Properties

Label 35.4.f.b.13.3
Level $35$
Weight $4$
Character 35.13
Analytic conductor $2.065$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,4,Mod(13,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.13"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 35.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.06506685020\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10654x^{12} + 22102125x^{8} + 5700572500x^{4} + 44626562500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.3
Root \(-2.91939 - 2.91939i\) of defining polynomial
Character \(\chi\) \(=\) 35.13
Dual form 35.4.f.b.27.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.172516 - 0.172516i) q^{2} +(-2.91939 + 2.91939i) q^{3} +7.94048i q^{4} +(-9.78787 + 5.40347i) q^{5} +1.00728i q^{6} +(18.1737 - 3.56610i) q^{7} +(2.74998 + 2.74998i) q^{8} +9.95432i q^{9} +(-0.756378 + 2.62074i) q^{10} -15.1443 q^{11} +(-23.1814 - 23.1814i) q^{12} +(40.2848 - 40.2848i) q^{13} +(2.52004 - 3.75045i) q^{14} +(12.7998 - 44.3495i) q^{15} -62.5750 q^{16} +(30.0616 + 30.0616i) q^{17} +(1.71728 + 1.71728i) q^{18} +65.1185 q^{19} +(-42.9061 - 77.7204i) q^{20} +(-42.6452 + 63.4669i) q^{21} +(-2.61264 + 2.61264i) q^{22} +(56.5971 + 56.5971i) q^{23} -16.0565 q^{24} +(66.6050 - 105.777i) q^{25} -13.8995i q^{26} +(-107.884 - 107.884i) q^{27} +(28.3165 + 144.308i) q^{28} +104.464i q^{29} +(-5.44281 - 9.85914i) q^{30} +317.751i q^{31} +(-32.7950 + 32.7950i) q^{32} +(44.2123 - 44.2123i) q^{33} +10.3722 q^{34} +(-158.612 + 133.106i) q^{35} -79.0420 q^{36} +(190.864 - 190.864i) q^{37} +(11.2340 - 11.2340i) q^{38} +235.214i q^{39} +(-41.7759 - 12.0570i) q^{40} -370.814i q^{41} +(3.59207 + 18.3060i) q^{42} +(10.8913 + 10.8913i) q^{43} -120.253i q^{44} +(-53.7879 - 97.4316i) q^{45} +19.5278 q^{46} +(-100.476 - 100.476i) q^{47} +(182.681 - 182.681i) q^{48} +(317.566 - 129.618i) q^{49} +(-6.75779 - 29.7386i) q^{50} -175.523 q^{51} +(319.881 + 319.881i) q^{52} +(-332.255 - 332.255i) q^{53} -37.2234 q^{54} +(148.231 - 81.8320i) q^{55} +(59.7840 + 40.1706i) q^{56} +(-190.106 + 190.106i) q^{57} +(18.0217 + 18.0217i) q^{58} -484.782 q^{59} +(352.156 + 101.636i) q^{60} -315.263i q^{61} +(54.8170 + 54.8170i) q^{62} +(35.4981 + 180.907i) q^{63} -489.285i q^{64} +(-176.625 + 611.980i) q^{65} -15.2546i q^{66} +(-40.1151 + 40.1151i) q^{67} +(-238.704 + 238.704i) q^{68} -330.458 q^{69} +(-4.40034 + 50.3259i) q^{70} +906.887 q^{71} +(-27.3742 + 27.3742i) q^{72} +(-96.5419 + 96.5419i) q^{73} -65.8540i q^{74} +(114.358 + 503.250i) q^{75} +517.072i q^{76} +(-275.229 + 54.0063i) q^{77} +(40.5781 + 40.5781i) q^{78} +354.468i q^{79} +(612.476 - 338.122i) q^{80} +361.145 q^{81} +(-63.9712 - 63.9712i) q^{82} +(-522.441 + 522.441i) q^{83} +(-503.958 - 338.624i) q^{84} +(-456.677 - 131.802i) q^{85} +3.75783 q^{86} +(-304.971 - 304.971i) q^{87} +(-41.6467 - 41.6467i) q^{88} +1064.18 q^{89} +(-26.0877 - 7.52923i) q^{90} +(588.464 - 875.783i) q^{91} +(-449.408 + 449.408i) q^{92} +(-927.639 - 927.639i) q^{93} -34.6673 q^{94} +(-637.371 + 351.866i) q^{95} -191.483i q^{96} +(577.458 + 577.458i) q^{97} +(32.4239 - 77.1463i) q^{98} -150.752i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 32 q^{7} + 176 q^{8} - 152 q^{11} - 480 q^{15} - 504 q^{16} + 288 q^{18} + 328 q^{21} + 348 q^{22} - 72 q^{23} - 160 q^{25} - 528 q^{28} + 1780 q^{30} + 432 q^{32} + 160 q^{35} + 344 q^{36}+ \cdots + 3308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.172516 0.172516i 0.0609935 0.0609935i −0.675952 0.736946i \(-0.736267\pi\)
0.736946 + 0.675952i \(0.236267\pi\)
\(3\) −2.91939 + 2.91939i −0.561837 + 0.561837i −0.929829 0.367992i \(-0.880045\pi\)
0.367992 + 0.929829i \(0.380045\pi\)
\(4\) 7.94048i 0.992560i
\(5\) −9.78787 + 5.40347i −0.875454 + 0.483301i
\(6\) 1.00728i 0.0685368i
\(7\) 18.1737 3.56610i 0.981287 0.192551i
\(8\) 2.74998 + 2.74998i 0.121533 + 0.121533i
\(9\) 9.95432i 0.368678i
\(10\) −0.756378 + 2.62074i −0.0239188 + 0.0828752i
\(11\) −15.1443 −0.415108 −0.207554 0.978224i \(-0.566550\pi\)
−0.207554 + 0.978224i \(0.566550\pi\)
\(12\) −23.1814 23.1814i −0.557657 0.557657i
\(13\) 40.2848 40.2848i 0.859461 0.859461i −0.131813 0.991275i \(-0.542080\pi\)
0.991275 + 0.131813i \(0.0420800\pi\)
\(14\) 2.52004 3.75045i 0.0481077 0.0715965i
\(15\) 12.7998 44.3495i 0.220326 0.763399i
\(16\) −62.5750 −0.977734
\(17\) 30.0616 + 30.0616i 0.428883 + 0.428883i 0.888248 0.459365i \(-0.151923\pi\)
−0.459365 + 0.888248i \(0.651923\pi\)
