Properties

Label 350.4.c.i.99.2
Level $350$
Weight $4$
Character 350.99
Analytic conductor $20.651$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(99,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.99"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,4,0,0,52,0,-70] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.4.c.i.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -1.00000i q^{3} -4.00000 q^{4} +2.00000 q^{6} -7.00000i q^{7} -8.00000i q^{8} +26.0000 q^{9} -35.0000 q^{11} +4.00000i q^{12} +58.0000i q^{13} +14.0000 q^{14} +16.0000 q^{16} -107.000i q^{17} +52.0000i q^{18} -23.0000 q^{19} -7.00000 q^{21} -70.0000i q^{22} -200.000i q^{23} -8.00000 q^{24} -116.000 q^{26} -53.0000i q^{27} +28.0000i q^{28} +174.000 q^{29} +76.0000 q^{31} +32.0000i q^{32} +35.0000i q^{33} +214.000 q^{34} -104.000 q^{36} -184.000i q^{37} -46.0000i q^{38} +58.0000 q^{39} +431.000 q^{41} -14.0000i q^{42} +144.000i q^{43} +140.000 q^{44} +400.000 q^{46} -526.000i q^{47} -16.0000i q^{48} -49.0000 q^{49} -107.000 q^{51} -232.000i q^{52} +108.000i q^{53} +106.000 q^{54} -56.0000 q^{56} +23.0000i q^{57} +348.000i q^{58} -76.0000 q^{59} +118.000 q^{61} +152.000i q^{62} -182.000i q^{63} -64.0000 q^{64} -70.0000 q^{66} -687.000i q^{67} +428.000i q^{68} -200.000 q^{69} +530.000 q^{71} -208.000i q^{72} -299.000i q^{73} +368.000 q^{74} +92.0000 q^{76} +245.000i q^{77} +116.000i q^{78} -402.000 q^{79} +649.000 q^{81} +862.000i q^{82} +897.000i q^{83} +28.0000 q^{84} -288.000 q^{86} -174.000i q^{87} +280.000i q^{88} +799.000 q^{89} +406.000 q^{91} +800.000i q^{92} -76.0000i q^{93} +1052.00 q^{94} +32.0000 q^{96} -1510.00i q^{97} -98.0000i q^{98} -910.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 4 q^{6} + 52 q^{9} - 70 q^{11} + 28 q^{14} + 32 q^{16} - 46 q^{19} - 14 q^{21} - 16 q^{24} - 232 q^{26} + 348 q^{29} + 152 q^{31} + 428 q^{34} - 208 q^{36} + 116 q^{39} + 862 q^{41} + 280 q^{44}+ \cdots - 1820 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) − 1.00000i − 0.192450i −0.995360 0.0962250i \(-0.969323\pi\)
0.995360 0.0962250i \(-0.0306768\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 2.00000 0.136083
\(7\) − 7.00000i − 0.377964i
\(8\) − 8.00000i − 0.353553i
\(9\) 26.0000 0.962963
\(10\) 0 0
\(11\) −35.0000 −0.959354 −0.479677 0.877445i \(-0.659246\pi\)
−0.479677 + 0.877445i \(0.659246\pi\)
\(12\) 4.00000i 0.0962250i
\(13\) 58.0000i 1.23741i 0.785624 + 0.618704i \(0.212342\pi\)
−0.785624 + 0.618704i \(0.787658\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 107.000i − 1.52655i −0.646075 0.763274i \(-0.723591\pi\)
0.646075 0.763274i \(-0.276409\pi\)
\(18\) 52.0000i 0.680918i
\(19\) −23.0000 −0.277714 −0.138857 0.990312i \(-0.544343\pi\)
−0.138857 + 0.990312i \(0.544343\pi\)
\(20\) 0 0
\(21\) −7.00000 −0.0727393
\(22\) − 70.0000i − 0.678366i
\(23\) − 200.000i − 1.81317i −0.422025 0.906584i \(-0.638680\pi\)
0.422025 0.906584i \(-0.361320\pi\)
\(24\) −8.00000 −0.0680414
\(25\) 0 0
\(26\) −116.000 −0.874980
\(27\) − 53.0000i − 0.377772i
\(28\) 28.0000i 0.188982i
\(29\) 174.000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 76.0000 0.440323 0.220161 0.975463i \(-0.429342\pi\)
0.220161 + 0.975463i \(0.429342\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 35.0000i 0.184628i
\(34\) 214.000 1.07943
\(35\) 0 0
\(36\) −104.000 −0.481481
\(37\) − 184.000i − 0.817552i −0.912635 0.408776i \(-0.865956\pi\)
0.912635 0.408776i \(-0.134044\pi\)
\(38\) − 46.0000i − 0.196373i
\(39\) 58.0000 0.238139
\(40\) 0 0
\(41\) 431.000 1.64173 0.820865 0.571123i \(-0.193492\pi\)
0.820865 + 0.571123i \(0.193492\pi\)
\(42\) − 14.0000i − 0.0514344i
\(43\) 144.000i 0.510693i 0.966850 + 0.255346i \(0.0821895\pi\)
−0.966850 + 0.255346i \(0.917810\pi\)
\(44\) 140.000 0.479677
\(45\) 0 0
\(46\) 400.000 1.28210
\(47\) − 526.000i − 1.63245i −0.577737 0.816223i \(-0.696064\pi\)
0.577737 0.816223i \(-0.303936\pi\)
\(48\) − 16.0000i − 0.0481125i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −107.000 −0.293784
\(52\) − 232.000i − 0.618704i
\(53\) 108.000i 0.279905i 0.990158 + 0.139952i \(0.0446949\pi\)
−0.990158 + 0.139952i \(0.955305\pi\)
\(54\) 106.000 0.267125
\(55\) 0 0
\(56\) −56.0000 −0.133631
\(57\) 23.0000i 0.0534460i
\(58\) 348.000i 0.787839i
\(59\) −76.0000 −0.167701 −0.0838505 0.996478i \(-0.526722\pi\)
−0.0838505 + 0.996478i \(0.526722\pi\)
\(60\) 0 0
\(61\) 118.000 0.247678 0.123839 0.992302i \(-0.460479\pi\)
0.123839 + 0.992302i \(0.460479\pi\)
\(62\) 152.000i 0.311355i
\(63\) − 182.000i − 0.363966i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −70.0000 −0.130552
\(67\) − 687.000i − 1.25269i −0.779545 0.626346i \(-0.784550\pi\)
0.779545 0.626346i \(-0.215450\pi\)
\(68\) 428.000i 0.763274i
\(69\) −200.000 −0.348945
\(70\) 0 0
\(71\) 530.000 0.885907 0.442954 0.896544i \(-0.353931\pi\)
0.442954 + 0.896544i \(0.353931\pi\)
\(72\) − 208.000i − 0.340459i
