Properties

Label 350.4.c.e.99.2
Level $350$
Weight $4$
Character 350.99
Analytic conductor $20.651$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(99,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.99"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,-12,0,0,36,0,74] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.4.c.e.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +3.00000i q^{3} -4.00000 q^{4} -6.00000 q^{6} +7.00000i q^{7} -8.00000i q^{8} +18.0000 q^{9} +37.0000 q^{11} -12.0000i q^{12} +18.0000i q^{13} -14.0000 q^{14} +16.0000 q^{16} +121.000i q^{17} +36.0000i q^{18} +45.0000 q^{19} -21.0000 q^{21} +74.0000i q^{22} -72.0000i q^{23} +24.0000 q^{24} -36.0000 q^{26} +135.000i q^{27} -28.0000i q^{28} -210.000 q^{29} -148.000 q^{31} +32.0000i q^{32} +111.000i q^{33} -242.000 q^{34} -72.0000 q^{36} +136.000i q^{37} +90.0000i q^{38} -54.0000 q^{39} +227.000 q^{41} -42.0000i q^{42} -32.0000i q^{43} -148.000 q^{44} +144.000 q^{46} +346.000i q^{47} +48.0000i q^{48} -49.0000 q^{49} -363.000 q^{51} -72.0000i q^{52} -452.000i q^{53} -270.000 q^{54} +56.0000 q^{56} +135.000i q^{57} -420.000i q^{58} +140.000 q^{59} -578.000 q^{61} -296.000i q^{62} +126.000i q^{63} -64.0000 q^{64} -222.000 q^{66} +801.000i q^{67} -484.000i q^{68} +216.000 q^{69} -478.000 q^{71} -144.000i q^{72} -247.000i q^{73} -272.000 q^{74} -180.000 q^{76} +259.000i q^{77} -108.000i q^{78} -610.000 q^{79} +81.0000 q^{81} +454.000i q^{82} +653.000i q^{83} +84.0000 q^{84} +64.0000 q^{86} -630.000i q^{87} -296.000i q^{88} +1115.00 q^{89} -126.000 q^{91} +288.000i q^{92} -444.000i q^{93} -692.000 q^{94} -96.0000 q^{96} -614.000i q^{97} -98.0000i q^{98} +666.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 12 q^{6} + 36 q^{9} + 74 q^{11} - 28 q^{14} + 32 q^{16} + 90 q^{19} - 42 q^{21} + 48 q^{24} - 72 q^{26} - 420 q^{29} - 296 q^{31} - 484 q^{34} - 144 q^{36} - 108 q^{39} + 454 q^{41} - 296 q^{44}+ \cdots + 1332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 3.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) 7.00000i 0.377964i
\(8\) − 8.00000i − 0.353553i
\(9\) 18.0000 0.666667
\(10\) 0 0
\(11\) 37.0000 1.01417 0.507087 0.861895i \(-0.330722\pi\)
0.507087 + 0.861895i \(0.330722\pi\)
\(12\) − 12.0000i − 0.288675i
\(13\) 18.0000i 0.384023i 0.981393 + 0.192012i \(0.0615011\pi\)
−0.981393 + 0.192012i \(0.938499\pi\)
\(14\) −14.0000 −0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 121.000i 1.72628i 0.504962 + 0.863141i \(0.331506\pi\)
−0.504962 + 0.863141i \(0.668494\pi\)
\(18\) 36.0000i 0.471405i
\(19\) 45.0000 0.543353 0.271677 0.962389i \(-0.412422\pi\)
0.271677 + 0.962389i \(0.412422\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 74.0000i 0.717130i
\(23\) − 72.0000i − 0.652741i −0.945242 0.326370i \(-0.894174\pi\)
0.945242 0.326370i \(-0.105826\pi\)
\(24\) 24.0000 0.204124
\(25\) 0 0
\(26\) −36.0000 −0.271545
\(27\) 135.000i 0.962250i
\(28\) − 28.0000i − 0.188982i
\(29\) −210.000 −1.34469 −0.672345 0.740238i \(-0.734713\pi\)
−0.672345 + 0.740238i \(0.734713\pi\)
\(30\) 0 0
\(31\) −148.000 −0.857470 −0.428735 0.903430i \(-0.641041\pi\)
−0.428735 + 0.903430i \(0.641041\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 111.000i 0.585534i
\(34\) −242.000 −1.22067
\(35\) 0 0
\(36\) −72.0000 −0.333333
\(37\) 136.000i 0.604277i 0.953264 + 0.302139i \(0.0977006\pi\)
−0.953264 + 0.302139i \(0.902299\pi\)
\(38\) 90.0000i 0.384209i
\(39\) −54.0000 −0.221716
\(40\) 0 0
\(41\) 227.000 0.864669 0.432335 0.901713i \(-0.357690\pi\)
0.432335 + 0.901713i \(0.357690\pi\)
\(42\) − 42.0000i − 0.154303i
\(43\) − 32.0000i − 0.113487i −0.998389 0.0567437i \(-0.981928\pi\)
0.998389 0.0567437i \(-0.0180718\pi\)
\(44\) −148.000 −0.507087
\(45\) 0 0
\(46\) 144.000 0.461557
\(47\) 346.000i 1.07381i 0.843641 + 0.536907i \(0.180408\pi\)
−0.843641 + 0.536907i \(0.819592\pi\)
\(48\) 48.0000i 0.144338i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −363.000 −0.996670
\(52\) − 72.0000i − 0.192012i
\(53\) − 452.000i − 1.17145i −0.810509 0.585726i \(-0.800809\pi\)
0.810509 0.585726i \(-0.199191\pi\)
\(54\) −270.000 −0.680414
\(55\) 0 0
\(56\) 56.0000 0.133631
\(57\) 135.000i 0.313705i
\(58\) − 420.000i − 0.950840i
\(59\) 140.000 0.308923 0.154461 0.987999i \(-0.450636\pi\)
0.154461 + 0.987999i \(0.450636\pi\)
\(60\) 0 0
\(61\) −578.000 −1.21320 −0.606601 0.795006i \(-0.707467\pi\)
−0.606601 + 0.795006i \(0.707467\pi\)
\(62\) − 296.000i − 0.606323i
\(63\) 126.000i 0.251976i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −222.000 −0.414035
\(67\) 801.000i 1.46056i 0.683146 + 0.730282i \(0.260611\pi\)
−0.683146 + 0.730282i \(0.739389\pi\)
\(68\) − 484.000i − 0.863141i
\(69\) 216.000 0.376860
\(70\) 0 0
\(71\) −478.000 −0.798988 −0.399494 0.916736i \(-0.630814\pi\)
−0.399494 + 0.916736i \(0.630814\pi\)
\(72\) − 144.000i − 0.235702i
\(73\) − 247.000i − 0.396016i −0.980200 0.198008i \(-0.936553\pi\)