\(18\) 1.71728 + 1.71728i 0.0224870 + 0.0224870i
\(19\) 65.1185 0.786274 0.393137 0.919480i \(-0.371390\pi\)
0.393137 + 0.919480i \(0.371390\pi\)
\(20\) −42.9061 77.7204i −0.479705 0.868940i
\(21\) −42.6452 + 63.4669i −0.443141 + 0.659506i
\(22\) −2.61264 + 2.61264i −0.0253189 + 0.0253189i
\(23\) 56.5971 + 56.5971i 0.513101 + 0.513101i 0.915475 0.402375i \(-0.131815\pi\)
−0.402375 + 0.915475i \(0.631815\pi\)
\(24\) −16.0565 −0.136564
\(25\) 66.6050 105.777i 0.532840 0.846216i
\(26\) 13.8995i 0.104843i
\(27\) −107.884 107.884i −0.768974 0.768974i
\(28\) 28.3165 + 144.308i 0.191119 + 0.973986i
\(29\) 104.464i 0.668913i 0.942411 + 0.334456i \(0.108553\pi\)
−0.942411 + 0.334456i \(0.891447\pi\)
\(30\) −5.44281 9.85914i −0.0331239 0.0600008i
\(31\) 317.751i 1.84096i 0.390789 + 0.920480i \(0.372202\pi\)
−0.390789 + 0.920480i \(0.627798\pi\)
\(32\) −32.7950 + 32.7950i −0.181169 + 0.181169i
\(33\) 44.2123 44.2123i 0.233223 0.233223i
\(34\) 10.3722 0.0523182
\(35\) −158.612 + 133.106i −0.766011 + 0.642827i
\(36\) −79.0420 −0.365935
\(37\) 190.864 190.864i 0.848050 0.848050i −0.141840 0.989890i \(-0.545302\pi\)
0.989890 + 0.141840i \(0.0453018\pi\)
\(38\) 11.2340 11.2340i 0.0479576 0.0479576i
\(39\) 235.214i 0.965754i
\(40\) −41.7759 12.0570i −0.165134 0.0476596i
\(41\) 370.814i 1.41247i −0.707976 0.706236i \(-0.750392\pi\)
0.707976 0.706236i \(-0.249608\pi\)
\(42\) 3.59207 + 18.3060i 0.0131968 + 0.0672542i
\(43\) 10.8913 + 10.8913i 0.0386257 + 0.0386257i 0.726156 0.687530i \(-0.241305\pi\)
−0.687530 + 0.726156i \(0.741305\pi\)
\(44\) 120.253i 0.412020i
\(45\) −53.7879 97.4316i −0.178183 0.322761i
\(46\) 19.5278 0.0625916
\(47\) −100.476 100.476i −0.311827 0.311827i 0.533790 0.845617i \(-0.320767\pi\)
−0.845617 + 0.533790i \(0.820767\pi\)
\(48\) 182.681 182.681i 0.549327 0.549327i
\(49\) 317.566 129.618i 0.925848 0.377896i
\(50\) −6.75779 29.7386i −0.0191139 0.0841134i
\(51\) −175.523 −0.481925
\(52\) 319.881 + 319.881i 0.853066 + 0.853066i
\(53\) −332.255 332.255i −0.861108 0.861108i 0.130359 0.991467i \(-0.458387\pi\)
−0.991467 + 0.130359i \(0.958387\pi\)
\(54\) −37.2234 −0.0938048
\(55\) 148.231 81.8320i 0.363408 0.200622i
\(56\) 59.7840 + 40.1706i 0.142660 + 0.0958575i
\(57\) −190.106 + 190.106i −0.441758 + 0.441758i
\(58\) 18.0217 + 18.0217i 0.0407993 + 0.0407993i
\(59\) −484.782 −1.06971 −0.534857 0.844942i \(-0.679635\pi\)
−0.534857 + 0.844942i \(0.679635\pi\)
\(60\) 352.156 + 101.636i 0.757719 + 0.218687i
\(61\) 315.263i 0.661726i −0.943679 0.330863i \(-0.892660\pi\)
0.943679 0.330863i \(-0.107340\pi\)
\(62\) 54.8170 + 54.8170i 0.112287 + 0.112287i
\(63\) 35.4981 + 180.907i 0.0709895 + 0.361779i
\(64\) 489.285i 0.955634i
\(65\) −176.625 + 611.980i −0.337040 + 1.16780i
\(66\) 15.2546i 0.0284502i
\(67\) −40.1151 + 40.1151i −0.0731468 + 0.0731468i −0.742734 0.669587i \(-0.766471\pi\)
0.669587 + 0.742734i \(0.266471\pi\)
\(68\) −238.704 + 238.704i −0.425692 + 0.425692i
\(69\) −330.458 −0.576558
\(70\) −4.40034 + 50.3259i −0.00751344 + 0.0859299i
\(71\) 906.887 1.51588 0.757942 0.652322i \(-0.226205\pi\)
0.757942 + 0.652322i \(0.226205\pi\)
\(72\) −27.3742 + 27.3742i −0.0448067 + 0.0448067i
\(73\) −96.5419 + 96.5419i −0.154786 + 0.154786i −0.780252 0.625466i \(-0.784909\pi\)
0.625466 + 0.780252i \(0.284909\pi\)
\(74\) 65.8540i 0.103451i
\(75\) 114.358 + 503.250i 0.176066 + 0.774805i
\(76\) 517.072i 0.780424i
\(77\) −275.229 + 54.0063i −0.407340 + 0.0799297i
\(78\) 40.5781 + 40.5781i 0.0589047 + 0.0589047i
\(79\) 354.468i 0.504820i 0.967620 + 0.252410i \(0.0812231\pi\)
−0.967620 + 0.252410i \(0.918777\pi\)
\(80\) 612.476 338.122i 0.855961 0.472540i
\(81\) 361.145 0.495398
\(82\) −63.9712 63.9712i −0.0861516 0.0861516i
\(83\) −522.441 + 522.441i −0.690908 + 0.690908i −0.962432 0.271524i \(-0.912472\pi\)
0.271524 + 0.962432i \(0.412472\pi\)
\(84\) −503.958 338.624i −0.654599 0.439844i
\(85\) −456.677 131.802i −0.582747 0.168188i
\(86\) 3.75783 0.00471183
\(87\) −304.971 304.971i −0.375820 0.375820i
\(88\) −41.6467 41.6467i −0.0504494 0.0504494i
\(89\) 1064.18 1.26744 0.633722 0.773561i \(-0.281526\pi\)
0.633722 + 0.773561i \(0.281526\pi\)
\(90\) −26.0877 7.52923i −0.0305543 0.00881834i
\(91\) 588.464 875.783i 0.677888 1.00887i
\(92\) −449.408 + 449.408i −0.509283 + 0.509283i
\(93\) −927.639 927.639i −1.03432 1.03432i
\(94\) −34.6673 −0.0380389
\(95\) −637.371 + 351.866i −0.688347 + 0.380007i
\(96\) 191.483i 0.203574i