\(73\) − 299.000i − 0.479388i −0.970849 0.239694i \(-0.922953\pi\)
0.970849 0.239694i \(-0.0770471\pi\)
\(74\) 368.000 0.578096
\(75\) 0 0
\(76\) 92.0000 0.138857
\(77\) 245.000i 0.362602i
\(78\) 116.000i 0.168390i
\(79\) −402.000 −0.572513 −0.286257 0.958153i \(-0.592411\pi\)
−0.286257 + 0.958153i \(0.592411\pi\)
\(80\) 0 0
\(81\) 649.000 0.890261
\(82\) 862.000i 1.16088i
\(83\) 897.000i 1.18625i 0.805111 + 0.593124i \(0.202106\pi\)
−0.805111 + 0.593124i \(0.797894\pi\)
\(84\) 28.0000 0.0363696
\(85\) 0 0
\(86\) −288.000 −0.361114
\(87\) − 174.000i − 0.214423i
\(88\) 280.000i 0.339183i
\(89\) 799.000 0.951616 0.475808 0.879549i \(-0.342156\pi\)
0.475808 + 0.879549i \(0.342156\pi\)
\(90\) 0 0
\(91\) 406.000 0.467696
\(92\) 800.000i 0.906584i
\(93\) − 76.0000i − 0.0847401i
\(94\) 1052.00 1.15431
\(95\) 0 0
\(96\) 32.0000 0.0340207
\(97\) − 1510.00i − 1.58059i −0.612726 0.790295i \(-0.709927\pi\)
0.612726 0.790295i \(-0.290073\pi\)
\(98\) − 98.0000i − 0.101015i
\(99\) −910.000 −0.923823
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) − 214.000i − 0.207737i
\(103\) − 412.000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 464.000 0.437490
\(105\) 0 0
\(106\) −216.000 −0.197922
\(107\) 851.000i 0.768872i 0.923152 + 0.384436i \(0.125604\pi\)
−0.923152 + 0.384436i \(0.874396\pi\)
\(108\) 212.000i 0.188886i
\(109\) −2158.00 −1.89632 −0.948160 0.317793i \(-0.897058\pi\)
−0.948160 + 0.317793i \(0.897058\pi\)
\(110\) 0 0
\(111\) −184.000 −0.157338
\(112\) − 112.000i − 0.0944911i
\(113\) − 377.000i − 0.313851i −0.987610 0.156926i \(-0.949842\pi\)
0.987610 0.156926i \(-0.0501583\pi\)
\(114\) −46.0000 −0.0377921
\(115\) 0 0
\(116\) −696.000 −0.557086
\(117\) 1508.00i 1.19158i
\(118\) − 152.000i − 0.118582i
\(119\) −749.000 −0.576981
\(120\) 0 0
\(121\) −106.000 −0.0796394
\(122\) 236.000i 0.175135i
\(123\) − 431.000i − 0.315951i
\(124\) −304.000 −0.220161
\(125\) 0 0
\(126\) 364.000 0.257363
\(127\) 762.000i 0.532414i 0.963916 + 0.266207i \(0.0857705\pi\)
−0.963916 + 0.266207i \(0.914230\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) 144.000 0.0982829
\(130\) 0 0
\(131\) −1512.00 −1.00843 −0.504214 0.863579i \(-0.668218\pi\)
−0.504214 + 0.863579i \(0.668218\pi\)
\(132\) − 140.000i − 0.0923139i
\(133\) 161.000i 0.104966i
\(134\) 1374.00 0.885787
\(135\) 0 0
\(136\) −856.000 −0.539716
\(137\) 419.000i 0.261296i 0.991429 + 0.130648i \(0.0417058\pi\)
−0.991429 + 0.130648i \(0.958294\pi\)
\(138\) − 400.000i − 0.246741i
\(139\) 2329.00 1.42117 0.710587 0.703609i \(-0.248429\pi\)
0.710587 + 0.703609i \(0.248429\pi\)
\(140\) 0 0
\(141\) −526.000 −0.314164
\(142\) 1060.00i 0.626431i
\(143\) − 2030.00i − 1.18711i
\(144\) 416.000 0.240741
\(145\) 0 0
\(146\) 598.000 0.338978
\(147\) 49.0000i 0.0274929i
\(148\) 736.000i 0.408776i
\(149\) −3108.00 −1.70884 −0.854420 0.519582i \(-0.826088\pi\)
−0.854420 + 0.519582i \(0.826088\pi\)
\(150\) 0 0
\(151\) −1192.00 −0.642408 −0.321204 0.947010i \(-0.604087\pi\)
−0.321204 + 0.947010i \(0.604087\pi\)
\(152\) 184.000i 0.0981866i
\(153\) − 2782.00i − 1.47001i
\(154\) −490.000 −0.256398
\(155\) 0 0
\(156\) −232.000 −0.119070
\(157\) − 1772.00i − 0.900771i −0.892834 0.450385i \(-0.851287\pi\)
0.892834 0.450385i \(-0.148713\pi\)
\(158\) − 804.000i − 0.404828i
\(159\) 108.000 0.0538677
\(160\) 0 0
\(161\) −1400.00 −0.685313
\(162\) 1298.00i 0.629509i
\(163\) − 2973.00i − 1.42861i −0.699835 0.714305i \(-0.746743\pi\)
0.699835 0.714305i \(-0.253257\pi\)
\(164\) −1724.00 −0.820865
\(165\) 0 0
\(166\) −1794.00 −0.838804
\(167\) 4.00000i 0.00185347i 1.00000 0.000926734i \(0.000294989\pi\)
−1.00000 0.000926734i \(0.999705\pi\)
\(168\) 56.0000i 0.0257172i
\(169\) −1167.00 −0.531179
\(170\) 0 0
\(171\) −598.000 −0.267428
\(172\) − 576.000i − 0.255346i
\(173\) 3434.00i 1.50915i 0.656216 + 0.754573i \(0.272156\pi\)
−0.656216 + 0.754573i \(0.727844\pi\)
\(174\) 348.000 0.151620
\(175\) 0 0
\(176\) −560.000 −0.239839
\(177\) 76.0000i 0.0322741i
\(178\) 1598.00i 0.672894i
\(179\) −397.000 −0.165772 −0.0828860 0.996559i \(-0.526414\pi\)
−0.0828860 + 0.996559i \(0.526414\pi\)
\(180\) 0 0
\(181\) 650.000 0.266929 0.133464 0.991054i \(-0.457390\pi\)
0.133464 + 0.991054i \(0.457390\pi\)
\(182\) 812.000i 0.330711i
\(183\) − 118.000i − 0.0476656i
\(184\) −1600.00 −0.641052
\(185\) 0 0
\(186\) 152.000 0.0599203
\(187\) 3745.00i 1.46450i
\(188\) 2104.00i 0.816223i
\(189\) −371.000 −0.142785
\(190\) 0 0
\(191\) −1426.00 −0.540219 −0.270109 0.962830i \(-0.587060\pi\)
−0.270109 + 0.962830i \(0.587060\pi\)
\(192\) 64.0000i 0.0240563i
\(193\) 1357.00i 0.506109i 0.967452 + 0.253054i \(0.0814352\pi\)
−0.967452 + 0.253054i \(0.918565\pi\)
\(194\) 3020.00 1.11765
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) 4686.00i 1.69474i 0.531003 + 0.847370i \(0.321815\pi\)
−0.531003 + 0.847370i \(0.678185\pi\)
\(198\) − 1820.00i − 0.653241i
