gp: [N,k,chi] = [350,4,Mod(99,350)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(350, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("350.99");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-8,0,28,0,0,-44,0,-66]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 350 Z ) × \left(\mathbb{Z}/350\mathbb{Z}\right)^\times ( Z / 3 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 350 , [ χ ] ) S_{4}^{\mathrm{new}}(350, [\chi]) S 4 n e w ( 3 5 0 , [ χ ] ) :
T 3 2 + 49 T_{3}^{2} + 49 T 3 2 + 4 9
T3^2 + 49
T 11 + 33 T_{11} + 33 T 1 1 + 3 3
T11 + 33
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
3 3 3
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
11 11 1 1
( T + 33 ) 2 (T + 33)^{2} ( T + 3 3 ) 2
(T + 33)^2
13 13 1 3
T 2 + 1849 T^{2} + 1849 T 2 + 1 8 4 9
T^2 + 1849
17 17 1 7
T 2 + 12321 T^{2} + 12321 T 2 + 1 2 3 2 1
T^2 + 12321
19 19 1 9
( T − 70 ) 2 (T - 70)^{2} ( T − 7 0 ) 2
(T - 70)^2
23 23 2 3
T 2 + 1764 T^{2} + 1764 T 2 + 1 7 6 4
T^2 + 1764
29 29 2 9
( T − 225 ) 2 (T - 225)^{2} ( T − 2 2 5 ) 2
(T - 225)^2
31 31 3 1
( T + 88 ) 2 (T + 88)^{2} ( T + 8 8 ) 2
(T + 88)^2
37 37 3 7
T 2 + 1156 T^{2} + 1156 T 2 + 1 1 5 6
T^2 + 1156
41 41 4 1
( T − 432 ) 2 (T - 432)^{2} ( T − 4 3 2 ) 2
(T - 432)^2
43 43 4 3
T 2 + 31684 T^{2} + 31684 T 2 + 3 1 6 8 4
T^2 + 31684
47 47 4 7
T 2 + 168921 T^{2} + 168921 T 2 + 1 6 8 9 2 1
T^2 + 168921
53 53 5 3
T 2 + 501264 T^{2} + 501264 T 2 + 5 0 1 2 6 4
T^2 + 501264
59 59 5 9
( T + 480 ) 2 (T + 480)^{2} ( T + 4 8 0 ) 2
(T + 480)^2
61 61 6 1
( T − 812 ) 2 (T - 812)^{2} ( T − 8 1 2 ) 2
(T - 812)^2
67 67 6 7
T 2 + 355216 T^{2} + 355216 T 2 + 3 5 5 2 1 6
T^2 + 355216
71 71 7 1
( T − 432 ) 2 (T - 432)^{2} ( T − 4 3 2 ) 2
(T - 432)^2
73 73 7 3
T 2 + 128164 T^{2} + 128164 T 2 + 1 2 8 1 6 4
T^2 + 128164
79 79 7 9
( T + 425 ) 2 (T + 425)^{2} ( T + 4 2 5 ) 2
(T + 425)^2
83 83 8 3
T 2 + 944784 T^{2} + 944784 T 2 + 9 4 4 7 8 4
T^2 + 944784
89 89 8 9
( T + 960 ) 2 (T + 960)^{2} ( T + 9 6 0 ) 2
(T + 960)^2
97 97 9 7
T 2 + 502681 T^{2} + 502681 T 2 + 5 0 2 6 8 1
T^2 + 502681
show more
show less