0.980200 0.198008i \(-0.0634472\pi\)
\(74\) −272.000 −0.427289
\(75\) 0 0
\(76\) −180.000 −0.271677
\(77\) 259.000i 0.383322i
\(78\) − 108.000i − 0.156777i
\(79\) −610.000 −0.868739 −0.434369 0.900735i \(-0.643029\pi\)
−0.434369 + 0.900735i \(0.643029\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 454.000i 0.611414i
\(83\) 653.000i 0.863567i 0.901977 + 0.431784i \(0.142116\pi\)
−0.901977 + 0.431784i \(0.857884\pi\)
\(84\) 84.0000 0.109109
\(85\) 0 0
\(86\) 64.0000 0.0802476
\(87\) − 630.000i − 0.776357i
\(88\) − 296.000i − 0.358565i
\(89\) 1115.00 1.32797 0.663987 0.747744i \(-0.268863\pi\)
0.663987 + 0.747744i \(0.268863\pi\)
\(90\) 0 0
\(91\) −126.000 −0.145147
\(92\) 288.000i 0.326370i
\(93\) − 444.000i − 0.495061i
\(94\) −692.000 −0.759302
\(95\) 0 0
\(96\) −96.0000 −0.102062
\(97\) − 614.000i − 0.642704i −0.946960 0.321352i \(-0.895863\pi\)
0.946960 0.321352i \(-0.104137\pi\)
\(98\) − 98.0000i − 0.101015i
\(99\) 666.000 0.676116
\(100\) 0 0
\(101\) −768.000 −0.756622 −0.378311 0.925678i \(-0.623495\pi\)
−0.378311 + 0.925678i \(0.623495\pi\)
\(102\) − 726.000i − 0.704752i
\(103\) 148.000i 0.141581i 0.997491 + 0.0707906i \(0.0225522\pi\)
−0.997491 + 0.0707906i \(0.977448\pi\)
\(104\) 144.000 0.135773
\(105\) 0 0
\(106\) 904.000 0.828342
\(107\) 531.000i 0.479754i 0.970803 + 0.239877i \(0.0771072\pi\)
−0.970803 + 0.239877i \(0.922893\pi\)
\(108\) − 540.000i − 0.481125i
\(109\) 1650.00 1.44992 0.724960 0.688791i \(-0.241858\pi\)
0.724960 + 0.688791i \(0.241858\pi\)
\(110\) 0 0
\(111\) −408.000 −0.348880
\(112\) 112.000i 0.0944911i
\(113\) 2063.00i 1.71744i 0.512445 + 0.858720i \(0.328740\pi\)
−0.512445 + 0.858720i \(0.671260\pi\)
\(114\) −270.000 −0.221823
\(115\) 0 0
\(116\) 840.000 0.672345
\(117\) 324.000i 0.256015i
\(118\) 280.000i 0.218441i
\(119\) −847.000 −0.652474
\(120\) 0 0
\(121\) 38.0000 0.0285500
\(122\) − 1156.00i − 0.857863i
\(123\) 681.000i 0.499217i
\(124\) 592.000 0.428735
\(125\) 0 0
\(126\) −252.000 −0.178174
\(127\) 1706.00i 1.19199i 0.802987 + 0.595996i \(0.203243\pi\)
−0.802987 + 0.595996i \(0.796757\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) 96.0000 0.0655219
\(130\) 0 0
\(131\) 1712.00 1.14182 0.570909 0.821013i \(-0.306591\pi\)
0.570909 + 0.821013i \(0.306591\pi\)
\(132\) − 444.000i − 0.292767i
\(133\) 315.000i 0.205368i
\(134\) −1602.00 −1.03277
\(135\) 0 0
\(136\) 968.000 0.610333
\(137\) − 2949.00i − 1.83905i −0.393030 0.919526i \(-0.628573\pi\)
0.393030 0.919526i \(-0.371427\pi\)
\(138\) 432.000i 0.266480i
\(139\) 1685.00 1.02820 0.514100 0.857730i \(-0.328126\pi\)
0.514100 + 0.857730i \(0.328126\pi\)
\(140\) 0 0
\(141\) −1038.00 −0.619967
\(142\) − 956.000i − 0.564970i
\(143\) 666.000i 0.389467i
\(144\) 288.000 0.166667
\(145\) 0 0
\(146\) 494.000 0.280026
\(147\) − 147.000i − 0.0824786i
\(148\) − 544.000i − 0.302139i
\(149\) −420.000 −0.230924 −0.115462 0.993312i \(-0.536835\pi\)
−0.115462 + 0.993312i \(0.536835\pi\)
\(150\) 0 0
\(151\) 3032.00 1.63404 0.817022 0.576606i \(-0.195623\pi\)
0.817022 + 0.576606i \(0.195623\pi\)
\(152\) − 360.000i − 0.192104i
\(153\) 2178.00i 1.15086i
\(154\) −518.000 −0.271050
\(155\) 0 0
\(156\) 216.000 0.110858
\(157\) − 1084.00i − 0.551036i −0.961296 0.275518i \(-0.911151\pi\)
0.961296 0.275518i \(-0.0888493\pi\)
\(158\) − 1220.00i − 0.614291i
\(159\) 1356.00 0.676338
\(160\) 0 0
\(161\) 504.000 0.246713
\(162\) 162.000i 0.0785674i
\(163\) − 517.000i − 0.248433i −0.992255 0.124216i \(-0.960358\pi\)
0.992255 0.124216i \(-0.0396417\pi\)
\(164\) −908.000 −0.432335
\(165\) 0 0
\(166\) −1306.00 −0.610634
\(167\) − 2844.00i − 1.31782i −0.752223 0.658908i \(-0.771019\pi\)
0.752223 0.658908i \(-0.228981\pi\)
\(168\) 168.000i 0.0771517i
\(169\) 1873.00 0.852526
\(170\) 0 0
\(171\) 810.000 0.362235
\(172\) 128.000i 0.0567437i
\(173\) 818.000i 0.359488i 0.983713 + 0.179744i \(0.0575269\pi\)
−0.983713 + 0.179744i \(0.942473\pi\)
\(174\) 1260.00 0.548968
\(175\) 0 0
\(176\) 592.000 0.253544
\(177\) 420.000i 0.178357i
\(178\) 2230.00i 0.939020i
\(179\) −3405.00 −1.42180 −0.710898 0.703295i \(-0.751711\pi\)
−0.710898 + 0.703295i \(0.751711\pi\)
\(180\) 0 0
\(181\) 3442.00 1.41349 0.706745 0.707468i \(-0.250163\pi\)
0.706745 + 0.707468i \(0.250163\pi\)
\(182\) − 252.000i − 0.102635i
\(183\) − 1734.00i − 0.700442i
\(184\) −576.000 −0.230779
\(185\) 0 0
\(186\) 888.000 0.350061
\(187\) 4477.00i 1.75075i
\(188\) − 1384.00i − 0.536907i
\(189\) −945.000 −0.363696
\(190\) 0 0
\(191\) 2862.00 1.08423 0.542113 0.840306i \(-0.317625\pi\)
0.542113 + 0.840306i \(0.317625\pi\)
\(192\) − 192.000i − 0.0721688i
\(193\) − 2827.00i − 1.05436i −0.849753 0.527181i \(-0.823249\pi\)
0.849753 0.527181i \(-0.176751\pi\)
\(194\) 1228.00 0.454460
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) − 1634.00i − 0.590953i −0.955350 0.295476i \(-0.904522\pi\)
0.955350 0.295476i \(-0.0954784\pi\)