\(199\) −3890.00 −1.38570 −0.692851 0.721081i \(-0.743646\pi\)
−0.692851 + 0.721081i \(0.743646\pi\)
\(200\) 0 0
\(201\) −687.000 −0.241081
\(202\) 0 0
\(203\) − 1218.00i − 0.421117i
\(204\) 428.000 0.146892
\(205\) 0 0
\(206\) 824.000 0.278693
\(207\) − 5200.00i − 1.74601i
\(208\) 928.000i 0.309352i
\(209\) 805.000 0.266426
\(210\) 0 0
\(211\) −4009.00 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(212\) − 432.000i − 0.139952i
\(213\) − 530.000i − 0.170493i
\(214\) −1702.00 −0.543674
\(215\) 0 0
\(216\) −424.000 −0.133563
\(217\) − 532.000i − 0.166426i
\(218\) − 4316.00i − 1.34090i
\(219\) −299.000 −0.0922582
\(220\) 0 0
\(221\) 6206.00 1.88896
\(222\) − 368.000i − 0.111255i
\(223\) 5154.00i 1.54770i 0.633368 + 0.773851i \(0.281672\pi\)
−0.633368 + 0.773851i \(0.718328\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 754.000 0.221926
\(227\) 1524.00i 0.445601i 0.974864 + 0.222801i \(0.0715199\pi\)
−0.974864 + 0.222801i \(0.928480\pi\)
\(228\) − 92.0000i − 0.0267230i
\(229\) 3446.00 0.994402 0.497201 0.867635i \(-0.334361\pi\)
0.497201 + 0.867635i \(0.334361\pi\)
\(230\) 0 0
\(231\) 245.000 0.0697828
\(232\) − 1392.00i − 0.393919i
\(233\) − 698.000i − 0.196255i −0.995174 0.0981277i \(-0.968715\pi\)
0.995174 0.0981277i \(-0.0312854\pi\)
\(234\) −3016.00 −0.842573
\(235\) 0 0
\(236\) 304.000 0.0838505
\(237\) 402.000i 0.110180i
\(238\) − 1498.00i − 0.407987i
\(239\) 6124.00 1.65744 0.828721 0.559662i \(-0.189069\pi\)
0.828721 + 0.559662i \(0.189069\pi\)
\(240\) 0 0
\(241\) 6975.00 1.86431 0.932156 0.362057i \(-0.117925\pi\)
0.932156 + 0.362057i \(0.117925\pi\)
\(242\) − 212.000i − 0.0563135i
\(243\) − 2080.00i − 0.549103i
\(244\) −472.000 −0.123839
\(245\) 0 0
\(246\) 862.000 0.223411
\(247\) − 1334.00i − 0.343645i
\(248\) − 608.000i − 0.155678i
\(249\) 897.000 0.228293
\(250\) 0 0
\(251\) 1897.00 0.477042 0.238521 0.971137i \(-0.423337\pi\)
0.238521 + 0.971137i \(0.423337\pi\)
\(252\) 728.000i 0.181983i
\(253\) 7000.00i 1.73947i
\(254\) −1524.00 −0.376473
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4654.00i 1.12961i 0.825226 + 0.564803i \(0.191048\pi\)
−0.825226 + 0.564803i \(0.808952\pi\)
\(258\) 288.000i 0.0694965i
\(259\) −1288.00 −0.309006
\(260\) 0 0
\(261\) 4524.00 1.07291
\(262\) − 3024.00i − 0.713066i
\(263\) − 2190.00i − 0.513465i −0.966483 0.256732i \(-0.917354\pi\)
0.966483 0.256732i \(-0.0826459\pi\)
\(264\) 280.000 0.0652758
\(265\) 0 0
\(266\) −322.000 −0.0742221
\(267\) − 799.000i − 0.183139i
\(268\) 2748.00i 0.626346i
\(269\) 7638.00 1.73122 0.865608 0.500722i \(-0.166932\pi\)
0.865608 + 0.500722i \(0.166932\pi\)
\(270\) 0 0
\(271\) −5466.00 −1.22522 −0.612612 0.790384i \(-0.709881\pi\)
−0.612612 + 0.790384i \(0.709881\pi\)
\(272\) − 1712.00i − 0.381637i
\(273\) − 406.000i − 0.0900082i
\(274\) −838.000 −0.184764
\(275\) 0 0
\(276\) 800.000 0.174472
\(277\) 310.000i 0.0672422i 0.999435 + 0.0336211i \(0.0107039\pi\)
−0.999435 + 0.0336211i \(0.989296\pi\)
\(278\) 4658.00i 1.00492i
\(279\) 1976.00 0.424014
\(280\) 0 0
\(281\) −4946.00 −1.05001 −0.525006 0.851098i \(-0.675937\pi\)
−0.525006 + 0.851098i \(0.675937\pi\)
\(282\) − 1052.00i − 0.222148i
\(283\) − 391.000i − 0.0821291i −0.999156 0.0410646i \(-0.986925\pi\)
0.999156 0.0410646i \(-0.0130749\pi\)
\(284\) −2120.00 −0.442954
\(285\) 0 0
\(286\) 4060.00 0.839415
\(287\) − 3017.00i − 0.620515i
\(288\) 832.000i 0.170229i
\(289\) −6536.00 −1.33035
\(290\) 0 0
\(291\) −1510.00 −0.304185
\(292\) 1196.00i 0.239694i
\(293\) 4122.00i 0.821876i 0.911663 + 0.410938i \(0.134799\pi\)
−0.911663 + 0.410938i \(0.865201\pi\)
\(294\) −98.0000 −0.0194404
\(295\) 0 0
\(296\) −1472.00 −0.289048
\(297\) 1855.00i 0.362418i
\(298\) − 6216.00i − 1.20833i
\(299\) 11600.0 2.24363
\(300\) 0 0
\(301\) 1008.00 0.193024
\(302\) − 2384.00i − 0.454251i
\(303\) 0 0
\(304\) −368.000 −0.0694284
\(305\) 0 0
\(306\) 5564.00 1.03945
\(307\) − 8279.00i − 1.53911i −0.638579 0.769556i \(-0.720478\pi\)
0.638579 0.769556i \(-0.279522\pi\)
\(308\) − 980.000i − 0.181301i
\(309\) −412.000 −0.0758507
\(310\) 0 0
\(311\) 6146.00 1.12060 0.560302 0.828289i \(-0.310685\pi\)
0.560302 + 0.828289i \(0.310685\pi\)
\(312\) − 464.000i − 0.0841950i
\(313\) 9190.00i 1.65958i 0.558073 + 0.829792i \(0.311541\pi\)
−0.558073 + 0.829792i \(0.688459\pi\)
\(314\) 3544.00 0.636941
\(315\) 0 0
\(316\) 1608.00 0.286257
\(317\) − 3812.00i − 0.675405i −0.941253 0.337702i \(-0.890350\pi\)
0.941253 0.337702i \(-0.109650\pi\)
\(318\) 216.000i 0.0380902i
\(319\) −6090.00 −1.06889
\(320\) 0 0
\(321\) 851.000 0.147969
\(322\) − 2800.00i − 0.484590i
\(323\) 2461.00i 0.423943i
\(324\) −2596.00 −0.445130
\(325\) 0 0
\(326\) 5946.00 1.01018
\(327\) 2158.00i 0.364947i
\(328\) − 3448.00i − 0.580439i
\(329\) −3682.00 −0.617007
\(330\) 0 0
\(331\) −1127.00 −0.187147 −0.0935733 0.995612i \(-0.529829\pi\)
−0.0935733 + 0.995612i \(0.529829\pi\)