\(97\) 577.458 + 577.458i 0.604454 + 0.604454i 0.941491 0.337037i \(-0.109425\pi\)
−0.337037 + 0.941491i \(0.609425\pi\)
\(98\) 32.4239 77.1463i 0.0334215 0.0795199i
\(99\) 150.752i 0.153041i
\(100\) 839.920 + 528.875i 0.839920 + 0.528875i
\(101\) 1057.45i 1.04178i −0.853624 0.520890i \(-0.825600\pi\)
0.853624 0.520890i \(-0.174400\pi\)
\(102\) −30.2805 + 30.2805i −0.0293943 + 0.0293943i
\(103\) −56.1233 + 56.1233i −0.0536893 + 0.0536893i −0.733442 0.679752i \(-0.762087\pi\)
0.679752 + 0.733442i \(0.262087\pi\)
\(104\) 221.565 0.208906
\(105\) 74.4646 851.639i 0.0692095 0.791537i
\(106\) −114.638 −0.105044
\(107\) 1335.01 1335.01i 1.20617 1.20617i 0.233914 0.972257i \(-0.424847\pi\)
0.972257 0.233914i \(-0.0751534\pi\)
\(108\) 856.651 856.651i 0.763253 0.763253i
\(109\) 324.403i 0.285065i −0.989790 0.142533i \(-0.954475\pi\)
0.989790 0.142533i \(-0.0455246\pi\)
\(110\) 11.4548 39.6894i 0.00992888 0.0344022i
\(111\) 1114.41i 0.952931i
\(112\) −1137.22 + 223.149i −0.959438 + 0.188264i
\(113\) 136.101 + 136.101i 0.113303 + 0.113303i 0.761485 0.648182i \(-0.224470\pi\)
−0.648182 + 0.761485i \(0.724470\pi\)
\(114\) 65.5926i 0.0538887i
\(115\) −859.786 248.145i −0.697178 0.201214i
\(116\) −829.494 −0.663936
\(117\) 401.008 + 401.008i 0.316865 + 0.316865i
\(118\) −83.6324 + 83.6324i −0.0652456 + 0.0652456i
\(119\) 653.533 + 439.128i 0.503440 + 0.338275i
\(120\) 157.159 86.7610i 0.119555 0.0660014i
\(121\) −1101.65 −0.827685
\(122\) −54.3878 54.3878i −0.0403610 0.0403610i
\(123\) 1082.55 + 1082.55i 0.793580 + 0.793580i
\(124\) −2523.09 −1.82726
\(125\) −80.3581 + 1395.23i −0.0574996 + 0.998346i
\(126\) 37.3332 + 25.0852i 0.0263961 + 0.0177363i
\(127\) −731.290 + 731.290i −0.510957 + 0.510957i −0.914820 0.403863i \(-0.867667\pi\)
0.403863 + 0.914820i \(0.367667\pi\)
\(128\) −346.769 346.769i −0.239456 0.239456i
\(129\) −63.5918 −0.0434027
\(130\) 75.1056 + 136.047i 0.0506708 + 0.0917853i
\(131\) 1503.34i 1.00265i 0.865258 + 0.501327i \(0.167155\pi\)
−0.865258 + 0.501327i \(0.832845\pi\)
\(132\) 351.066 + 351.066i 0.231488 + 0.231488i
\(133\) 1183.44 232.219i 0.771560 0.151398i
\(134\) 13.8409i 0.00892295i
\(135\) 1638.90 + 473.007i 1.04485 + 0.301555i
\(136\) 165.338i 0.104247i
\(137\) 1918.81 1918.81i 1.19660 1.19660i 0.221426 0.975177i \(-0.428929\pi\)
0.975177 0.221426i \(-0.0710711\pi\)
\(138\) −57.0092 + 57.0092i −0.0351663 + 0.0351663i
\(139\) 658.997 0.402125 0.201063 0.979578i \(-0.435561\pi\)
0.201063 + 0.979578i \(0.435561\pi\)
\(140\) −1056.92 1259.46i −0.638044 0.760312i
\(141\) 586.656 0.350392
\(142\) 156.452 156.452i 0.0924590 0.0924590i
\(143\) −610.087 + 610.087i −0.356769 + 0.356769i
\(144\) 622.891i 0.360470i
\(145\) −564.468 1022.48i −0.323286 0.585602i
\(146\) 33.3100i 0.0188819i
\(147\) −548.692 + 1305.51i −0.307860 + 0.732492i
\(148\) 1515.55 + 1515.55i 0.841740 + 0.841740i
\(149\) 3027.11i 1.66437i 0.554500 + 0.832183i \(0.312909\pi\)
−0.554500 + 0.832183i \(0.687091\pi\)
\(150\) 106.547 + 67.0899i 0.0579969 + 0.0365191i
\(151\) −2127.15 −1.14639 −0.573195 0.819419i \(-0.694296\pi\)
−0.573195 + 0.819419i \(0.694296\pi\)
\(152\) 179.075 + 179.075i 0.0955583 + 0.0955583i
\(153\) −299.243 + 299.243i −0.158120 + 0.158120i
\(154\) −38.1643 + 56.7981i −0.0199699 + 0.0297203i
\(155\) −1716.96 3110.11i −0.889738 1.61168i
\(156\) −1867.71 −0.958569
\(157\) −1563.61 1563.61i −0.794841 0.794841i 0.187436 0.982277i \(-0.439982\pi\)
−0.982277 + 0.187436i \(0.939982\pi\)
\(158\) 61.1512 + 61.1512i 0.0307907 + 0.0307907i
\(159\) 1939.96 0.967604
\(160\) 143.787 498.200i 0.0710458 0.246164i
\(161\) 1230.41 + 826.747i 0.602297 + 0.404701i
\(162\) 62.3031 62.3031i 0.0302160 0.0302160i
\(163\) −1344.83 1344.83i −0.646226 0.646226i 0.305853 0.952079i \(-0.401058\pi\)
−0.952079 + 0.305853i \(0.901058\pi\)
\(164\) 2944.44 1.40196
\(165\) −193.844 + 671.644i −0.0914591 + 0.316893i
\(166\) 180.258i 0.0842817i
\(167\) −1463.69 1463.69i −0.678228 0.678228i 0.281371 0.959599i \(-0.409211\pi\)
−0.959599 + 0.281371i \(0.909211\pi\)
\(168\) −291.806 + 57.2592i −0.134008 + 0.0262955i
\(169\) 1048.73i 0.477347i
\(170\) −101.522 + 56.0459i −0.0458021 + 0.0252854i
\(171\) 648.210i 0.289882i
\(172\) −86.4819 + 86.4819i −0.0383383 + 0.0383383i
\(173\) 2017.91 2017.91i 0.886814 0.886814i −0.107401 0.994216i \(-0.534253\pi\)
0.994216 + 0.107401i \(0.0342530\pi\)
\(174\) −105.225 −0.0458451
\(175\) 833.247 2159.88i 0.359929 0.932980i
\(176\) 947.657 0.405866