\(198\) 1332.00i 0.478086i
\(199\) 1270.00 0.452402 0.226201 0.974081i \(-0.427369\pi\)
0.226201 + 0.974081i \(0.427369\pi\)
\(200\) 0 0
\(201\) −2403.00 −0.843256
\(202\) − 1536.00i − 0.535013i
\(203\) − 1470.00i − 0.508245i
\(204\) 1452.00 0.498335
\(205\) 0 0
\(206\) −296.000 −0.100113
\(207\) − 1296.00i − 0.435161i
\(208\) 288.000i 0.0960058i
\(209\) 1665.00 0.551055
\(210\) 0 0
\(211\) −2393.00 −0.780763 −0.390381 0.920653i \(-0.627657\pi\)
−0.390381 + 0.920653i \(0.627657\pi\)
\(212\) 1808.00i 0.585726i
\(213\) − 1434.00i − 0.461296i
\(214\) −1062.00 −0.339238
\(215\) 0 0
\(216\) 1080.00 0.340207
\(217\) − 1036.00i − 0.324093i
\(218\) 3300.00i 1.02525i
\(219\) 741.000 0.228640
\(220\) 0 0
\(221\) −2178.00 −0.662933
\(222\) − 816.000i − 0.246695i
\(223\) 5338.00i 1.60295i 0.598025 + 0.801477i \(0.295952\pi\)
−0.598025 + 0.801477i \(0.704048\pi\)
\(224\) −224.000 −0.0668153
\(225\) 0 0
\(226\) −4126.00 −1.21441
\(227\) − 3284.00i − 0.960206i −0.877212 0.480103i \(-0.840599\pi\)
0.877212 0.480103i \(-0.159401\pi\)
\(228\) − 540.000i − 0.156853i
\(229\) 5150.00 1.48612 0.743060 0.669225i \(-0.233374\pi\)
0.743060 + 0.669225i \(0.233374\pi\)
\(230\) 0 0
\(231\) −777.000 −0.221311
\(232\) 1680.00i 0.475420i
\(233\) − 3642.00i − 1.02401i −0.858981 0.512007i \(-0.828902\pi\)
0.858981 0.512007i \(-0.171098\pi\)
\(234\) −648.000 −0.181030
\(235\) 0 0
\(236\) −560.000 −0.154461
\(237\) − 1830.00i − 0.501567i
\(238\) − 1694.00i − 0.461369i
\(239\) −1540.00 −0.416796 −0.208398 0.978044i \(-0.566825\pi\)
−0.208398 + 0.978044i \(0.566825\pi\)
\(240\) 0 0
\(241\) 3187.00 0.851837 0.425918 0.904762i \(-0.359951\pi\)
0.425918 + 0.904762i \(0.359951\pi\)
\(242\) 76.0000i 0.0201879i
\(243\) 3888.00i 1.02640i
\(244\) 2312.00 0.606601
\(245\) 0 0
\(246\) −1362.00 −0.353000
\(247\) 810.000i 0.208660i
\(248\) 1184.00i 0.303162i
\(249\) −1959.00 −0.498581
\(250\) 0 0
\(251\) −2883.00 −0.724993 −0.362497 0.931985i \(-0.618076\pi\)
−0.362497 + 0.931985i \(0.618076\pi\)
\(252\) − 504.000i − 0.125988i
\(253\) − 2664.00i − 0.661993i
\(254\) −3412.00 −0.842866
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5326.00i 1.29271i 0.763036 + 0.646356i \(0.223708\pi\)
−0.763036 + 0.646356i \(0.776292\pi\)
\(258\) 192.000i 0.0463310i
\(259\) −952.000 −0.228395
\(260\) 0 0
\(261\) −3780.00 −0.896460
\(262\) 3424.00i 0.807387i
\(263\) − 382.000i − 0.0895632i −0.998997 0.0447816i \(-0.985741\pi\)
0.998997 0.0447816i \(-0.0142592\pi\)
\(264\) 888.000 0.207018
\(265\) 0 0
\(266\) −630.000 −0.145217
\(267\) 3345.00i 0.766707i
\(268\) − 3204.00i − 0.730282i
\(269\) −5250.00 −1.18996 −0.594978 0.803742i \(-0.702839\pi\)
−0.594978 + 0.803742i \(0.702839\pi\)
\(270\) 0 0
\(271\) −3378.00 −0.757191 −0.378596 0.925562i \(-0.623593\pi\)
−0.378596 + 0.925562i \(0.623593\pi\)
\(272\) 1936.00i 0.431571i
\(273\) − 378.000i − 0.0838007i
\(274\) 5898.00 1.30041
\(275\) 0 0
\(276\) −864.000 −0.188430
\(277\) − 5994.00i − 1.30016i −0.759865 0.650080i \(-0.774735\pi\)
0.759865 0.650080i \(-0.225265\pi\)
\(278\) 3370.00i 0.727047i
\(279\) −2664.00 −0.571647
\(280\) 0 0
\(281\) −7858.00 −1.66822 −0.834109 0.551600i \(-0.814017\pi\)
−0.834109 + 0.551600i \(0.814017\pi\)
\(282\) − 2076.00i − 0.438383i
\(283\) − 7387.00i − 1.55163i −0.630960 0.775815i \(-0.717339\pi\)
0.630960 0.775815i \(-0.282661\pi\)
\(284\) 1912.00 0.399494
\(285\) 0 0
\(286\) −1332.00 −0.275394
\(287\) 1589.00i 0.326814i
\(288\) 576.000i 0.117851i
\(289\) −9728.00 −1.98005
\(290\) 0 0
\(291\) 1842.00 0.371065
\(292\) 988.000i 0.198008i
\(293\) − 5102.00i − 1.01728i −0.860980 0.508638i \(-0.830149\pi\)
0.860980 0.508638i \(-0.169851\pi\)
\(294\) 294.000 0.0583212
\(295\) 0 0
\(296\) 1088.00 0.213644
\(297\) 4995.00i 0.975890i
\(298\) − 840.000i − 0.163288i
\(299\) 1296.00 0.250668
\(300\) 0 0
\(301\) 224.000 0.0428942
\(302\) 6064.00i 1.15544i
\(303\) − 2304.00i − 0.436836i
\(304\) 720.000 0.135838
\(305\) 0 0
\(306\) −4356.00 −0.813778
\(307\) 9341.00i 1.73654i 0.496088 + 0.868272i \(0.334769\pi\)
−0.496088 + 0.868272i \(0.665231\pi\)
\(308\) − 1036.00i − 0.191661i
\(309\) −444.000 −0.0817420
\(310\) 0 0
\(311\) 8682.00 1.58299 0.791497 0.611173i \(-0.209302\pi\)
0.791497 + 0.611173i \(0.209302\pi\)
\(312\) 432.000i 0.0783884i
\(313\) 998.000i 0.180225i 0.995932 + 0.0901123i \(0.0287226\pi\)
−0.995932 + 0.0901123i \(0.971277\pi\)
\(314\) 2168.00 0.389641
\(315\) 0 0
\(316\) 2440.00 0.434369
\(317\) − 4084.00i − 0.723597i −0.932256 0.361799i \(-0.882163\pi\)
0.932256 0.361799i \(-0.117837\pi\)
\(318\) 2712.00i 0.478243i
\(319\) −7770.00 −1.36375
\(320\) 0 0
\(321\) −1593.00 −0.276986
\(322\) 1008.00i 0.174452i
\(323\) 5445.00i 0.937981i
\(324\) −324.000 −0.0555556
\(325\) 0 0
\(326\) 1034.00 0.175669
\(327\) 4950.00i 0.837112i
\(328\) − 1816.00i − 0.305707i
\(329\) −2422.00 −0.405864
\(330\) 0 0
\(331\) 11857.0 1.96894 0.984471 0.175548i \(-0.0561699\pi\)