\(332\) − 3588.00i − 0.593124i
\(333\) − 4784.00i − 0.787272i
\(334\) −8.00000 −0.00131060
\(335\) 0 0
\(336\) −112.000 −0.0181848
\(337\) − 2003.00i − 0.323770i −0.986810 0.161885i \(-0.948243\pi\)
0.986810 0.161885i \(-0.0517573\pi\)
\(338\) − 2334.00i − 0.375600i
\(339\) −377.000 −0.0604007
\(340\) 0 0
\(341\) −2660.00 −0.422425
\(342\) − 1196.00i − 0.189100i
\(343\) 343.000i 0.0539949i
\(344\) 1152.00 0.180557
\(345\) 0 0
\(346\) −6868.00 −1.06713
\(347\) − 10917.0i − 1.68892i −0.535619 0.844460i \(-0.679922\pi\)
0.535619 0.844460i \(-0.320078\pi\)
\(348\) 696.000i 0.107211i
\(349\) 7912.00 1.21352 0.606762 0.794884i \(-0.292468\pi\)
0.606762 + 0.794884i \(0.292468\pi\)
\(350\) 0 0
\(351\) 3074.00 0.467459
\(352\) − 1120.00i − 0.169591i
\(353\) 1854.00i 0.279542i 0.990184 + 0.139771i \(0.0446367\pi\)
−0.990184 + 0.139771i \(0.955363\pi\)
\(354\) −152.000 −0.0228212
\(355\) 0 0
\(356\) −3196.00 −0.475808
\(357\) 749.000i 0.111040i
\(358\) − 794.000i − 0.117218i
\(359\) 11066.0 1.62686 0.813428 0.581666i \(-0.197599\pi\)
0.813428 + 0.581666i \(0.197599\pi\)
\(360\) 0 0
\(361\) −6330.00 −0.922875
\(362\) 1300.00i 0.188747i
\(363\) 106.000i 0.0153266i
\(364\) −1624.00 −0.233848
\(365\) 0 0
\(366\) 236.000 0.0337047
\(367\) − 6136.00i − 0.872743i −0.899767 0.436371i \(-0.856263\pi\)
0.899767 0.436371i \(-0.143737\pi\)
\(368\) − 3200.00i − 0.453292i
\(369\) 11206.0 1.58092
\(370\) 0 0
\(371\) 756.000 0.105794
\(372\) 304.000i 0.0423701i
\(373\) − 4588.00i − 0.636884i −0.947942 0.318442i \(-0.896840\pi\)
0.947942 0.318442i \(-0.103160\pi\)
\(374\) −7490.00 −1.03556
\(375\) 0 0
\(376\) −4208.00 −0.577157
\(377\) 10092.0i 1.37869i
\(378\) − 742.000i − 0.100964i
\(379\) 6089.00 0.825253 0.412627 0.910900i \(-0.364611\pi\)
0.412627 + 0.910900i \(0.364611\pi\)
\(380\) 0 0
\(381\) 762.000 0.102463
\(382\) − 2852.00i − 0.381992i
\(383\) 2958.00i 0.394639i 0.980339 + 0.197320i \(0.0632236\pi\)
−0.980339 + 0.197320i \(0.936776\pi\)
\(384\) −128.000 −0.0170103
\(385\) 0 0
\(386\) −2714.00 −0.357873
\(387\) 3744.00i 0.491778i
\(388\) 6040.00i 0.790295i
\(389\) −5472.00 −0.713217 −0.356609 0.934254i \(-0.616067\pi\)
−0.356609 + 0.934254i \(0.616067\pi\)
\(390\) 0 0
\(391\) −21400.0 −2.76789
\(392\) 392.000i 0.0505076i
\(393\) 1512.00i 0.194072i
\(394\) −9372.00 −1.19836
\(395\) 0 0
\(396\) 3640.00 0.461911
\(397\) 3230.00i 0.408335i 0.978936 + 0.204168i \(0.0654487\pi\)
−0.978936 + 0.204168i \(0.934551\pi\)
\(398\) − 7780.00i − 0.979840i
\(399\) 161.000 0.0202007
\(400\) 0 0
\(401\) 13917.0 1.73312 0.866561 0.499071i \(-0.166325\pi\)
0.866561 + 0.499071i \(0.166325\pi\)
\(402\) − 1374.00i − 0.170470i
\(403\) 4408.00i 0.544859i
\(404\) 0 0
\(405\) 0 0
\(406\) 2436.00 0.297775
\(407\) 6440.00i 0.784322i
\(408\) 856.000i 0.103868i
\(409\) −12271.0 −1.48353 −0.741763 0.670662i \(-0.766010\pi\)
−0.741763 + 0.670662i \(0.766010\pi\)
\(410\) 0 0
\(411\) 419.000 0.0502865
\(412\) 1648.00i 0.197066i
\(413\) 532.000i 0.0633850i
\(414\) 10400.0 1.23462
\(415\) 0 0
\(416\) −1856.00 −0.218745
\(417\) − 2329.00i − 0.273505i
\(418\) 1610.00i 0.188392i
\(419\) −8979.00 −1.04690 −0.523452 0.852055i \(-0.675356\pi\)
−0.523452 + 0.852055i \(0.675356\pi\)
\(420\) 0 0
\(421\) 6100.00 0.706166 0.353083 0.935592i \(-0.385133\pi\)
0.353083 + 0.935592i \(0.385133\pi\)
\(422\) − 8018.00i − 0.924906i
\(423\) − 13676.0i − 1.57199i
\(424\) 864.000 0.0989612
\(425\) 0 0
\(426\) 1060.00 0.120557
\(427\) − 826.000i − 0.0936134i
\(428\) − 3404.00i − 0.384436i
\(429\) −2030.00 −0.228460
\(430\) 0 0
\(431\) 324.000 0.0362100 0.0181050 0.999836i \(-0.494237\pi\)
0.0181050 + 0.999836i \(0.494237\pi\)
\(432\) − 848.000i − 0.0944431i
\(433\) 8163.00i 0.905979i 0.891516 + 0.452989i \(0.149642\pi\)
−0.891516 + 0.452989i \(0.850358\pi\)
\(434\) 1064.00 0.117681
\(435\) 0 0
\(436\) 8632.00 0.948160
\(437\) 4600.00i 0.503542i
\(438\) − 598.000i − 0.0652364i
\(439\) 13828.0 1.50336 0.751679 0.659529i \(-0.229244\pi\)
0.751679 + 0.659529i \(0.229244\pi\)
\(440\) 0 0
\(441\) −1274.00 −0.137566
\(442\) 12412.0i 1.33570i
\(443\) − 14941.0i − 1.60241i −0.598389 0.801206i \(-0.704192\pi\)
0.598389 0.801206i \(-0.295808\pi\)
\(444\) 736.000 0.0786690
\(445\) 0 0
\(446\) −10308.0 −1.09439
\(447\) 3108.00i 0.328867i
\(448\) 448.000i 0.0472456i
\(449\) −1177.00 −0.123711 −0.0618553 0.998085i \(-0.519702\pi\)
−0.0618553 + 0.998085i \(0.519702\pi\)
\(450\) 0 0
\(451\) −15085.0 −1.57500
\(452\) 1508.00i 0.156926i
\(453\) 1192.00i 0.123631i
\(454\) −3048.00 −0.315088
\(455\) 0 0
\(456\) 184.000 0.0188960
\(457\) − 4345.00i − 0.444750i −0.974961 0.222375i \(-0.928619\pi\)
0.974961 0.222375i \(-0.0713808\pi\)
\(458\) 6892.00i 0.703148i
\(459\) −5671.00 −0.576688
\(460\) 0 0
\(461\) 5282.00 0.533638 0.266819 0.963747i \(-0.414027\pi\)
0.266819 + 0.963747i \(0.414027\pi\)
\(462\) 490.000i 0.0493439i
