Properties

Label 350.4.c.l
Level 350350
Weight 44
Character orbit 350.c
Analytic conductor 20.65120.651
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(99,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.99"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 350=2527 350 = 2 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 350.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,28,0,0,-44,0,-66] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.650668502020.6506685020
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2iq2+7iq34q4+14q67iq7+8iq822q933q1128iq1243iq1314q14+16q16111iq17+44iq18+70q19+49q21+66iq22++726q99+O(q100) q - 2 i q^{2} + 7 i q^{3} - 4 q^{4} + 14 q^{6} - 7 i q^{7} + 8 i q^{8} - 22 q^{9} - 33 q^{11} - 28 i q^{12} - 43 i q^{13} - 14 q^{14} + 16 q^{16} - 111 i q^{17} + 44 i q^{18} + 70 q^{19} + 49 q^{21} + 66 i q^{22} + \cdots + 726 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q4+28q644q966q1128q14+32q16+140q19+98q21112q24172q26+450q29176q31444q34+176q36+602q39+864q41+264q44++1452q99+O(q100) 2 q - 8 q^{4} + 28 q^{6} - 44 q^{9} - 66 q^{11} - 28 q^{14} + 32 q^{16} + 140 q^{19} + 98 q^{21} - 112 q^{24} - 172 q^{26} + 450 q^{29} - 176 q^{31} - 444 q^{34} + 176 q^{36} + 602 q^{39} + 864 q^{41} + 264 q^{44}+ \cdots + 1452 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/350Z)×\left(\mathbb{Z}/350\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
99.1
1.00000i
1.00000i
2.00000i 7.00000i −4.00000 0 14.0000 7.00000i 8.00000i −22.0000 0
99.2 2.00000i 7.00000i −4.00000 0 14.0000 7.00000i 8.00000i −22.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.4.c.l 2
5.b even 2 1 inner 350.4.c.l 2
5.c odd 4 1 70.4.a.f 1
5.c odd 4 1 350.4.a.b 1
15.e even 4 1 630.4.a.j 1
20.e even 4 1 560.4.a.c 1
35.f even 4 1 490.4.a.i 1
35.f even 4 1 2450.4.a.s 1
35.k even 12 2 490.4.e.h 2
35.l odd 12 2 490.4.e.b 2
40.i odd 4 1 2240.4.a.f 1
40.k even 4 1 2240.4.a.bh 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.a.f 1 5.c odd 4 1
350.4.a.b 1 5.c odd 4 1
350.4.c.l 2 1.a even 1 1 trivial
350.4.c.l 2 5.b even 2 1 inner
490.4.a.i 1 35.f even 4 1
490.4.e.b 2 35.l odd 12 2
490.4.e.h 2 35.k even 12 2
560.4.a.c 1 20.e even 4 1
630.4.a.j 1 15.e even 4 1
2240.4.a.f 1 40.i odd 4 1
2240.4.a.bh 1 40.k even 4 1
2450.4.a.s 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(350,[χ])S_{4}^{\mathrm{new}}(350, [\chi]):

T32+49 T_{3}^{2} + 49 Copy content Toggle raw display
T11+33 T_{11} + 33 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+49 T^{2} + 49 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+49 T^{2} + 49 Copy content Toggle raw display
1111 (T+33)2 (T + 33)^{2} Copy content Toggle raw display
1313 T2+1849 T^{2} + 1849 Copy content Toggle raw display
1717 T2+12321 T^{2} + 12321 Copy content Toggle raw display
1919 (T70)2 (T - 70)^{2} Copy content Toggle raw display
2323 T2+1764 T^{2} + 1764 Copy content Toggle raw display
2929 (T225)2 (T - 225)^{2} Copy content Toggle raw display
3131 (T+88)2 (T + 88)^{2} Copy content Toggle raw display
3737 T2+1156 T^{2} + 1156 Copy content Toggle raw display
4141 (T432)2 (T - 432)^{2} Copy content Toggle raw display
4343 T2+31684 T^{2} + 31684 Copy content Toggle raw display
4747 T2+168921 T^{2} + 168921 Copy content Toggle raw display
5353 T2+501264 T^{2} + 501264 Copy content Toggle raw display
5959 (T+480)2 (T + 480)^{2} Copy content Toggle raw display
6161 (T812)2 (T - 812)^{2} Copy content Toggle raw display
6767 T2+355216 T^{2} + 355216 Copy content Toggle raw display
7171 (T432)2 (T - 432)^{2} Copy content Toggle raw display
7373 T2+128164 T^{2} + 128164 Copy content Toggle raw display
7979 (T+425)2 (T + 425)^{2} Copy content Toggle raw display
8383 T2+944784 T^{2} + 944784 Copy content Toggle raw display
8989 (T+960)2 (T + 960)^{2} Copy content Toggle raw display
9797 T2+502681 T^{2} + 502681 Copy content Toggle raw display
show more
show less