0.984471 + 0.175548i \(0.0561699\pi\)
\(332\) − 2612.00i − 0.431784i
\(333\) 2448.00i 0.402852i
\(334\) 5688.00 0.931837
\(335\) 0 0
\(336\) −336.000 −0.0545545
\(337\) − 1219.00i − 0.197042i −0.995135 0.0985210i \(-0.968589\pi\)
0.995135 0.0985210i \(-0.0314112\pi\)
\(338\) 3746.00i 0.602827i
\(339\) −6189.00 −0.991564
\(340\) 0 0
\(341\) −5476.00 −0.869625
\(342\) 1620.00i 0.256139i
\(343\) − 343.000i − 0.0539949i
\(344\) −256.000 −0.0401238
\(345\) 0 0
\(346\) −1636.00 −0.254196
\(347\) − 6589.00i − 1.01935i −0.860366 0.509677i \(-0.829765\pi\)
0.860366 0.509677i \(-0.170235\pi\)
\(348\) 2520.00i 0.388179i
\(349\) 5240.00 0.803698 0.401849 0.915706i \(-0.368368\pi\)
0.401849 + 0.915706i \(0.368368\pi\)
\(350\) 0 0
\(351\) −2430.00 −0.369527
\(352\) 1184.00i 0.179282i
\(353\) − 10482.0i − 1.58045i −0.612814 0.790227i \(-0.709962\pi\)
0.612814 0.790227i \(-0.290038\pi\)
\(354\) −840.000 −0.126117
\(355\) 0 0
\(356\) −4460.00 −0.663987
\(357\) − 2541.00i − 0.376706i
\(358\) − 6810.00i − 1.00536i
\(359\) −11750.0 −1.72741 −0.863707 0.503995i \(-0.831863\pi\)
−0.863707 + 0.503995i \(0.831863\pi\)
\(360\) 0 0
\(361\) −4834.00 −0.704767
\(362\) 6884.00i 0.999489i
\(363\) 114.000i 0.0164833i
\(364\) 504.000 0.0725736
\(365\) 0 0
\(366\) 3468.00 0.495288
\(367\) 56.0000i 0.00796506i 0.999992 + 0.00398253i \(0.00126768\pi\)
−0.999992 + 0.00398253i \(0.998732\pi\)
\(368\) − 1152.00i − 0.163185i
\(369\) 4086.00 0.576446
\(370\) 0 0
\(371\) 3164.00 0.442767
\(372\) 1776.00i 0.247530i
\(373\) − 6892.00i − 0.956714i −0.878166 0.478357i \(-0.841233\pi\)
0.878166 0.478357i \(-0.158767\pi\)
\(374\) −8954.00 −1.23797
\(375\) 0 0
\(376\) 2768.00 0.379651
\(377\) − 3780.00i − 0.516392i
\(378\) − 1890.00i − 0.257172i
\(379\) 6465.00 0.876213 0.438107 0.898923i \(-0.355649\pi\)
0.438107 + 0.898923i \(0.355649\pi\)
\(380\) 0 0
\(381\) −5118.00 −0.688197
\(382\) 5724.00i 0.766663i
\(383\) 11958.0i 1.59537i 0.603077 + 0.797683i \(0.293941\pi\)
−0.603077 + 0.797683i \(0.706059\pi\)
\(384\) 384.000 0.0510310
\(385\) 0 0
\(386\) 5654.00 0.745547
\(387\) − 576.000i − 0.0756582i
\(388\) 2456.00i 0.321352i
\(389\) −9920.00 −1.29297 −0.646483 0.762928i \(-0.723761\pi\)
−0.646483 + 0.762928i \(0.723761\pi\)
\(390\) 0 0
\(391\) 8712.00 1.12682
\(392\) 392.000i 0.0505076i
\(393\) 5136.00i 0.659229i
\(394\) 3268.00 0.417867
\(395\) 0 0
\(396\) −2664.00 −0.338058
\(397\) 4886.00i 0.617686i 0.951113 + 0.308843i \(0.0999418\pi\)
−0.951113 + 0.308843i \(0.900058\pi\)
\(398\) 2540.00i 0.319896i
\(399\) −945.000 −0.118569
\(400\) 0 0
\(401\) −1763.00 −0.219551 −0.109776 0.993956i \(-0.535013\pi\)
−0.109776 + 0.993956i \(0.535013\pi\)
\(402\) − 4806.00i − 0.596272i
\(403\) − 2664.00i − 0.329289i
\(404\) 3072.00 0.378311
\(405\) 0 0
\(406\) 2940.00 0.359384
\(407\) 5032.00i 0.612843i
\(408\) 2904.00i 0.352376i
\(409\) 9645.00 1.16605 0.583025 0.812454i \(-0.301869\pi\)
0.583025 + 0.812454i \(0.301869\pi\)
\(410\) 0 0
\(411\) 8847.00 1.06178
\(412\) − 592.000i − 0.0707906i
\(413\) 980.000i 0.116762i
\(414\) 2592.00 0.307705
\(415\) 0 0
\(416\) −576.000 −0.0678864
\(417\) 5055.00i 0.593632i
\(418\) 3330.00i 0.389655i
\(419\) −4215.00 −0.491447 −0.245723 0.969340i \(-0.579025\pi\)
−0.245723 + 0.969340i \(0.579025\pi\)
\(420\) 0 0
\(421\) 5012.00 0.580214 0.290107 0.956994i \(-0.406309\pi\)
0.290107 + 0.956994i \(0.406309\pi\)
\(422\) − 4786.00i − 0.552083i
\(423\) 6228.00i 0.715876i
\(424\) −3616.00 −0.414171
\(425\) 0 0
\(426\) 2868.00 0.326186
\(427\) − 4046.00i − 0.458547i
\(428\) − 2124.00i − 0.239877i
\(429\) −1998.00 −0.224859
\(430\) 0 0
\(431\) −7548.00 −0.843560 −0.421780 0.906698i \(-0.638595\pi\)
−0.421780 + 0.906698i \(0.638595\pi\)
\(432\) 2160.00i 0.240563i
\(433\) − 7177.00i − 0.796546i −0.917267 0.398273i \(-0.869610\pi\)
0.917267 0.398273i \(-0.130390\pi\)
\(434\) 2072.00 0.229169
\(435\) 0 0
\(436\) −6600.00 −0.724960
\(437\) − 3240.00i − 0.354669i
\(438\) 1482.00i 0.161673i
\(439\) 16580.0 1.80255 0.901276 0.433246i \(-0.142632\pi\)
0.901276 + 0.433246i \(0.142632\pi\)
\(440\) 0 0
\(441\) −882.000 −0.0952381
\(442\) − 4356.00i − 0.468764i
\(443\) − 557.000i − 0.0597379i −0.999554 0.0298689i \(-0.990491\pi\)
0.999554 0.0298689i \(-0.00950899\pi\)
\(444\) 1632.00 0.174440
\(445\) 0 0
\(446\) −10676.0 −1.13346
\(447\) − 1260.00i − 0.133324i
\(448\) − 448.000i − 0.0472456i
\(449\) 10935.0 1.14934 0.574671 0.818385i \(-0.305130\pi\)
0.574671 + 0.818385i \(0.305130\pi\)
\(450\) 0 0
\(451\) 8399.00 0.876926
\(452\) − 8252.00i − 0.858720i
\(453\) 9096.00i 0.943416i
\(454\) 6568.00 0.678968
\(455\) 0 0
\(456\) 1080.00 0.110911
\(457\) − 7489.00i − 0.766566i −0.923631 0.383283i \(-0.874793\pi\)
0.923631 0.383283i \(-0.125207\pi\)
\(458\) 10300.0i 1.05085i
\(459\) −16335.0 −1.66112
\(460\) 0 0
\(461\) −13718.0 −1.38592 −0.692962 0.720974i \(-0.743695\pi\)
−0.692962 + 0.720974i \(0.743695\pi\)