\(177\) 1415.27 1415.27i 0.601005 0.601005i
\(178\) 183.587 183.587i 0.0773059 0.0773059i
\(179\) 2212.81i 0.923985i 0.886884 + 0.461992i \(0.152865\pi\)
−0.886884 + 0.461992i \(0.847135\pi\)
\(180\) 773.654 427.101i 0.320360 0.176857i
\(181\) 2077.03i 0.852954i −0.904498 0.426477i \(-0.859755\pi\)
0.904498 0.426477i \(-0.140245\pi\)
\(182\) −49.5671 252.605i −0.0201877 0.102881i
\(183\) 920.375 + 920.375i 0.371782 + 0.371782i
\(184\) 311.282i 0.124717i
\(185\) −836.824 + 2899.48i −0.332565 + 1.15229i
\(186\) −320.064 −0.126173
\(187\) −455.264 455.264i −0.178033 0.178033i
\(188\) 797.825 797.825i 0.309507 0.309507i
\(189\) −2345.38 1575.93i −0.902651 0.606517i
\(190\) −49.2542 + 170.659i −0.0188067 + 0.0651626i
\(191\) −2039.27 −0.772546 −0.386273 0.922385i \(-0.626238\pi\)
−0.386273 + 0.922385i \(0.626238\pi\)
\(192\) 1428.41 + 1428.41i 0.536910 + 0.536910i
\(193\) −403.319 403.319i −0.150423 0.150423i 0.627884 0.778307i \(-0.283921\pi\)
−0.778307 + 0.627884i \(0.783921\pi\)
\(194\) 199.241 0.0737355
\(195\) −1270.97 2302.25i −0.466750 0.845473i
\(196\) 1029.23 + 2521.62i 0.375085 + 0.918959i
\(197\) −2118.02 + 2118.02i −0.766003 + 0.766003i −0.977400 0.211397i \(-0.932199\pi\)
0.211397 + 0.977400i \(0.432199\pi\)
\(198\) −26.0070 26.0070i −0.00933453 0.00933453i
\(199\) −543.669 −0.193667 −0.0968334 0.995301i \(-0.530871\pi\)
−0.0968334 + 0.995301i \(0.530871\pi\)
\(200\) 474.047 107.722i 0.167601 0.0380856i
\(201\) 234.223i 0.0821931i
\(202\) −182.426 182.426i −0.0635418 0.0635418i
\(203\) 372.529 + 1898.50i 0.128800 + 0.656395i
\(204\) 1393.74i 0.478339i
\(205\) 2003.68 + 3629.48i 0.682650 + 1.23656i
\(206\) 19.3643i 0.00654939i
\(207\) −563.386 + 563.386i −0.189169 + 0.189169i
\(208\) −2520.82 + 2520.82i −0.840325 + 0.840325i
\(209\) −986.177 −0.326389
\(210\) −134.075 159.767i −0.0440573 0.0524999i
\(211\) 829.151 0.270526 0.135263 0.990810i \(-0.456812\pi\)
0.135263 + 0.990810i \(0.456812\pi\)
\(212\) 2638.26 2638.26i 0.854701 0.854701i
\(213\) −2647.56 + 2647.56i −0.851679 + 0.851679i
\(214\) 460.620i 0.147137i
\(215\) −165.453 47.7518i −0.0524829 0.0151472i
\(216\) 593.358i 0.186912i
\(217\) 1133.13 + 5774.71i 0.354479 + 1.80651i
\(218\) −55.9645 55.9645i −0.0173871 0.0173871i
\(219\) 563.687i 0.173929i
\(220\) 649.785 + 1177.02i 0.199130 + 0.360704i
\(221\) 2422.05 0.737217
\(222\) 192.254 + 192.254i 0.0581226 + 0.0581226i
\(223\) 2531.23 2531.23i 0.760107 0.760107i −0.216234 0.976342i \(-0.569377\pi\)
0.976342 + 0.216234i \(0.0693774\pi\)
\(224\) −479.056 + 712.957i −0.142894 + 0.212663i
\(225\) 1052.94 + 663.007i 0.311982 + 0.196447i
\(226\) 46.9589 0.0138215
\(227\) 283.599 + 283.599i 0.0829212 + 0.0829212i 0.747351 0.664430i \(-0.231325\pi\)
−0.664430 + 0.747351i \(0.731325\pi\)
\(228\) −1509.53 1509.53i −0.438471 0.438471i
\(229\) −4475.13 −1.29138 −0.645688 0.763602i \(-0.723429\pi\)
−0.645688 + 0.763602i \(0.723429\pi\)
\(230\) −191.135 + 105.518i −0.0547960 + 0.0302506i
\(231\) 645.834 961.165i 0.183951 0.273766i
\(232\) −287.274 + 287.274i −0.0812951 + 0.0812951i
\(233\) −2075.27 2075.27i −0.583500 0.583500i 0.352363 0.935863i \(-0.385378\pi\)
−0.935863 + 0.352363i \(0.885378\pi\)
\(234\) 138.360 0.0386534
\(235\) 1526.36 + 440.526i 0.423697 + 0.122284i
\(236\) 3849.40i 1.06176i
\(237\) −1034.83 1034.83i −0.283626 0.283626i
\(238\) 188.501 36.9883i 0.0513391 0.0100739i
\(239\) 561.502i 0.151969i 0.997109 + 0.0759844i \(0.0242099\pi\)
−0.997109 + 0.0759844i \(0.975790\pi\)
\(240\) −800.946 + 2775.17i −0.215420 + 0.746401i
\(241\) 491.727i 0.131431i 0.997838 + 0.0657156i \(0.0209330\pi\)
−0.997838 + 0.0657156i \(0.979067\pi\)
\(242\) −190.052 + 190.052i −0.0504834 + 0.0504834i
\(243\) 1858.55 1858.55i 0.490641 0.490641i
\(244\) 2503.34 0.656802
\(245\) −2407.91 + 2984.65i −0.627900 + 0.778294i
\(246\) 373.514 0.0968063
\(247\) 2623.29 2623.29i 0.675772 0.675772i
\(248\) −873.809 + 873.809i −0.223738 + 0.223738i
\(249\) 3050.42i 0.776355i
\(250\) 226.836 + 254.562i 0.0573855 + 0.0643997i
\(251\) 4742.82i 1.19268i −0.802730 0.596342i \(-0.796620\pi\)
0.802730 0.596342i \(-0.203380\pi\)
\(252\) −1436.49 + 281.872i −0.359088 + 0.0704614i
\(253\) −857.126 857.126i −0.212992 0.212992i
\(254\) 252.318i 0.0623301i
\(255\) 1718.00 948.435i 0.421903 0.232915i
\(256\) 3794.63 0.926423
\(257\) 906.753 + 906.753i 0.220084 + 0.220084i 0.808534 0.588450i \(-0.200261\pi\)
−0.588450 + 0.808534i \(0.700261\pi\)