\(463\) 7976.00i 0.800596i 0.916385 + 0.400298i \(0.131093\pi\)
−0.916385 + 0.400298i \(0.868907\pi\)
\(464\) 2784.00 0.278543
\(465\) 0 0
\(466\) 1396.00 0.138774
\(467\) 14012.0i 1.38843i 0.719766 + 0.694216i \(0.244249\pi\)
−0.719766 + 0.694216i \(0.755751\pi\)
\(468\) − 6032.00i − 0.595789i
\(469\) −4809.00 −0.473473
\(470\) 0 0
\(471\) −1772.00 −0.173353
\(472\) 608.000i 0.0592912i
\(473\) − 5040.00i − 0.489935i
\(474\) −804.000 −0.0779092
\(475\) 0 0
\(476\) 2996.00 0.288490
\(477\) 2808.00i 0.269538i
\(478\) 12248.0i 1.17199i
\(479\) −1446.00 −0.137932 −0.0689660 0.997619i \(-0.521970\pi\)
−0.0689660 + 0.997619i \(0.521970\pi\)
\(480\) 0 0
\(481\) 10672.0 1.01165
\(482\) 13950.0i 1.31827i
\(483\) 1400.00i 0.131889i
\(484\) 424.000 0.0398197
\(485\) 0 0
\(486\) 4160.00 0.388275
\(487\) 11142.0i 1.03674i 0.855157 + 0.518370i \(0.173461\pi\)
−0.855157 + 0.518370i \(0.826539\pi\)
\(488\) − 944.000i − 0.0875674i
\(489\) −2973.00 −0.274936
\(490\) 0 0
\(491\) −13692.0 −1.25848 −0.629238 0.777213i \(-0.716633\pi\)
−0.629238 + 0.777213i \(0.716633\pi\)
\(492\) 1724.00i 0.157975i
\(493\) − 18618.0i − 1.70084i
\(494\) 2668.00 0.242994
\(495\) 0 0
\(496\) 1216.00 0.110081
\(497\) − 3710.00i − 0.334842i
\(498\) 1794.00i 0.161428i
\(499\) −19924.0 −1.78742 −0.893708 0.448649i \(-0.851905\pi\)
−0.893708 + 0.448649i \(0.851905\pi\)
\(500\) 0 0
\(501\) 4.00000 0.000356700 0
\(502\) 3794.00i 0.337320i
\(503\) − 4970.00i − 0.440559i −0.975437 0.220280i \(-0.929303\pi\)
0.975437 0.220280i \(-0.0706970\pi\)
\(504\) −1456.00 −0.128681
\(505\) 0 0
\(506\) −14000.0 −1.22999
\(507\) 1167.00i 0.102225i
\(508\) − 3048.00i − 0.266207i
\(509\) 2926.00 0.254799 0.127399 0.991851i \(-0.459337\pi\)
0.127399 + 0.991851i \(0.459337\pi\)
\(510\) 0 0
\(511\) −2093.00 −0.181192
\(512\) 512.000i 0.0441942i
\(513\) 1219.00i 0.104913i
\(514\) −9308.00 −0.798752
\(515\) 0 0
\(516\) −576.000 −0.0491414
\(517\) 18410.0i 1.56609i
\(518\) − 2576.00i − 0.218500i
\(519\) 3434.00 0.290435
\(520\) 0 0
\(521\) 18111.0 1.52295 0.761475 0.648194i \(-0.224475\pi\)
0.761475 + 0.648194i \(0.224475\pi\)
\(522\) 9048.00i 0.758659i
\(523\) 9431.00i 0.788506i 0.919002 + 0.394253i \(0.128997\pi\)
−0.919002 + 0.394253i \(0.871003\pi\)
\(524\) 6048.00 0.504214
\(525\) 0 0
\(526\) 4380.00 0.363074
\(527\) − 8132.00i − 0.672174i
\(528\) 560.000i 0.0461570i
\(529\) −27833.0 −2.28758
\(530\) 0 0
\(531\) −1976.00 −0.161490
\(532\) − 644.000i − 0.0524830i
\(533\) 24998.0i 2.03149i
\(534\) 1598.00 0.129499
\(535\) 0 0
\(536\) −5496.00 −0.442894
\(537\) 397.000i 0.0319028i
\(538\) 15276.0i 1.22415i
\(539\) 1715.00 0.137051
\(540\) 0 0
\(541\) −17002.0 −1.35115 −0.675576 0.737290i \(-0.736105\pi\)
−0.675576 + 0.737290i \(0.736105\pi\)
\(542\) − 10932.0i − 0.866365i
\(543\) − 650.000i − 0.0513705i
\(544\) 3424.00 0.269858
\(545\) 0 0
\(546\) 812.000 0.0636454
\(547\) − 18061.0i − 1.41176i −0.708332 0.705880i \(-0.750552\pi\)
0.708332 0.705880i \(-0.249448\pi\)
\(548\) − 1676.00i − 0.130648i
\(549\) 3068.00 0.238505
\(550\) 0 0
\(551\) −4002.00 −0.309421
\(552\) 1600.00i 0.123371i
\(553\) 2814.00i 0.216390i
\(554\) −620.000 −0.0475474
\(555\) 0 0
\(556\) −9316.00 −0.710587
\(557\) 17348.0i 1.31967i 0.751409 + 0.659837i \(0.229375\pi\)
−0.751409 + 0.659837i \(0.770625\pi\)
\(558\) 3952.00i 0.299823i
\(559\) −8352.00 −0.631936
\(560\) 0 0
\(561\) 3745.00 0.281843
\(562\) − 9892.00i − 0.742471i
\(563\) − 23460.0i − 1.75617i −0.478509 0.878083i \(-0.658823\pi\)
0.478509 0.878083i \(-0.341177\pi\)
\(564\) 2104.00 0.157082
\(565\) 0 0
\(566\) 782.000 0.0580740
\(567\) − 4543.00i − 0.336487i
\(568\) − 4240.00i − 0.313216i
\(569\) −4509.00 −0.332209 −0.166105 0.986108i \(-0.553119\pi\)
−0.166105 + 0.986108i \(0.553119\pi\)
\(570\) 0 0
\(571\) 5932.00 0.434757 0.217379 0.976087i \(-0.430249\pi\)
0.217379 + 0.976087i \(0.430249\pi\)
\(572\) 8120.00i 0.593556i
\(573\) 1426.00i 0.103965i
\(574\) 6034.00 0.438771
\(575\) 0 0
\(576\) −1664.00 −0.120370
\(577\) 12631.0i 0.911327i 0.890152 + 0.455663i \(0.150598\pi\)
−0.890152 + 0.455663i \(0.849402\pi\)
\(578\) − 13072.0i − 0.940698i
\(579\) 1357.00 0.0974007
\(580\) 0 0
\(581\) 6279.00 0.448359
\(582\) − 3020.00i − 0.215091i
\(583\) − 3780.00i − 0.268528i
\(584\) −2392.00 −0.169489
\(585\) 0 0
\(586\) −8244.00 −0.581154
\(587\) − 1041.00i − 0.0731970i −0.999330 0.0365985i \(-0.988348\pi\)
0.999330 0.0365985i \(-0.0116523\pi\)
\(588\) − 196.000i − 0.0137464i
\(589\) −1748.00 −0.122284
\(590\) 0 0
\(591\) 4686.00 0.326153
\(592\) − 2944.00i − 0.204388i
\(593\) − 12363.0i − 0.856134i −0.903747 0.428067i \(-0.859195\pi\)
0.903747 0.428067i \(-0.140805\pi\)
\(594\) −3710.00 −0.256268
\(595\) 0 0
\(596\) 12432.0 0.854420
\(597\) 3890.00i 0.266679i
\(598\) 23200.0i 1.58649i
\(599\) −12824.0 −0.874749 −0.437374 0.899280i \(-0.644092\pi\)
−0.437374 + 0.899280i \(0.644092\pi\)
\(600\) 0 0