\(462\) − 1554.00i − 0.156491i
\(463\) 12008.0i 1.20531i 0.798001 + 0.602656i \(0.205891\pi\)
−0.798001 + 0.602656i \(0.794109\pi\)
\(464\) −3360.00 −0.336173
\(465\) 0 0
\(466\) 7284.00 0.724088
\(467\) − 5324.00i − 0.527549i −0.964584 0.263774i \(-0.915033\pi\)
0.964584 0.263774i \(-0.0849675\pi\)
\(468\) − 1296.00i − 0.128008i
\(469\) −5607.00 −0.552041
\(470\) 0 0
\(471\) 3252.00 0.318141
\(472\) − 1120.00i − 0.109221i
\(473\) − 1184.00i − 0.115096i
\(474\) 3660.00 0.354661
\(475\) 0 0
\(476\) 3388.00 0.326237
\(477\) − 8136.00i − 0.780968i
\(478\) − 3080.00i − 0.294719i
\(479\) 16290.0 1.55388 0.776941 0.629574i \(-0.216771\pi\)
0.776941 + 0.629574i \(0.216771\pi\)
\(480\) 0 0
\(481\) −2448.00 −0.232057
\(482\) 6374.00i 0.602340i
\(483\) 1512.00i 0.142440i
\(484\) −152.000 −0.0142750
\(485\) 0 0
\(486\) −7776.00 −0.725775
\(487\) − 8954.00i − 0.833151i −0.909101 0.416575i \(-0.863230\pi\)
0.909101 0.416575i \(-0.136770\pi\)
\(488\) 4624.00i 0.428932i
\(489\) 1551.00 0.143433
\(490\) 0 0
\(491\) 5892.00 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) − 2724.00i − 0.249609i
\(493\) − 25410.0i − 2.32132i
\(494\) −1620.00 −0.147545
\(495\) 0 0
\(496\) −2368.00 −0.214368
\(497\) − 3346.00i − 0.301989i
\(498\) − 3918.00i − 0.352550i
\(499\) 16620.0 1.49101 0.745504 0.666501i \(-0.232209\pi\)
0.745504 + 0.666501i \(0.232209\pi\)
\(500\) 0 0
\(501\) 8532.00 0.760842
\(502\) − 5766.00i − 0.512648i
\(503\) 8238.00i 0.730247i 0.930959 + 0.365124i \(0.118973\pi\)
−0.930959 + 0.365124i \(0.881027\pi\)
\(504\) 1008.00 0.0890871
\(505\) 0 0
\(506\) 5328.00 0.468100
\(507\) 5619.00i 0.492206i
\(508\) − 6824.00i − 0.595996i
\(509\) 20870.0 1.81738 0.908690 0.417471i \(-0.137084\pi\)
0.908690 + 0.417471i \(0.137084\pi\)
\(510\) 0 0
\(511\) 1729.00 0.149680
\(512\) 512.000i 0.0441942i
\(513\) 6075.00i 0.522842i
\(514\) −10652.0 −0.914085
\(515\) 0 0
\(516\) −384.000 −0.0327610
\(517\) 12802.0i 1.08904i
\(518\) − 1904.00i − 0.161500i
\(519\) −2454.00 −0.207550
\(520\) 0 0
\(521\) −1213.00 −0.102001 −0.0510005 0.998699i \(-0.516241\pi\)
−0.0510005 + 0.998699i \(0.516241\pi\)
\(522\) − 7560.00i − 0.633893i
\(523\) − 16637.0i − 1.39099i −0.718533 0.695493i \(-0.755186\pi\)
0.718533 0.695493i \(-0.244814\pi\)
\(524\) −6848.00 −0.570909
\(525\) 0 0
\(526\) 764.000 0.0633308
\(527\) − 17908.0i − 1.48024i
\(528\) 1776.00i 0.146383i
\(529\) 6983.00 0.573929
\(530\) 0 0
\(531\) 2520.00 0.205949
\(532\) − 1260.00i − 0.102684i
\(533\) 4086.00i 0.332053i
\(534\) −6690.00 −0.542143
\(535\) 0 0
\(536\) 6408.00 0.516387
\(537\) − 10215.0i − 0.820875i
\(538\) − 10500.0i − 0.841426i
\(539\) −1813.00 −0.144882
\(540\) 0 0
\(541\) 7302.00 0.580291 0.290146 0.956983i \(-0.406296\pi\)
0.290146 + 0.956983i \(0.406296\pi\)
\(542\) − 6756.00i − 0.535415i
\(543\) 10326.0i 0.816079i
\(544\) −3872.00 −0.305167
\(545\) 0 0
\(546\) 756.000 0.0592561
\(547\) − 5589.00i − 0.436871i −0.975851 0.218435i \(-0.929905\pi\)
0.975851 0.218435i \(-0.0700953\pi\)
\(548\) 11796.0i 0.919526i
\(549\) −10404.0 −0.808801
\(550\) 0 0
\(551\) −9450.00 −0.730642
\(552\) − 1728.00i − 0.133240i
\(553\) − 4270.00i − 0.328352i
\(554\) 11988.0 0.919353
\(555\) 0 0
\(556\) −6740.00 −0.514100
\(557\) 2276.00i 0.173137i 0.996246 + 0.0865684i \(0.0275901\pi\)
−0.996246 + 0.0865684i \(0.972410\pi\)
\(558\) − 5328.00i − 0.404215i
\(559\) 576.000 0.0435818
\(560\) 0 0
\(561\) −13431.0 −1.01080
\(562\) − 15716.0i − 1.17961i
\(563\) − 8332.00i − 0.623716i −0.950129 0.311858i \(-0.899049\pi\)
0.950129 0.311858i \(-0.100951\pi\)
\(564\) 4152.00 0.309984
\(565\) 0 0
\(566\) 14774.0 1.09717
\(567\) 567.000i 0.0419961i
\(568\) 3824.00i 0.282485i
\(569\) 21555.0 1.58811 0.794053 0.607848i \(-0.207967\pi\)
0.794053 + 0.607848i \(0.207967\pi\)
\(570\) 0 0
\(571\) 10332.0 0.757234 0.378617 0.925553i \(-0.376400\pi\)
0.378617 + 0.925553i \(0.376400\pi\)
\(572\) − 2664.00i − 0.194733i
\(573\) 8586.00i 0.625978i
\(574\) −3178.00 −0.231093
\(575\) 0 0
\(576\) −1152.00 −0.0833333
\(577\) − 7549.00i − 0.544660i −0.962204 0.272330i \(-0.912206\pi\)
0.962204 0.272330i \(-0.0877943\pi\)
\(578\) − 19456.0i − 1.40011i
\(579\) 8481.00 0.608736
\(580\) 0 0
\(581\) −4571.00 −0.326398
\(582\) 3684.00i 0.262383i
\(583\) − 16724.0i − 1.18806i
\(584\) −1976.00 −0.140013
\(585\) 0 0
\(586\) 10204.0 0.719323
\(587\) 15451.0i 1.08642i 0.839595 + 0.543212i \(0.182792\pi\)
−0.839595 + 0.543212i \(0.817208\pi\)
\(588\) 588.000i 0.0412393i
\(589\) −6660.00 −0.465909
\(590\) 0 0
\(591\) 4902.00 0.341187
\(592\) 2176.00i 0.151069i
\(593\) 20073.0i 1.39005i 0.718986 + 0.695025i \(0.244607\pi\)
−0.718986 + 0.695025i \(0.755393\pi\)
\(594\) −9990.00 −0.690058
\(595\) 0 0
\(596\) 1680.00 0.115462
\(597\) 3810.00i 0.261194i
\(598\) 2592.00i 0.177249i
\(599\) −1800.00 −0.122781 −0.0613907 0.998114i \(-0.519554\pi\)
−0.0613907 + 0.998114i \(0.519554\pi\)
\(600\) 0 0