\(258\) −10.9706 + 10.9706i −0.00264728 + 0.00264728i
\(259\) 2788.06 4149.34i 0.668887 0.995473i
\(260\) −4859.42 1402.49i −1.15911 0.334532i
\(261\) −1039.87 −0.246614
\(262\) 259.350 + 259.350i 0.0611554 + 0.0611554i
\(263\) −3713.61 3713.61i −0.870689 0.870689i 0.121858 0.992547i \(-0.461115\pi\)
−0.992547 + 0.121858i \(0.961115\pi\)
\(264\) 243.166 0.0566887
\(265\) 5047.40 + 1456.74i 1.17003 + 0.337686i
\(266\) 164.101 244.224i 0.0378258 0.0562944i
\(267\) −3106.75 + 3106.75i −0.712097 + 0.712097i
\(268\) −318.533 318.533i −0.0726025 0.0726025i
\(269\) 140.328 0.0318065 0.0159033 0.999874i \(-0.494938\pi\)
0.0159033 + 0.999874i \(0.494938\pi\)
\(270\) 364.338 201.135i 0.0821218 0.0453360i
\(271\) 4266.09i 0.956260i 0.878289 + 0.478130i \(0.158685\pi\)
−0.878289 + 0.478130i \(0.841315\pi\)
\(272\) −1881.11 1881.11i −0.419334 0.419334i
\(273\) 838.797 + 4274.71i 0.185957 + 0.947682i
\(274\) 662.048i 0.145970i
\(275\) −1008.69 + 1601.92i −0.221186 + 0.351271i
\(276\) 2623.99i 0.572268i
\(277\) −1526.65 + 1526.65i −0.331146 + 0.331146i −0.853021 0.521876i \(-0.825232\pi\)
0.521876 + 0.853021i \(0.325232\pi\)
\(278\) 113.687 113.687i 0.0245270 0.0245270i
\(279\) −3163.00 −0.678722
\(280\) −802.219 70.1435i −0.171221 0.0149710i
\(281\) 7194.47 1.52735 0.763676 0.645600i \(-0.223393\pi\)
0.763676 + 0.645600i \(0.223393\pi\)
\(282\) 101.207 101.207i 0.0213716 0.0213716i
\(283\) 2582.62 2582.62i 0.542477 0.542477i −0.381777 0.924254i \(-0.624688\pi\)
0.924254 + 0.381777i \(0.124688\pi\)
\(284\) 7201.12i 1.50460i
\(285\) 833.502 2887.97i 0.173237 0.600241i
\(286\) 210.499i 0.0435212i
\(287\) −1322.36 6739.05i −0.271974 1.38604i
\(288\) −326.452 326.452i −0.0667929 0.0667929i
\(289\) 3105.60i 0.632118i
\(290\) −273.773 79.0142i −0.0554363 0.0159996i
\(291\) −3371.65 −0.679209
\(292\) −766.589 766.589i −0.153634 0.153634i
\(293\) −6367.25 + 6367.25i −1.26955 + 1.26955i −0.323231 + 0.946320i \(0.604769\pi\)
−0.946320 + 0.323231i \(0.895231\pi\)
\(294\) 130.562 + 319.878i 0.0258998 + 0.0634546i
\(295\) 4744.98 2619.50i 0.936486 0.516995i
\(296\) 1049.74 0.206132
\(297\) 1633.83 + 1633.83i 0.319208 + 0.319208i
\(298\) 522.224 + 522.224i 0.101516 + 0.101516i
\(299\) 4560.01 0.881980
\(300\) −3996.05 + 908.061i −0.769040 + 0.174756i
\(301\) 236.774 + 159.095i 0.0453403 + 0.0304655i
\(302\) −366.966 + 366.966i −0.0699223 + 0.0699223i
\(303\) 3087.10 + 3087.10i 0.585311 + 0.585311i
\(304\) −4074.79 −0.768767
\(305\) 1703.51 + 3085.75i 0.319813 + 0.579311i
\(306\) 103.248i 0.0192886i
\(307\) 5777.89 + 5777.89i 1.07414 + 1.07414i 0.997022 + 0.0771200i \(0.0245725\pi\)
0.0771200 + 0.997022i \(0.475428\pi\)
\(308\) −428.835 2185.45i −0.0793350 0.404310i
\(309\) 327.692i 0.0603292i
\(310\) −832.744 240.340i −0.152570 0.0440335i
\(311\) 3724.71i 0.679128i 0.940583 + 0.339564i \(0.110279\pi\)
−0.940583 + 0.339564i \(0.889721\pi\)
\(312\) −646.834 + 646.834i −0.117371 + 0.117371i
\(313\) −3001.58 + 3001.58i −0.542042 + 0.542042i −0.924127 0.382085i \(-0.875206\pi\)
0.382085 + 0.924127i \(0.375206\pi\)
\(314\) −539.496 −0.0969602
\(315\) −1324.98 1578.88i −0.236996 0.282412i
\(316\) −2814.64 −0.501064
\(317\) −2459.59 + 2459.59i −0.435786 + 0.435786i −0.890591 0.454805i \(-0.849709\pi\)
0.454805 + 0.890591i \(0.349709\pi\)
\(318\) 334.674 334.674i 0.0590175 0.0590175i
\(319\) 1582.04i 0.277671i
\(320\) 2643.84 + 4789.06i 0.461859 + 0.836614i
\(321\) 7794.83i 1.35534i
\(322\) 354.892 69.6380i 0.0614203 0.0120521i
\(323\) 1957.57 + 1957.57i 0.337220 + 0.337220i
\(324\) 2867.66i 0.491712i
\(325\) −1578.04 6944.38i −0.269335 1.18525i
\(326\) −464.007 −0.0788311
\(327\) 947.058 + 947.058i 0.160160 + 0.160160i
\(328\) 1019.73 1019.73i 0.171662 0.171662i
\(329\) −2184.32 1467.71i −0.366035 0.245949i
\(330\) 82.4278 + 149.310i 0.0137500 + 0.0249068i
\(331\) −6812.43 −1.13125 −0.565627 0.824661i \(-0.691366\pi\)
−0.565627 + 0.824661i \(0.691366\pi\)
\(332\) −4148.43 4148.43i −0.685767 0.685767i
\(333\) 1899.92 + 1899.92i 0.312658 + 0.312658i
\(334\) −505.020 −0.0827350
\(335\) 175.881 609.402i 0.0286847 0.0993886i
\(336\) 2668.53 3971.44i 0.433274 0.644821i
\(337\) 1850.53 1850.53i 0.299124 0.299124i −0.541547 0.840671i \(-0.682161\pi\)
0.840671 + 0.541547i \(0.182161\pi\)
\(338\) −180.923 180.923i −0.0291151 0.0291151i
\(339\) −794.661 −0.127316
\(340\) 1046.57 3626.23i 0.166936 0.578411i
\(341\) 4812.13i 0.764198i
\(342\) 111.826 + 111.826i 0.0176809 + 0.0176809i