\(601\) 41.0000 0.00278274 0.00139137 0.999999i \(-0.499557\pi\)
0.00139137 + 0.999999i \(0.499557\pi\)
\(602\) 2016.00i 0.136488i
\(603\) − 17862.0i − 1.20630i
\(604\) 4768.00 0.321204
\(605\) 0 0
\(606\) 0 0
\(607\) − 19284.0i − 1.28948i −0.764403 0.644739i \(-0.776966\pi\)
0.764403 0.644739i \(-0.223034\pi\)
\(608\) − 736.000i − 0.0490933i
\(609\) −1218.00 −0.0810441
\(610\) 0 0
\(611\) 30508.0 2.02000
\(612\) 11128.0i 0.735004i
\(613\) 11306.0i 0.744935i 0.928045 + 0.372467i \(0.121488\pi\)
−0.928045 + 0.372467i \(0.878512\pi\)
\(614\) 16558.0 1.08832
\(615\) 0 0
\(616\) 1960.00 0.128199
\(617\) − 4222.00i − 0.275480i −0.990468 0.137740i \(-0.956016\pi\)
0.990468 0.137740i \(-0.0439839\pi\)
\(618\) − 824.000i − 0.0536345i
\(619\) 28796.0 1.86980 0.934902 0.354905i \(-0.115487\pi\)
0.934902 + 0.354905i \(0.115487\pi\)
\(620\) 0 0
\(621\) −10600.0 −0.684965
\(622\) 12292.0i 0.792386i
\(623\) − 5593.00i − 0.359677i
\(624\) 928.000 0.0595348
\(625\) 0 0
\(626\) −18380.0 −1.17350
\(627\) − 805.000i − 0.0512737i
\(628\) 7088.00i 0.450385i
\(629\) −19688.0 −1.24803
\(630\) 0 0
\(631\) −12696.0 −0.800982 −0.400491 0.916301i \(-0.631160\pi\)
−0.400491 + 0.916301i \(0.631160\pi\)
\(632\) 3216.00i 0.202414i
\(633\) 4009.00i 0.251727i
\(634\) 7624.00 0.477583
\(635\) 0 0
\(636\) −432.000 −0.0269338
\(637\) − 2842.00i − 0.176773i
\(638\) − 12180.0i − 0.755816i
\(639\) 13780.0 0.853096
\(640\) 0 0
\(641\) 4002.00 0.246598 0.123299 0.992370i \(-0.460653\pi\)
0.123299 + 0.992370i \(0.460653\pi\)
\(642\) 1702.00i 0.104630i
\(643\) − 2528.00i − 0.155046i −0.996991 0.0775230i \(-0.975299\pi\)
0.996991 0.0775230i \(-0.0247011\pi\)
\(644\) 5600.00 0.342657
\(645\) 0 0
\(646\) −4922.00 −0.299773
\(647\) − 5416.00i − 0.329096i −0.986369 0.164548i \(-0.947384\pi\)
0.986369 0.164548i \(-0.0526165\pi\)
\(648\) − 5192.00i − 0.314755i
\(649\) 2660.00 0.160885
\(650\) 0 0
\(651\) −532.000 −0.0320288
\(652\) 11892.0i 0.714305i
\(653\) − 3436.00i − 0.205913i −0.994686 0.102956i \(-0.967170\pi\)
0.994686 0.102956i \(-0.0328302\pi\)
\(654\) −4316.00 −0.258057
\(655\) 0 0
\(656\) 6896.00 0.410432
\(657\) − 7774.00i − 0.461633i
\(658\) − 7364.00i − 0.436290i
\(659\) −10159.0 −0.600514 −0.300257 0.953858i \(-0.597072\pi\)
−0.300257 + 0.953858i \(0.597072\pi\)
\(660\) 0 0
\(661\) −9010.00 −0.530179 −0.265090 0.964224i \(-0.585402\pi\)
−0.265090 + 0.964224i \(0.585402\pi\)
\(662\) − 2254.00i − 0.132333i
\(663\) − 6206.00i − 0.363531i
\(664\) 7176.00 0.419402
\(665\) 0 0
\(666\) 9568.00 0.556685
\(667\) − 34800.0i − 2.02018i
\(668\) − 16.0000i 0 0.000926734i
\(669\) 5154.00 0.297855
\(670\) 0 0
\(671\) −4130.00 −0.237611
\(672\) − 224.000i − 0.0128586i
\(673\) 1538.00i 0.0880914i 0.999030 + 0.0440457i \(0.0140247\pi\)
−0.999030 + 0.0440457i \(0.985975\pi\)
\(674\) 4006.00 0.228940
\(675\) 0 0
\(676\) 4668.00 0.265589
\(677\) − 18816.0i − 1.06818i −0.845428 0.534090i \(-0.820654\pi\)
0.845428 0.534090i \(-0.179346\pi\)
\(678\) − 754.000i − 0.0427097i
\(679\) −10570.0 −0.597407
\(680\) 0 0
\(681\) 1524.00 0.0857560
\(682\) − 5320.00i − 0.298700i
\(683\) 4829.00i 0.270537i 0.990809 + 0.135268i \(0.0431896\pi\)
−0.990809 + 0.135268i \(0.956810\pi\)
\(684\) 2392.00 0.133714
\(685\) 0 0
\(686\) −686.000 −0.0381802
\(687\) − 3446.00i − 0.191373i
\(688\) 2304.00i 0.127673i
\(689\) −6264.00 −0.346356
\(690\) 0 0
\(691\) −6221.00 −0.342486 −0.171243 0.985229i \(-0.554778\pi\)
−0.171243 + 0.985229i \(0.554778\pi\)
\(692\) − 13736.0i − 0.754573i
\(693\) 6370.00i 0.349172i
\(694\) 21834.0 1.19425
\(695\) 0 0
\(696\) −1392.00 −0.0758098
\(697\) − 46117.0i − 2.50618i
\(698\) 15824.0i 0.858091i
\(699\) −698.000 −0.0377694
\(700\) 0 0
\(701\) 2568.00 0.138362 0.0691812 0.997604i \(-0.477961\pi\)
0.0691812 + 0.997604i \(0.477961\pi\)
\(702\) 6148.00i 0.330543i
\(703\) 4232.00i 0.227045i
\(704\) 2240.00 0.119919
\(705\) 0 0
\(706\) −3708.00 −0.197666
\(707\) 0 0
\(708\) − 304.000i − 0.0161370i
\(709\) 34364.0 1.82026 0.910132 0.414319i \(-0.135980\pi\)
0.910132 + 0.414319i \(0.135980\pi\)
\(710\) 0 0
\(711\) −10452.0 −0.551309
\(712\) − 6392.00i − 0.336447i
\(713\) − 15200.0i − 0.798379i
\(714\) −1498.00 −0.0785171
\(715\) 0 0
\(716\) 1588.00 0.0828860
\(717\) − 6124.00i − 0.318975i
\(718\) 22132.0i 1.15036i
\(719\) −19248.0 −0.998372 −0.499186 0.866495i \(-0.666368\pi\)
−0.499186 + 0.866495i \(0.666368\pi\)
\(720\) 0 0
\(721\) −2884.00 −0.148968
\(722\) − 12660.0i − 0.652571i
\(723\) − 6975.00i − 0.358787i
\(724\) −2600.00 −0.133464
\(725\) 0 0
\(726\) −212.000 −0.0108375
\(727\) 14262.0i 0.727577i 0.931482 + 0.363788i \(0.118517\pi\)
−0.931482 + 0.363788i \(0.881483\pi\)
\(728\) − 3248.00i − 0.165356i
\(729\) 15443.0 0.784586
\(730\) 0 0
\(731\) 15408.0 0.779597
\(732\) 472.000i 0.0238328i
\(733\) 13680.0i 0.689335i 0.938725 + 0.344667i \(0.112008\pi\)
−0.938725 + 0.344667i \(0.887992\pi\)
\(734\) 12272.0 0.617122
\(735\) 0 0