\(601\) −17403.0 −1.18117 −0.590585 0.806975i \(-0.701103\pi\)
−0.590585 + 0.806975i \(0.701103\pi\)
\(602\) 448.000i 0.0303308i
\(603\) 14418.0i 0.973709i
\(604\) −12128.0 −0.817022
\(605\) 0 0
\(606\) 4608.00 0.308890
\(607\) 21596.0i 1.44408i 0.691853 + 0.722038i \(0.256795\pi\)
−0.691853 + 0.722038i \(0.743205\pi\)
\(608\) 1440.00i 0.0960522i
\(609\) 4410.00 0.293435
\(610\) 0 0
\(611\) −6228.00 −0.412370
\(612\) − 8712.00i − 0.575428i
\(613\) 10938.0i 0.720688i 0.932820 + 0.360344i \(0.117341\pi\)
−0.932820 + 0.360344i \(0.882659\pi\)
\(614\) −18682.0 −1.22792
\(615\) 0 0
\(616\) 2072.00 0.135525
\(617\) − 11294.0i − 0.736919i −0.929644 0.368460i \(-0.879885\pi\)
0.929644 0.368460i \(-0.120115\pi\)
\(618\) − 888.000i − 0.0578003i
\(619\) −10700.0 −0.694781 −0.347390 0.937721i \(-0.612932\pi\)
−0.347390 + 0.937721i \(0.612932\pi\)
\(620\) 0 0
\(621\) 9720.00 0.628100
\(622\) 17364.0i 1.11935i
\(623\) 7805.00i 0.501927i
\(624\) −864.000 −0.0554290
\(625\) 0 0
\(626\) −1996.00 −0.127438
\(627\) 4995.00i 0.318152i
\(628\) 4336.00i 0.275518i
\(629\) −16456.0 −1.04315
\(630\) 0 0
\(631\) 17432.0 1.09977 0.549887 0.835239i \(-0.314671\pi\)
0.549887 + 0.835239i \(0.314671\pi\)
\(632\) 4880.00i 0.307146i
\(633\) − 7179.00i − 0.450774i
\(634\) 8168.00 0.511660
\(635\) 0 0
\(636\) −5424.00 −0.338169
\(637\) − 882.000i − 0.0548605i
\(638\) − 15540.0i − 0.964317i
\(639\) −8604.00 −0.532659
\(640\) 0 0
\(641\) −8638.00 −0.532263 −0.266131 0.963937i \(-0.585746\pi\)
−0.266131 + 0.963937i \(0.585746\pi\)
\(642\) − 3186.00i − 0.195859i
\(643\) 25288.0i 1.55095i 0.631378 + 0.775475i \(0.282490\pi\)
−0.631378 + 0.775475i \(0.717510\pi\)
\(644\) −2016.00 −0.123356
\(645\) 0 0
\(646\) −10890.0 −0.663253
\(647\) 17576.0i 1.06798i 0.845490 + 0.533991i \(0.179308\pi\)
−0.845490 + 0.533991i \(0.820692\pi\)
\(648\) − 648.000i − 0.0392837i
\(649\) 5180.00 0.313302
\(650\) 0 0
\(651\) 3108.00 0.187115
\(652\) 2068.00i 0.124216i
\(653\) − 11692.0i − 0.700679i −0.936623 0.350339i \(-0.886066\pi\)
0.936623 0.350339i \(-0.113934\pi\)
\(654\) −9900.00 −0.591928
\(655\) 0 0
\(656\) 3632.00 0.216167
\(657\) − 4446.00i − 0.264011i
\(658\) − 4844.00i − 0.286989i
\(659\) 11465.0 0.677713 0.338857 0.940838i \(-0.389960\pi\)
0.338857 + 0.940838i \(0.389960\pi\)
\(660\) 0 0
\(661\) 2182.00 0.128396 0.0641982 0.997937i \(-0.479551\pi\)
0.0641982 + 0.997937i \(0.479551\pi\)
\(662\) 23714.0i 1.39225i
\(663\) − 6534.00i − 0.382744i
\(664\) 5224.00 0.305317
\(665\) 0 0
\(666\) −4896.00 −0.284859
\(667\) 15120.0i 0.877734i
\(668\) 11376.0i 0.658908i
\(669\) −16014.0 −0.925466
\(670\) 0 0
\(671\) −21386.0 −1.23040
\(672\) − 672.000i − 0.0385758i
\(673\) 13858.0i 0.793739i 0.917875 + 0.396870i \(0.129904\pi\)
−0.917875 + 0.396870i \(0.870096\pi\)
\(674\) 2438.00 0.139330
\(675\) 0 0
\(676\) −7492.00 −0.426263
\(677\) − 7824.00i − 0.444167i −0.975028 0.222083i \(-0.928714\pi\)
0.975028 0.222083i \(-0.0712857\pi\)
\(678\) − 12378.0i − 0.701142i
\(679\) 4298.00 0.242919
\(680\) 0 0
\(681\) 9852.00 0.554375
\(682\) − 10952.0i − 0.614918i
\(683\) − 13267.0i − 0.743262i −0.928381 0.371631i \(-0.878799\pi\)
0.928381 0.371631i \(-0.121201\pi\)
\(684\) −3240.00 −0.181118
\(685\) 0 0
\(686\) 686.000 0.0381802
\(687\) 15450.0i 0.858012i
\(688\) − 512.000i − 0.0283718i
\(689\) 8136.00 0.449865
\(690\) 0 0
\(691\) −1553.00 −0.0854977 −0.0427488 0.999086i \(-0.513612\pi\)
−0.0427488 + 0.999086i \(0.513612\pi\)
\(692\) − 3272.00i − 0.179744i
\(693\) 4662.00i 0.255548i
\(694\) 13178.0 0.720793
\(695\) 0 0
\(696\) −5040.00 −0.274484
\(697\) 27467.0i 1.49266i
\(698\) 10480.0i 0.568301i
\(699\) 10926.0 0.591215
\(700\) 0 0
\(701\) −9368.00 −0.504742 −0.252371 0.967630i \(-0.581210\pi\)
−0.252371 + 0.967630i \(0.581210\pi\)
\(702\) − 4860.00i − 0.261295i
\(703\) 6120.00i 0.328336i
\(704\) −2368.00 −0.126772
\(705\) 0 0
\(706\) 20964.0 1.11755
\(707\) − 5376.00i − 0.285976i
\(708\) − 1680.00i − 0.0891783i
\(709\) 3740.00 0.198108 0.0990541 0.995082i \(-0.468418\pi\)
0.0990541 + 0.995082i \(0.468418\pi\)
\(710\) 0 0
\(711\) −10980.0 −0.579159
\(712\) − 8920.00i − 0.469510i
\(713\) 10656.0i 0.559706i
\(714\) 5082.00 0.266371
\(715\) 0 0
\(716\) 13620.0 0.710898
\(717\) − 4620.00i − 0.240637i
\(718\) − 23500.0i − 1.22147i
\(719\) −20640.0 −1.07057 −0.535287 0.844671i \(-0.679796\pi\)
−0.535287 + 0.844671i \(0.679796\pi\)
\(720\) 0 0
\(721\) −1036.00 −0.0535127
\(722\) − 9668.00i − 0.498346i
\(723\) 9561.00i 0.491808i
\(724\) −13768.0 −0.706745
\(725\) 0 0
\(726\) −228.000 −0.0116555
\(727\) 10686.0i 0.545147i 0.962135 + 0.272573i \(0.0878748\pi\)
−0.962135 + 0.272573i \(0.912125\pi\)
\(728\) 1008.00i 0.0513173i
\(729\) −9477.00 −0.481481
\(730\) 0 0
\(731\) 3872.00 0.195911
\(732\) 6936.00i 0.350221i
\(733\) − 35552.0i − 1.79146i −0.444594 0.895732i \(-0.646652\pi\)
0.444594 0.895732i \(-0.353348\pi\)
\(734\) −112.000 −0.00563215