\(343\) 5309.11 3488.12i 0.835758 0.549098i
\(344\) 59.9016i 0.00938860i
\(345\) 3234.48 1785.62i 0.504750 0.278651i
\(346\) 696.242i 0.108180i
\(347\) 4053.67 4053.67i 0.627126 0.627126i −0.320218 0.947344i \(-0.603756\pi\)
0.947344 + 0.320218i \(0.103756\pi\)
\(348\) 2421.62 2421.62i 0.373024 0.373024i
\(349\) 1734.54 0.266039 0.133020 0.991113i \(-0.457533\pi\)
0.133020 + 0.991113i \(0.457533\pi\)
\(350\) −228.865 516.361i −0.0349524 0.0788590i
\(351\) −8692.18 −1.32181
\(352\) 496.659 496.659i 0.0752046 0.0752046i
\(353\) 7713.10 7713.10i 1.16297 1.16297i 0.179143 0.983823i \(-0.442667\pi\)
0.983823 0.179143i \(-0.0573326\pi\)
\(354\) 488.311i 0.0733148i
\(355\) −8876.50 + 4900.34i −1.32709 + 0.732628i
\(356\) 8450.08i 1.25801i
\(357\) −3189.90 + 625.934i −0.472907 + 0.0927953i
\(358\) 381.745 + 381.745i 0.0563571 + 0.0563571i
\(359\) 1957.76i 0.287819i 0.989591 + 0.143909i \(0.0459673\pi\)
−0.989591 + 0.143909i \(0.954033\pi\)
\(360\) 120.019 415.851i 0.0175711 0.0608813i
\(361\) −2618.58 −0.381773
\(362\) −358.321 358.321i −0.0520246 0.0520246i
\(363\) 3216.14 3216.14i 0.465024 0.465024i
\(364\) 6954.14 + 4672.68i 1.00136 + 0.672844i
\(365\) 423.279 1466.60i 0.0606998 0.210316i
\(366\) 317.558 0.0453526
\(367\) 1489.90 + 1489.90i 0.211913 + 0.211913i 0.805080 0.593167i \(-0.202123\pi\)
−0.593167 + 0.805080i \(0.702123\pi\)
\(368\) −3541.56 3541.56i −0.501676 0.501676i
\(369\) 3691.20 0.520748
\(370\) 355.840 + 644.571i 0.0499980 + 0.0905666i
\(371\) −7223.15 4853.44i −1.01080 0.679186i
\(372\) 7365.90 7365.90i 1.02662 1.02662i
\(373\) 697.611 + 697.611i 0.0968389 + 0.0968389i 0.753867 0.657028i \(-0.228187\pi\)
−0.657028 + 0.753867i \(0.728187\pi\)
\(374\) −157.080 −0.0217177
\(375\) −3838.63 4307.82i −0.528602 0.593213i
\(376\) 552.613i 0.0757947i
\(377\) 4208.31 + 4208.31i 0.574905 + 0.574905i
\(378\) −676.486 + 132.742i −0.0920494 + 0.0180622i
\(379\) 7235.49i 0.980639i 0.871543 + 0.490319i \(0.163120\pi\)
−0.871543 + 0.490319i \(0.836880\pi\)
\(380\) −2793.98 5061.03i −0.377180 0.683225i
\(381\) 4269.84i 0.574149i
\(382\) −351.805 + 351.805i −0.0471202 + 0.0471202i
\(383\) −3851.00 + 3851.00i −0.513778 + 0.513778i −0.915682 0.401904i \(-0.868349\pi\)
0.401904 + 0.915682i \(0.368349\pi\)
\(384\) 2024.71 0.269070
\(385\) 2402.08 2015.80i 0.317978 0.266843i
\(386\) −139.158 −0.0183496
\(387\) −108.415 + 108.415i −0.0142405 + 0.0142405i
\(388\) −4585.30 + 4585.30i −0.599956 + 0.599956i
\(389\) 1416.54i 0.184631i −0.995730 0.0923156i \(-0.970573\pi\)
0.995730 0.0923156i \(-0.0294269\pi\)
\(390\) −616.436 177.911i −0.0800371 0.0230996i
\(391\) 3402.80i 0.440120i
\(392\) 1229.75 + 516.852i 0.158448 + 0.0665943i
\(393\) −4388.85 4388.85i −0.563328 0.563328i
\(394\) 730.782i 0.0934423i
\(395\) −1915.36 3469.49i −0.243980 0.441946i
\(396\) 1197.04 0.151903
\(397\) −10286.6 10286.6i −1.30043 1.30043i −0.928098 0.372335i \(-0.878557\pi\)
−0.372335 0.928098i \(-0.621443\pi\)
\(398\) −93.7914 + 93.7914i −0.0118124 + 0.0118124i
\(399\) −2776.99 + 4132.87i −0.348430 + 0.518552i
\(400\) −4167.81 + 6618.99i −0.520976 + 0.827374i
\(401\) 9804.91 1.22103 0.610516 0.792004i \(-0.290962\pi\)
0.610516 + 0.792004i \(0.290962\pi\)
\(402\) −40.4071 40.4071i −0.00501324 0.00501324i
\(403\) 12800.5 + 12800.5i 1.58223 + 1.58223i
\(404\) 8396.63 1.03403
\(405\) −3534.84 + 1951.44i −0.433698 + 0.239426i
\(406\) 391.787 + 263.253i 0.0478918 + 0.0321799i
\(407\) −2890.51 + 2890.51i −0.352033 + 0.352033i
\(408\) −482.686 482.686i −0.0585698 0.0585698i
\(409\) −1485.98 −0.179651 −0.0898254 0.995958i \(-0.528631\pi\)
−0.0898254 + 0.995958i \(0.528631\pi\)
\(410\) 971.808 + 280.475i 0.117059 + 0.0337846i
\(411\) 11203.5i 1.34459i
\(412\) −445.646 445.646i −0.0532898 0.0532898i
\(413\) −8810.27 + 1728.78i −1.04970 + 0.205975i
\(414\) 194.386i 0.0230762i
\(415\) 2290.59 7936.58i 0.270941 0.938774i
\(416\) 2642.28i 0.311415i
\(417\) −1923.87 + 1923.87i −0.225929 + 0.225929i
\(418\) −170.131 + 170.131i −0.0199076 + 0.0199076i
\(419\) −4210.27 −0.490895 −0.245447 0.969410i \(-0.578935\pi\)
−0.245447 + 0.969410i \(0.578935\pi\)
\(420\) 6762.42 + 591.284i 0.785648 + 0.0686946i
\(421\) −4272.21 −0.494571 −0.247286 0.968943i \(-0.579539\pi\)
−0.247286 + 0.968943i \(0.579539\pi\)
\(422\) 143.041 143.041i 0.0165004 0.0165004i
\(423\) 1000.17 1000.17i 0.114964 0.114964i
\(424\) 1827.39i 0.209306i
\(425\) 5182.08 1177.57i 0.591454 0.134402i
\(426\) 913.490i 0.103894i
