - 434
47 47 4 7
T + 231 T + 231 T + 2 3 1
T + 231
53 53 5 3
T − 263 T - 263 T − 2 6 3
T - 263
59 59 5 9
T − 24 T - 24 T − 2 4
T - 24
61 61 6 1
T − 116 T - 116 T − 1 1 6
T - 116
67 67 6 7
T + 204 T + 204 T + 2 0 4
T + 204
71 71 7 1
T − 484 T - 484 T − 4 8 4
T - 484
73 73 7 3
T + 692 T + 692 T + 6 9 2
T + 692
79 79 7 9
T − 466 T - 466 T − 4 6 6
T - 466
83 83 8 3
T − 228 T - 228 T − 2 2 8
T - 228
89 89 8 9
T + 362 T + 362 T + 3 6 2
T + 362
97 97 9 7
T − 854 T - 854 T − 8 5 4
T - 854
show more
show less