\(735\) 0 0
\(736\) 2304.00 0.115389
\(737\) 29637.0i 1.48127i
\(738\) 8172.00i 0.407609i
\(739\) 5660.00 0.281741 0.140870 0.990028i \(-0.455010\pi\)
0.140870 + 0.990028i \(0.455010\pi\)
\(740\) 0 0
\(741\) −2430.00 −0.120470
\(742\) 6328.00i 0.313084i
\(743\) 18528.0i 0.914840i 0.889251 + 0.457420i \(0.151226\pi\)
−0.889251 + 0.457420i \(0.848774\pi\)
\(744\) −3552.00 −0.175030
\(745\) 0 0
\(746\) 13784.0 0.676499
\(747\) 11754.0i 0.575711i
\(748\) − 17908.0i − 0.875376i
\(749\) −3717.00 −0.181330
\(750\) 0 0
\(751\) 11222.0 0.545268 0.272634 0.962118i \(-0.412105\pi\)
0.272634 + 0.962118i \(0.412105\pi\)
\(752\) 5536.00i 0.268454i
\(753\) − 8649.00i − 0.418575i
\(754\) 7560.00 0.365145
\(755\) 0 0
\(756\) 3780.00 0.181848
\(757\) 22466.0i 1.07865i 0.842097 + 0.539327i \(0.181321\pi\)
−0.842097 + 0.539327i \(0.818679\pi\)
\(758\) 12930.0i 0.619576i
\(759\) 7992.00 0.382202
\(760\) 0 0
\(761\) −20973.0 −0.999042 −0.499521 0.866302i \(-0.666491\pi\)
−0.499521 + 0.866302i \(0.666491\pi\)
\(762\) − 10236.0i − 0.486629i
\(763\) 11550.0i 0.548018i
\(764\) −11448.0 −0.542113
\(765\) 0 0
\(766\) −23916.0 −1.12809
\(767\) 2520.00i 0.118634i
\(768\) 768.000i 0.0360844i
\(769\) −20155.0 −0.945134 −0.472567 0.881295i \(-0.656672\pi\)
−0.472567 + 0.881295i \(0.656672\pi\)
\(770\) 0 0
\(771\) −15978.0 −0.746347
\(772\) 11308.0i 0.527181i
\(773\) 5388.00i 0.250702i 0.992112 + 0.125351i \(0.0400058\pi\)
−0.992112 + 0.125351i \(0.959994\pi\)
\(774\) 1152.00 0.0534984
\(775\) 0 0
\(776\) −4912.00 −0.227230
\(777\) − 2856.00i − 0.131864i
\(778\) − 19840.0i − 0.914265i
\(779\) 10215.0 0.469821
\(780\) 0 0
\(781\) −17686.0 −0.810313
\(782\) 17424.0i 0.796779i
\(783\) − 28350.0i − 1.29393i
\(784\) −784.000 −0.0357143
\(785\) 0 0
\(786\) −10272.0 −0.466145
\(787\) 32396.0i 1.46734i 0.679509 + 0.733668i \(0.262193\pi\)
−0.679509 + 0.733668i \(0.737807\pi\)
\(788\) 6536.00i 0.295476i
\(789\) 1146.00 0.0517094
\(790\) 0 0
\(791\) −14441.0 −0.649131
\(792\) − 5328.00i − 0.239043i
\(793\) − 10404.0i − 0.465898i
\(794\) −9772.00 −0.436770
\(795\) 0 0
\(796\) −5080.00 −0.226201
\(797\) − 23394.0i − 1.03972i −0.854251 0.519861i \(-0.825984\pi\)
0.854251 0.519861i \(-0.174016\pi\)
\(798\) − 1890.00i − 0.0838412i
\(799\) −41866.0 −1.85371
\(800\) 0 0
\(801\) 20070.0 0.885317
\(802\) − 3526.00i − 0.155246i
\(803\) − 9139.00i − 0.401629i
\(804\) 9612.00 0.421628
\(805\) 0 0
\(806\) 5328.00 0.232842
\(807\) − 15750.0i − 0.687021i
\(808\) 6144.00i 0.267506i
\(809\) 30570.0 1.32853 0.664267 0.747495i \(-0.268744\pi\)
0.664267 + 0.747495i \(0.268744\pi\)
\(810\) 0 0
\(811\) −21868.0 −0.946843 −0.473421 0.880836i \(-0.656981\pi\)
−0.473421 + 0.880836i \(0.656981\pi\)
\(812\) 5880.00i 0.254123i
\(813\) − 10134.0i − 0.437165i
\(814\) −10064.0 −0.433345
\(815\) 0 0
\(816\) −5808.00 −0.249167
\(817\) − 1440.00i − 0.0616637i
\(818\) 19290.0i 0.824522i
\(819\) −2268.00 −0.0967648
\(820\) 0 0
\(821\) −14448.0 −0.614176 −0.307088 0.951681i \(-0.599355\pi\)
−0.307088 + 0.951681i \(0.599355\pi\)
\(822\) 17694.0i 0.750790i
\(823\) 15958.0i 0.675894i 0.941165 + 0.337947i \(0.109732\pi\)
−0.941165 + 0.337947i \(0.890268\pi\)
\(824\) 1184.00 0.0500565
\(825\) 0 0
\(826\) −1960.00 −0.0825631
\(827\) − 17999.0i − 0.756816i −0.925639 0.378408i \(-0.876472\pi\)
0.925639 0.378408i \(-0.123528\pi\)
\(828\) 5184.00i 0.217580i
\(829\) 32140.0 1.34652 0.673262 0.739404i \(-0.264893\pi\)
0.673262 + 0.739404i \(0.264893\pi\)
\(830\) 0 0
\(831\) 17982.0 0.750648
\(832\) − 1152.00i − 0.0480029i
\(833\) − 5929.00i − 0.246612i
\(834\) −10110.0 −0.419761
\(835\) 0 0
\(836\) −6660.00 −0.275527
\(837\) − 19980.0i − 0.825101i
\(838\) − 8430.00i − 0.347505i
\(839\) −23870.0 −0.982222 −0.491111 0.871097i \(-0.663409\pi\)
−0.491111 + 0.871097i \(0.663409\pi\)
\(840\) 0 0
\(841\) 19711.0 0.808192
\(842\) 10024.0i 0.410273i
\(843\) − 23574.0i − 0.963146i
\(844\) 9572.00 0.390381
\(845\) 0 0
\(846\) −12456.0 −0.506201
\(847\) 266.000i 0.0107909i
\(848\) − 7232.00i − 0.292863i
\(849\) 22161.0 0.895835
\(850\) 0 0
\(851\) 9792.00 0.394436
\(852\) 5736.00i 0.230648i
\(853\) − 24442.0i − 0.981100i −0.871413 0.490550i \(-0.836796\pi\)
0.871413 0.490550i \(-0.163204\pi\)
\(854\) 8092.00 0.324242
\(855\) 0 0
\(856\) 4248.00 0.169619
\(857\) 15381.0i 0.613075i 0.951859 + 0.306537i \(0.0991704\pi\)
−0.951859 + 0.306537i \(0.900830\pi\)
\(858\) − 3996.00i − 0.158999i
\(859\) −46995.0 −1.86665 −0.933323 0.359038i \(-0.883105\pi\)
−0.933323 + 0.359038i \(0.883105\pi\)
\(860\) 0 0
\(861\) −4767.00 −0.188686
\(862\) − 15096.0i − 0.596487i
\(863\) − 16652.0i − 0.656826i −0.944534 0.328413i \(-0.893486\pi\)
0.944534 0.328413i \(-0.106514\pi\)
\(864\) −4320.00 −0.170103
\(865\) 0 0
\(866\) 14354.0 0.563243
\(867\) − 29184.0i − 1.14318i
\(868\) 4144.00i 0.162047i
\(869\) −22570.0 −0.881053
\(870\) 0 0
\(871\) −14418.0 −0.560890
\(872\) − 13200.0i − 0.512624i