\(427\) −1124.26 5729.49i −0.127416 0.649343i
\(428\) 10600.6 + 10600.6i 1.19720 + 1.19720i
\(429\) 3562.16i 0.400893i
\(430\) −36.7812 + 20.3053i −0.00412499 + 0.00227723i
\(431\) −2055.39 −0.229710 −0.114855 0.993382i \(-0.536640\pi\)
−0.114855 + 0.993382i \(0.536640\pi\)
\(432\) 6750.84 + 6750.84i 0.751852 + 0.751852i
\(433\) −1679.54 + 1679.54i −0.186406 + 0.186406i −0.794140 0.607734i \(-0.792078\pi\)
0.607734 + 0.794140i \(0.292078\pi\)
\(434\) 1191.71 + 800.744i 0.131806 + 0.0885644i
\(435\) 4632.92 + 1337.12i 0.510647 + 0.147379i
\(436\) 2575.91 0.282944
\(437\) 3685.52 + 3685.52i 0.403438 + 0.403438i
\(438\) −97.2448 97.2448i −0.0106085 0.0106085i
\(439\) −9407.03 −1.02272 −0.511359 0.859367i \(-0.670858\pi\)
−0.511359 + 0.859367i \(0.670858\pi\)
\(440\) 632.669 + 182.596i 0.0685484 + 0.0197839i
\(441\) 1290.26 + 3161.15i 0.139322 + 0.341340i
\(442\) 417.842 417.842i 0.0449654 0.0449654i
\(443\) 2276.99 + 2276.99i 0.244205 + 0.244205i 0.818587 0.574382i \(-0.194758\pi\)
−0.574382 + 0.818587i \(0.694758\pi\)
\(444\) −8848.97 −0.945841
\(445\) −10416.0 + 5750.25i −1.10959 + 0.612558i
\(446\) 873.355i 0.0927232i
\(447\) −8837.32 8837.32i −0.935103 0.935103i
\(448\) −1744.84 8892.11i −0.184009 0.937751i
\(449\) 5028.95i 0.528577i −0.964444 0.264288i \(-0.914863\pi\)
0.964444 0.264288i \(-0.0851371\pi\)
\(450\) 296.027 67.2692i 0.0310108 0.00704689i
\(451\) 5615.73i 0.586329i
\(452\) −1080.70 + 1080.70i −0.112460 + 0.112460i
\(453\) 6209.98 6209.98i 0.644084 0.644084i
\(454\) 97.8505 0.0101153
\(455\) −1027.54 + 11751.8i −0.105872 + 1.21084i
\(456\) −1045.58 −0.107376
\(457\) −12754.2 + 12754.2i −1.30551 + 1.30551i −0.380890 + 0.924620i \(0.624382\pi\)
−0.924620 + 0.380890i \(0.875618\pi\)
\(458\) −772.030 + 772.030i −0.0787655 + 0.0787655i
\(459\) 6486.34i 0.659600i
\(460\) 1970.39 6827.11i 0.199717 0.691991i
\(461\) 12702.8i 1.28336i −0.766973 0.641680i \(-0.778238\pi\)
0.766973 0.641680i \(-0.221762\pi\)
\(462\) −54.3995 277.232i −0.00547812 0.0279178i
\(463\) −10925.8 10925.8i −1.09668 1.09668i −0.994796 0.101884i \(-0.967513\pi\)
−0.101884 0.994796i \(-0.532487\pi\)
\(464\) 6536.83i 0.654019i
\(465\) 14092.1 + 4067.14i 1.40539 + 0.405611i
\(466\) −716.033 −0.0711794
\(467\) 7125.70 + 7125.70i 0.706077 + 0.706077i 0.965708 0.259631i \(-0.0836008\pi\)
−0.259631 + 0.965708i \(0.583601\pi\)
\(468\) −3184.19 + 3184.19i −0.314507 + 0.314507i
\(469\) −585.984 + 872.093i −0.0576935 + 0.0858625i
\(470\) 339.319 187.324i 0.0333013 0.0183842i
\(471\) 9129.60 0.893142
\(472\) −1333.14 1333.14i −0.130006 0.130006i
\(473\) −164.941 164.941i −0.0160338 0.0160338i
\(474\) −357.049 −0.0345987
\(475\) 4337.22 6888.04i 0.418958 0.665358i
\(476\) −3486.88 + 5189.37i −0.335759 + 0.499694i
\(477\) 3307.37 3307.37i 0.317472 0.317472i
\(478\) 96.8679 + 96.8679i 0.00926911 + 0.00926911i
\(479\) 12747.5 1.21597 0.607985 0.793949i \(-0.291978\pi\)
0.607985 + 0.793949i \(0.291978\pi\)
\(480\) 1034.67 + 1874.21i 0.0983877 + 0.178220i
\(481\) 15377.8i 1.45773i
\(482\) 84.8306 + 84.8306i 0.00801645 + 0.00801645i
\(483\) −6005.64 + 1178.45i −0.565768 + 0.111017i
\(484\) 8747.62i 0.821527i
\(485\) −8772.37 2531.81i −0.821305 0.237038i
\(486\) 641.257i 0.0598518i
\(487\) 4255.39 4255.39i 0.395955 0.395955i −0.480849 0.876804i \(-0.659671\pi\)
0.876804 + 0.480849i \(0.159671\pi\)
\(488\) 866.967 866.967i 0.0804216 0.0804216i
\(489\) 7852.14 0.726147
\(490\) 99.4969 + 930.299i 0.00917309 + 0.0857687i
\(491\) 6284.86 0.577662 0.288831 0.957380i \(-0.406733\pi\)
0.288831 + 0.957380i \(0.406733\pi\)
\(492\) −8595.97 + 8595.97i −0.787675 + 0.787675i
\(493\) −3140.36 + 3140.36i −0.286885 + 0.286885i
\(494\) 905.115i 0.0824353i
\(495\) 814.582 + 1475.54i 0.0739651 + 0.133981i
\(496\) 19883.3i 1.79997i
\(497\) 16481.5 3234.05i 1.48752 0.291885i
\(498\) −526.245 526.245i −0.0473526 0.0473526i
\(499\) 6666.36i 0.598051i 0.954245 + 0.299025i \(0.0966615\pi\)
−0.954245 + 0.299025i \(0.903338\pi\)
\(500\) −11078.8 638.082i −0.990917 0.0570718i
\(501\) 8546.19 0.762107
\(502\) −818.210 818.210i −0.0727460 0.0727460i
\(503\) 7649.95 7649.95i 0.678120 0.678120i −0.281455 0.959575i \(-0.590817\pi\)
0.959575 + 0.281455i \(0.0908169\pi\)
\(504\) −399.871 + 595.109i −0.0353406 + 0.0525958i
\(505\) 5713.88 + 10350.2i 0.503494 + 0.912031i
\(506\) −295.735 −0.0259823
\(507\) 3061.66 + 3061.66i 0.268191 + 0.268191i
\(508\) −5806.79 5806.79i −0.507155 0.507155i