\(736\) 6400.00 0.320526
\(737\) 24045.0i 1.20178i
\(738\) 22412.0i 1.11788i
\(739\) 32364.0 1.61100 0.805500 0.592596i \(-0.201897\pi\)
0.805500 + 0.592596i \(0.201897\pi\)
\(740\) 0 0
\(741\) −1334.00 −0.0661346
\(742\) 1512.00i 0.0748076i
\(743\) 25632.0i 1.26561i 0.774312 + 0.632804i \(0.218096\pi\)
−0.774312 + 0.632804i \(0.781904\pi\)
\(744\) −608.000 −0.0299602
\(745\) 0 0
\(746\) 9176.00 0.450345
\(747\) 23322.0i 1.14231i
\(748\) − 14980.0i − 0.732250i
\(749\) 5957.00 0.290606
\(750\) 0 0
\(751\) 7990.00 0.388228 0.194114 0.980979i \(-0.437817\pi\)
0.194114 + 0.980979i \(0.437817\pi\)
\(752\) − 8416.00i − 0.408112i
\(753\) − 1897.00i − 0.0918068i
\(754\) −20184.0 −0.974878
\(755\) 0 0
\(756\) 1484.00 0.0713923
\(757\) − 13214.0i − 0.634440i −0.948352 0.317220i \(-0.897251\pi\)
0.948352 0.317220i \(-0.102749\pi\)
\(758\) 12178.0i 0.583542i
\(759\) 7000.00 0.334761
\(760\) 0 0
\(761\) 37967.0 1.80854 0.904272 0.426956i \(-0.140414\pi\)
0.904272 + 0.426956i \(0.140414\pi\)
\(762\) 1524.00i 0.0724524i
\(763\) 15106.0i 0.716742i
\(764\) 5704.00 0.270109
\(765\) 0 0
\(766\) −5916.00 −0.279052
\(767\) − 4408.00i − 0.207515i
\(768\) − 256.000i − 0.0120281i
\(769\) 9569.00 0.448722 0.224361 0.974506i \(-0.427971\pi\)
0.224361 + 0.974506i \(0.427971\pi\)
\(770\) 0 0
\(771\) 4654.00 0.217393
\(772\) − 5428.00i − 0.253054i
\(773\) − 27908.0i − 1.29855i −0.760553 0.649276i \(-0.775072\pi\)
0.760553 0.649276i \(-0.224928\pi\)
\(774\) −7488.00 −0.347740
\(775\) 0 0
\(776\) −12080.0 −0.558823
\(777\) 1288.00i 0.0594681i
\(778\) − 10944.0i − 0.504321i
\(779\) −9913.00 −0.455931
\(780\) 0 0
\(781\) −18550.0 −0.849899
\(782\) − 42800.0i − 1.95719i
\(783\) − 9222.00i − 0.420903i
\(784\) −784.000 −0.0357143
\(785\) 0 0
\(786\) −3024.00 −0.137230
\(787\) 8884.00i 0.402389i 0.979551 + 0.201195i \(0.0644824\pi\)
−0.979551 + 0.201195i \(0.935518\pi\)
\(788\) − 18744.0i − 0.847370i
\(789\) −2190.00 −0.0988163
\(790\) 0 0
\(791\) −2639.00 −0.118625
\(792\) 7280.00i 0.326621i
\(793\) 6844.00i 0.306479i
\(794\) −6460.00 −0.288737
\(795\) 0 0
\(796\) 15560.0 0.692851
\(797\) − 31866.0i − 1.41625i −0.706087 0.708125i \(-0.749541\pi\)
0.706087 0.708125i \(-0.250459\pi\)
\(798\) 322.000i 0.0142841i
\(799\) −56282.0 −2.49201
\(800\) 0 0
\(801\) 20774.0 0.916371
\(802\) 27834.0i 1.22550i
\(803\) 10465.0i 0.459903i
\(804\) 2748.00 0.120540
\(805\) 0 0
\(806\) −8816.00 −0.385273
\(807\) − 7638.00i − 0.333173i
\(808\) 0 0
\(809\) −8854.00 −0.384784 −0.192392 0.981318i \(-0.561624\pi\)
−0.192392 + 0.981318i \(0.561624\pi\)
\(810\) 0 0
\(811\) 16812.0 0.727927 0.363964 0.931413i \(-0.381423\pi\)
0.363964 + 0.931413i \(0.381423\pi\)
\(812\) 4872.00i 0.210559i
\(813\) 5466.00i 0.235795i
\(814\) −12880.0 −0.554599
\(815\) 0 0
\(816\) −1712.00 −0.0734461
\(817\) − 3312.00i − 0.141826i
\(818\) − 24542.0i − 1.04901i
\(819\) 10556.0 0.450374
\(820\) 0 0
\(821\) 20416.0 0.867872 0.433936 0.900944i \(-0.357124\pi\)
0.433936 + 0.900944i \(0.357124\pi\)
\(822\) 838.000i 0.0355579i
\(823\) 23110.0i 0.978814i 0.872055 + 0.489407i \(0.162787\pi\)
−0.872055 + 0.489407i \(0.837213\pi\)
\(824\) −3296.00 −0.139347
\(825\) 0 0
\(826\) −1064.00 −0.0448200
\(827\) − 7983.00i − 0.335666i −0.985815 0.167833i \(-0.946323\pi\)
0.985815 0.167833i \(-0.0536770\pi\)
\(828\) 20800.0i 0.873007i
\(829\) 10156.0 0.425492 0.212746 0.977108i \(-0.431759\pi\)
0.212746 + 0.977108i \(0.431759\pi\)
\(830\) 0 0
\(831\) 310.000 0.0129408
\(832\) − 3712.00i − 0.154676i
\(833\) 5243.00i 0.218078i
\(834\) 4658.00 0.193397
\(835\) 0 0
\(836\) −3220.00 −0.133213
\(837\) − 4028.00i − 0.166342i
\(838\) − 17958.0i − 0.740273i
\(839\) 19962.0 0.821412 0.410706 0.911768i \(-0.365282\pi\)
0.410706 + 0.911768i \(0.365282\pi\)
\(840\) 0 0
\(841\) 5887.00 0.241379
\(842\) 12200.0i 0.499335i
\(843\) 4946.00i 0.202075i
\(844\) 16036.0 0.654007
\(845\) 0 0
\(846\) 27352.0 1.11156
\(847\) 742.000i 0.0301009i
\(848\) 1728.00i 0.0699761i
\(849\) −391.000 −0.0158058
\(850\) 0 0
\(851\) −36800.0 −1.48236
\(852\) 2120.00i 0.0852465i
\(853\) 47422.0i 1.90352i 0.306851 + 0.951758i \(0.400725\pi\)
−0.306851 + 0.951758i \(0.599275\pi\)
\(854\) 1652.00 0.0661947
\(855\) 0 0
\(856\) 6808.00 0.271837
\(857\) 17641.0i 0.703156i 0.936159 + 0.351578i \(0.114355\pi\)
−0.936159 + 0.351578i \(0.885645\pi\)
\(858\) − 4060.00i − 0.161546i
\(859\) −8831.00 −0.350768 −0.175384 0.984500i \(-0.556117\pi\)
−0.175384 + 0.984500i \(0.556117\pi\)
\(860\) 0 0
\(861\) −3017.00 −0.119418
\(862\) 648.000i 0.0256044i
\(863\) 19908.0i 0.785256i 0.919697 + 0.392628i \(0.128434\pi\)
−0.919697 + 0.392628i \(0.871566\pi\)
\(864\) 1696.00 0.0667814
\(865\) 0 0
\(866\) −16326.0 −0.640624
\(867\) 6536.00i 0.256026i
\(868\) 2128.00i 0.0832132i
\(869\) 14070.0 0.549243
\(870\) 0 0
\(871\) 39846.0 1.55009
\(872\) 17264.0i 0.670450i
\(873\) − 39260.0i − 1.52205i