\(873\) − 11052.0i − 0.428469i
\(874\) 6480.00 0.250789
\(875\) 0 0
\(876\) −2964.00 −0.114320
\(877\) − 25424.0i − 0.978914i −0.872027 0.489457i \(-0.837195\pi\)
0.872027 0.489457i \(-0.162805\pi\)
\(878\) 33160.0i 1.27460i
\(879\) 15306.0 0.587325
\(880\) 0 0
\(881\) 21242.0 0.812328 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(882\) − 1764.00i − 0.0673435i
\(883\) − 25887.0i − 0.986599i −0.869860 0.493299i \(-0.835791\pi\)
0.869860 0.493299i \(-0.164209\pi\)
\(884\) 8712.00 0.331466
\(885\) 0 0
\(886\) 1114.00 0.0422410
\(887\) − 24434.0i − 0.924931i −0.886637 0.462465i \(-0.846965\pi\)
0.886637 0.462465i \(-0.153035\pi\)
\(888\) 3264.00i 0.123348i
\(889\) −11942.0 −0.450531
\(890\) 0 0
\(891\) 2997.00 0.112686
\(892\) − 21352.0i − 0.801477i
\(893\) 15570.0i 0.583460i
\(894\) 2520.00 0.0942745
\(895\) 0 0
\(896\) 896.000 0.0334077
\(897\) 3888.00i 0.144723i
\(898\) 21870.0i 0.812708i
\(899\) 31080.0 1.15303
\(900\) 0 0
\(901\) 54692.0 2.02226
\(902\) 16798.0i 0.620080i
\(903\) 672.000i 0.0247650i
\(904\) 16504.0 0.607207
\(905\) 0 0
\(906\) −18192.0 −0.667096
\(907\) − 45164.0i − 1.65341i −0.562633 0.826707i \(-0.690212\pi\)
0.562633 0.826707i \(-0.309788\pi\)
\(908\) 13136.0i 0.480103i
\(909\) −13824.0 −0.504415
\(910\) 0 0
\(911\) −43668.0 −1.58813 −0.794064 0.607834i \(-0.792039\pi\)
−0.794064 + 0.607834i \(0.792039\pi\)
\(912\) 2160.00i 0.0784263i
\(913\) 24161.0i 0.875808i
\(914\) 14978.0 0.542044
\(915\) 0 0
\(916\) −20600.0 −0.743060
\(917\) 11984.0i 0.431567i
\(918\) − 32670.0i − 1.17459i
\(919\) −27770.0 −0.996788 −0.498394 0.866951i \(-0.666077\pi\)
−0.498394 + 0.866951i \(0.666077\pi\)
\(920\) 0 0
\(921\) −28023.0 −1.00259
\(922\) − 27436.0i − 0.979996i
\(923\) − 8604.00i − 0.306830i
\(924\) 3108.00 0.110656
\(925\) 0 0
\(926\) −24016.0 −0.852284
\(927\) 2664.00i 0.0943875i
\(928\) − 6720.00i − 0.237710i
\(929\) 2930.00 0.103477 0.0517385 0.998661i \(-0.483524\pi\)
0.0517385 + 0.998661i \(0.483524\pi\)
\(930\) 0 0
\(931\) −2205.00 −0.0776219
\(932\) 14568.0i 0.512007i
\(933\) 26046.0i 0.913942i
\(934\) 10648.0 0.373033
\(935\) 0 0
\(936\) 2592.00 0.0905151
\(937\) − 17849.0i − 0.622307i −0.950360 0.311153i \(-0.899285\pi\)
0.950360 0.311153i \(-0.100715\pi\)
\(938\) − 11214.0i − 0.390352i
\(939\) −2994.00 −0.104053
\(940\) 0 0
\(941\) 47552.0 1.64734 0.823672 0.567066i \(-0.191922\pi\)
0.823672 + 0.567066i \(0.191922\pi\)
\(942\) 6504.00i 0.224959i
\(943\) − 16344.0i − 0.564405i
\(944\) 2240.00 0.0772307
\(945\) 0 0
\(946\) 2368.00 0.0813851
\(947\) 31876.0i 1.09380i 0.837197 + 0.546901i \(0.184193\pi\)
−0.837197 + 0.546901i \(0.815807\pi\)
\(948\) 7320.00i 0.250783i
\(949\) 4446.00 0.152079
\(950\) 0 0
\(951\) 12252.0 0.417769
\(952\) 6776.00i 0.230684i
\(953\) 26673.0i 0.906635i 0.891349 + 0.453318i \(0.149760\pi\)
−0.891349 + 0.453318i \(0.850240\pi\)
\(954\) 16272.0 0.552228
\(955\) 0 0
\(956\) 6160.00 0.208398
\(957\) − 23310.0i − 0.787362i
\(958\) 32580.0i 1.09876i
\(959\) 20643.0 0.695096
\(960\) 0 0
\(961\) −7887.00 −0.264744
\(962\) − 4896.00i − 0.164089i
\(963\) 9558.00i 0.319836i
\(964\) −12748.0 −0.425918
\(965\) 0 0
\(966\) −3024.00 −0.100720
\(967\) − 31714.0i − 1.05466i −0.849661 0.527329i \(-0.823194\pi\)
0.849661 0.527329i \(-0.176806\pi\)
\(968\) − 304.000i − 0.0100939i
\(969\) −16335.0 −0.541544
\(970\) 0 0
\(971\) −26013.0 −0.859729 −0.429865 0.902893i \(-0.641439\pi\)
−0.429865 + 0.902893i \(0.641439\pi\)
\(972\) − 15552.0i − 0.513200i
\(973\) 11795.0i 0.388623i
\(974\) 17908.0 0.589127
\(975\) 0 0
\(976\) −9248.00 −0.303300
\(977\) 29571.0i 0.968332i 0.874976 + 0.484166i \(0.160877\pi\)
−0.874976 + 0.484166i \(0.839123\pi\)
\(978\) 3102.00i 0.101422i
\(979\) 41255.0 1.34680
\(980\) 0 0
\(981\) 29700.0 0.966614
\(982\) 11784.0i 0.382935i
\(983\) − 21052.0i − 0.683067i −0.939870 0.341533i \(-0.889054\pi\)
0.939870 0.341533i \(-0.110946\pi\)
\(984\) 5448.00 0.176500
\(985\) 0 0
\(986\) 50820.0 1.64142
\(987\) − 7266.00i − 0.234326i
\(988\) − 3240.00i − 0.104330i
\(989\) −2304.00 −0.0740778
\(990\) 0 0
\(991\) 45772.0 1.46720 0.733600 0.679581i \(-0.237839\pi\)
0.733600 + 0.679581i \(0.237839\pi\)
\(992\) − 4736.00i − 0.151581i
\(993\) 35571.0i 1.13677i
\(994\) 6692.00 0.213539
\(995\) 0 0
\(996\) 7836.00 0.249290
\(997\) − 5894.00i − 0.187227i −0.995609 0.0936133i \(-0.970158\pi\)
0.995609 0.0936133i \(-0.0298417\pi\)
\(998\) 33240.0i 1.05430i
\(999\) −18360.0 −0.581466
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.4.c.e.99.2 2
5.2 odd 4 350.4.a.g.1.1 1
5.3 odd 4 350.4.a.p.1.1 yes 1
5.4 even 2 inner 350.4.c.e.99.1 2
35.13 even 4 2450.4.a.bj.1.1 1
35.27 even 4 2450.4.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.4.a.g.1.1 1 5.2 odd 4
350.4.a.p.1.1 yes 1 5.3 odd 4
350.4.c.e.99.1 2 5.4 even 2 inner
350.4.c.e.99.2 2 1.1 even 1 trivial
2450.4.a.g.1.1 1 35.27 even 4
2450.4.a.bj.1.1 1 35.13 even 4