gp: [N,k,chi] = [350,4,Mod(99,350)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(350, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("350.99");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-8,0,-40,0,0,-146,0,18]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 350 Z ) × \left(\mathbb{Z}/350\mathbb{Z}\right)^\times ( Z / 3 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 350 , [ χ ] ) S_{4}^{\mathrm{new}}(350, [\chi]) S 4 n e w ( 3 5 0 , [ χ ] ) :
T 3 2 + 100 T_{3}^{2} + 100 T 3 2 + 1 0 0
T3^2 + 100
T 11 − 9 T_{11} - 9 T 1 1 − 9
T11 - 9
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
3 3 3
T 2 + 100 T^{2} + 100 T 2 + 1 0 0
T^2 + 100
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
11 11 1 1
( T − 9 ) 2 (T - 9)^{2} ( T − 9 ) 2
(T - 9)^2
13 13 1 3
T 2 + 2704 T^{2} + 2704 T 2 + 2 7 0 4
T^2 + 2704
17 17 1 7
T 2 + 9216 T^{2} + 9216 T 2 + 9 2 1 6
T^2 + 9216
19 19 1 9
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
23 23 2 3
T 2 + 5625 T^{2} + 5625 T 2 + 5 6 2 5
T^2 + 5625
29 29 2 9
( T + 189 ) 2 (T + 189)^{2} ( T + 1 8 9 ) 2
(T + 189)^2
31 31 3 1
( T + 232 ) 2 (T + 232)^{2} ( T + 2 3 2 ) 2
(T + 232)^2
37 37 3 7
T 2 + 93025 T^{2} + 93025 T 2 + 9 3 0 2 5
T^2 + 93025
41 41 4 1
( T + 438 ) 2 (T + 438)^{2} ( T + 4 3 8 ) 2
(T + 438)^2
43 43 4 3
T 2 + 124609 T^{2} + 124609 T 2 + 1 2 4 6 0 9
T^2 + 124609
47 47 4 7
T 2 + 236196 T^{2} + 236196 T 2 + 2 3 6 1 9 6
T^2 + 236196
53 53 5 3
T 2 + 125316 T^{2} + 125316 T 2 + 1 2 5 3 1 6
T^2 + 125316
59 59 5 9
( T − 672 ) 2 (T - 672)^{2} ( T − 6 7 2 ) 2
(T - 672)^2
61 61 6 1
( T − 206 ) 2 (T - 206)^{2} ( T − 2 0 6 ) 2
(T - 206)^2
67 67 6 7
T 2 + 358801 T^{2} + 358801 T 2 + 3 5 8 8 0 1
T^2 + 358801
71 71 7 1
( T + 471 ) 2 (T + 471)^{2} ( T + 4 7 1 ) 2
(T + 471)^2
73 73 7 3
T 2 + 376996 T^{2} + 376996 T 2 + 3 7 6 9 9 6
T^2 + 376996
79 79 7 9
( T + 743 ) 2 (T + 743)^{2} ( T + 7 4 3 ) 2
(T + 743)^2
83 83 8 3
T 2 + 992016 T^{2} + 992016 T 2 + 9 9 2 0 1 6
T^2 + 992016
89 89 8 9
( T + 180 ) 2 (T + 180)^{2} ( T + 1 8 0 ) 2
(T + 180)^2
97 97 9 7
T 2 + 33856 T^{2} + 33856 T 2 + 3 3 8 5 6
T^2 + 33856
show more
show less