\(874\) −9200.00 −0.356058
\(875\) 0 0
\(876\) 1196.00 0.0461291
\(877\) 41584.0i 1.60113i 0.599245 + 0.800566i \(0.295467\pi\)
−0.599245 + 0.800566i \(0.704533\pi\)
\(878\) 27656.0i 1.06304i
\(879\) 4122.00 0.158170
\(880\) 0 0
\(881\) −21414.0 −0.818906 −0.409453 0.912331i \(-0.634280\pi\)
−0.409453 + 0.912331i \(0.634280\pi\)
\(882\) − 2548.00i − 0.0972739i
\(883\) − 14975.0i − 0.570724i −0.958420 0.285362i \(-0.907886\pi\)
0.958420 0.285362i \(-0.0921137\pi\)
\(884\) −24824.0 −0.944481
\(885\) 0 0
\(886\) 29882.0 1.13308
\(887\) 11702.0i 0.442970i 0.975164 + 0.221485i \(0.0710904\pi\)
−0.975164 + 0.221485i \(0.928910\pi\)
\(888\) 1472.00i 0.0556273i
\(889\) 5334.00 0.201234
\(890\) 0 0
\(891\) −22715.0 −0.854075
\(892\) − 20616.0i − 0.773851i
\(893\) 12098.0i 0.453353i
\(894\) −6216.00 −0.232544
\(895\) 0 0
\(896\) −896.000 −0.0334077
\(897\) − 11600.0i − 0.431787i
\(898\) − 2354.00i − 0.0874766i
\(899\) 13224.0 0.490595
\(900\) 0 0
\(901\) 11556.0 0.427288
\(902\) − 30170.0i − 1.11369i
\(903\) − 1008.00i − 0.0371474i
\(904\) −3016.00 −0.110963
\(905\) 0 0
\(906\) −2384.00 −0.0874206
\(907\) 15252.0i 0.558362i 0.960238 + 0.279181i \(0.0900629\pi\)
−0.960238 + 0.279181i \(0.909937\pi\)
\(908\) − 6096.00i − 0.222801i
\(909\) 0 0
\(910\) 0 0
\(911\) 8508.00 0.309421 0.154711 0.987960i \(-0.450556\pi\)
0.154711 + 0.987960i \(0.450556\pi\)
\(912\) 368.000i 0.0133615i
\(913\) − 31395.0i − 1.13803i
\(914\) 8690.00 0.314485
\(915\) 0 0
\(916\) −13784.0 −0.497201
\(917\) 10584.0i 0.381150i
\(918\) − 11342.0i − 0.407780i
\(919\) 22406.0 0.804250 0.402125 0.915585i \(-0.368272\pi\)
0.402125 + 0.915585i \(0.368272\pi\)
\(920\) 0 0
\(921\) −8279.00 −0.296202
\(922\) 10564.0i 0.377339i
\(923\) 30740.0i 1.09623i
\(924\) −980.000 −0.0348914
\(925\) 0 0
\(926\) −15952.0 −0.566107
\(927\) − 10712.0i − 0.379534i
\(928\) 5568.00i 0.196960i
\(929\) −49294.0 −1.74089 −0.870443 0.492269i \(-0.836168\pi\)
−0.870443 + 0.492269i \(0.836168\pi\)
\(930\) 0 0
\(931\) 1127.00 0.0396734
\(932\) 2792.00i 0.0981277i
\(933\) − 6146.00i − 0.215660i
\(934\) −28024.0 −0.981770
\(935\) 0 0
\(936\) 12064.0 0.421287
\(937\) − 24669.0i − 0.860087i −0.902808 0.430043i \(-0.858498\pi\)
0.902808 0.430043i \(-0.141502\pi\)
\(938\) − 9618.00i − 0.334796i
\(939\) 9190.00 0.319387
\(940\) 0 0
\(941\) −4224.00 −0.146332 −0.0731660 0.997320i \(-0.523310\pi\)
−0.0731660 + 0.997320i \(0.523310\pi\)
\(942\) − 3544.00i − 0.122579i
\(943\) − 86200.0i − 2.97673i
\(944\) −1216.00 −0.0419252
\(945\) 0 0
\(946\) 10080.0 0.346437
\(947\) 39252.0i 1.34690i 0.739231 + 0.673452i \(0.235189\pi\)
−0.739231 + 0.673452i \(0.764811\pi\)
\(948\) − 1608.00i − 0.0550901i
\(949\) 17342.0 0.593198
\(950\) 0 0
\(951\) −3812.00 −0.129982
\(952\) 5992.00i 0.203994i
\(953\) − 33567.0i − 1.14097i −0.821309 0.570484i \(-0.806756\pi\)
0.821309 0.570484i \(-0.193244\pi\)
\(954\) −5616.00 −0.190592
\(955\) 0 0
\(956\) −24496.0 −0.828721
\(957\) 6090.00i 0.205707i
\(958\) − 2892.00i − 0.0975327i
\(959\) 2933.00 0.0987607
\(960\) 0 0
\(961\) −24015.0 −0.806116
\(962\) 21344.0i 0.715341i
\(963\) 22126.0i 0.740395i
\(964\) −27900.0 −0.932156
\(965\) 0 0
\(966\) −2800.00 −0.0932593
\(967\) 56126.0i 1.86648i 0.359248 + 0.933242i \(0.383033\pi\)
−0.359248 + 0.933242i \(0.616967\pi\)
\(968\) 848.000i 0.0281568i
\(969\) 2461.00 0.0815879
\(970\) 0 0
\(971\) 6759.00 0.223385 0.111692 0.993743i \(-0.464373\pi\)
0.111692 + 0.993743i \(0.464373\pi\)
\(972\) 8320.00i 0.274552i
\(973\) − 16303.0i − 0.537153i
\(974\) −22284.0 −0.733086
\(975\) 0 0
\(976\) 1888.00 0.0619195
\(977\) 35547.0i 1.16402i 0.813181 + 0.582011i \(0.197734\pi\)
−0.813181 + 0.582011i \(0.802266\pi\)
\(978\) − 5946.00i − 0.194409i
\(979\) −27965.0 −0.912937
\(980\) 0 0
\(981\) −56108.0 −1.82609
\(982\) − 27384.0i − 0.889876i
\(983\) 35252.0i 1.14381i 0.820320 + 0.571904i \(0.193795\pi\)
−0.820320 + 0.571904i \(0.806205\pi\)
\(984\) −3448.00 −0.111706
\(985\) 0 0
\(986\) 37236.0 1.20267
\(987\) 3682.00i 0.118743i
\(988\) 5336.00i 0.171823i
\(989\) 28800.0 0.925972
\(990\) 0 0
\(991\) 5884.00 0.188609 0.0943045 0.995543i \(-0.469937\pi\)
0.0943045 + 0.995543i \(0.469937\pi\)
\(992\) 2432.00i 0.0778388i
\(993\) 1127.00i 0.0360164i
\(994\) 7420.00 0.236769
\(995\) 0 0
\(996\) −3588.00 −0.114147
\(997\) 39874.0i 1.26662i 0.773897 + 0.633311i \(0.218305\pi\)
−0.773897 + 0.633311i \(0.781695\pi\)
\(998\) − 39848.0i − 1.26389i
\(999\) −9752.00 −0.308848
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.4.c.i.99.2 2
5.2 odd 4 350.4.a.d.1.1 1
5.3 odd 4 350.4.a.s.1.1 yes 1
5.4 even 2 inner 350.4.c.i.99.1 2
35.13 even 4 2450.4.a.bd.1.1 1
35.27 even 4 2450.4.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.4.a.d.1.1 1 5.2 odd 4
350.4.a.s.1.1 yes 1 5.3 odd 4
350.4.c.i.99.1 2 5.4 even 2 inner
350.4.c.i.99.2 2 1.1 even 1 trivial
2450.4.a.l.1.1 1 35.27 even 4
2450.4.a.bd.1.1 1 35.13 even 4