\(509\) −9472.50 −0.824875 −0.412437 0.910986i \(-0.635322\pi\)
−0.412437 + 0.910986i \(0.635322\pi\)
\(510\) 132.762 460.002i 0.0115270 0.0399396i
\(511\) −1410.24 + 2098.80i −0.122085 + 0.181694i
\(512\) 3428.79 3428.79i 0.295962 0.295962i
\(513\) −7025.25 7025.25i −0.604624 0.604624i
\(514\) 312.858 0.0268474
\(515\) 246.067 852.589i 0.0210544 0.0729506i
\(516\) 504.949i 0.0430797i
\(517\) 1521.64 + 1521.64i 0.129442 + 0.129442i
\(518\) −234.842 1196.81i −0.0199196 0.101515i
\(519\) 11782.1i 0.996490i
\(520\) −2168.65 + 1197.22i −0.182888 + 0.100965i
\(521\) 102.380i 0.00860914i −0.999991 0.00430457i \(-0.998630\pi\)
0.999991 0.00430457i \(-0.00137019\pi\)
\(522\) −179.393 + 179.393i −0.0150418 + 0.0150418i
\(523\) −8434.43 + 8434.43i −0.705185 + 0.705185i −0.965519 0.260333i \(-0.916168\pi\)
0.260333 + 0.965519i \(0.416168\pi\)
\(524\) −11937.3 −0.995194
\(525\) 3872.96 + 8738.10i 0.321961 + 0.726404i
\(526\) −1281.31 −0.106213
\(527\) −9552.11 + 9552.11i −0.789557 + 0.789557i
\(528\) −2766.58 + 2766.58i −0.228030 + 0.228030i
\(529\) 5760.54i 0.473456i
\(530\) 1122.06 619.445i 0.0919611 0.0507678i
\(531\) 4825.67i 0.394381i
\(532\) 1843.93 + 9397.10i 0.150272 + 0.765819i
\(533\) −14938.2 14938.2i −1.21397 1.21397i
\(534\) 1071.93i 0.0868666i
\(535\) −5853.22 + 20280.6i −0.473004 + 1.63889i
\(536\) −220.631 −0.0177795
\(537\) −6460.06 6460.06i −0.519129 0.519129i
\(538\) 24.2088 24.2088i 0.00193999 0.00193999i
\(539\) −4809.33 + 1962.99i −0.384327 + 0.156868i
\(540\) −3755.90 + 13013.7i −0.299312 + 1.03707i
\(541\) 19779.3 1.57186 0.785931 0.618315i \(-0.212184\pi\)
0.785931 + 0.618315i \(0.212184\pi\)
\(542\) 735.967 + 735.967i 0.0583256 + 0.0583256i
\(543\) 6063.67 + 6063.67i 0.479221 + 0.479221i
\(544\) −1971.74 −0.155400
\(545\) 1752.90 + 3175.21i 0.137772 + 0.249562i
\(546\) 882.160 + 592.748i 0.0691446 + 0.0464602i
\(547\) 11797.7 11797.7i 0.922180 0.922180i −0.0750033 0.997183i \(-0.523897\pi\)
0.997183 + 0.0750033i \(0.0238967\pi\)
\(548\) 15236.2 + 15236.2i 1.18770 + 1.18770i
\(549\) 3138.23 0.243964
\(550\) 102.342 + 450.371i 0.00793434 + 0.0349162i
\(551\) 6802.53i 0.525949i
\(552\) −908.753 908.753i −0.0700709 0.0700709i
\(553\) 1264.07 + 6441.99i 0.0972037 + 0.495373i
\(554\) 526.741i 0.0403954i
\(555\) −6021.70 10907.7i −0.460553 0.834248i
\(556\) 5232.75i 0.399133i
\(557\) −6016.09 + 6016.09i −0.457648 + 0.457648i −0.897883 0.440235i \(-0.854895\pi\)
0.440235 + 0.897883i \(0.354895\pi\)
\(558\) −545.666 + 545.666i −0.0413976 + 0.0413976i
\(559\) 877.506 0.0663946
\(560\) 9925.17 8329.08i 0.748955 0.628514i
\(561\) 2658.18 0.200051
\(562\) 1241.16 1241.16i 0.0931585 0.0931585i
\(563\) −8887.62 + 8887.62i −0.665309 + 0.665309i −0.956626 0.291318i \(-0.905906\pi\)
0.291318 + 0.956626i \(0.405906\pi\)
\(564\) 4658.33i 0.347785i
\(565\) −2067.55 596.720i −0.153951 0.0444322i
\(566\) 891.085i 0.0661751i
\(567\) 6563.33 1287.88i 0.486127 0.0953895i
\(568\) 2493.92 + 2493.92i 0.184230 + 0.184230i
\(569\) 22877.9i 1.68558i −0.538245 0.842788i \(-0.680913\pi\)
0.538245 0.842788i \(-0.319087\pi\)
\(570\) −354.428 642.012i −0.0260445 0.0471771i
\(571\) 5584.51 0.409290 0.204645 0.978836i \(-0.434396\pi\)
0.204645 + 0.978836i \(0.434396\pi\)
\(572\) −4844.38 4844.38i −0.354115 0.354115i
\(573\) 5953.42 5953.42i 0.434045 0.434045i
\(574\) −1390.72 934.464i −0.101128 0.0679509i
\(575\) 9756.32 2217.02i 0.707594 0.160794i
\(576\) 4870.49 0.352322
\(577\) −3145.37 3145.37i −0.226938 0.226938i 0.584474 0.811412i \(-0.301301\pi\)
−0.811412 + 0.584474i \(0.801301\pi\)
\(578\) −535.764 535.764i −0.0385551 0.0385551i
\(579\) 2354.89 0.169026
\(580\) 8118.98 4482.15i 0.581245 0.320881i
\(581\) −7631.60 + 11357.8i −0.544943 + 0.811014i
\(582\) −581.663 + 581.663i −0.0414273 + 0.0414273i
\(583\) 5031.78 + 5031.78i 0.357453 + 0.357453i
\(584\) −530.977 −0.0376233
\(585\) −6091.85 1758.18i −0.430542 0.124259i
\(586\) 2196.90i 0.154869i
\(587\) −7974.07 7974.07i −0.560690 0.560690i 0.368813 0.929503i \(-0.379764\pi\)
−0.929503 + 0.368813i \(0.879764\pi\)
\(588\) −10366.3 4356.88i −0.727042 0.305569i
\(589\) 20691.5i 1.44750i
\(590\) 366.678 1270.49i 0.0255863 0.0886529i
\(591\) 12366.6i 0.860737i
\(592\) −11943.3 + 11943.3i −0.829167 + 0.829167i
\(593\) 6228.02 6228.02i 0.431289 0.431289i −0.457778 0.889067i \(-0.651355\pi\)
0.889067 + 0.457778i \(0.151355\pi\)
\(594\) 563.724 0.0389392
\(595\) −8769.52 766.779i −0.604227 0.0528317i
\(596\) −24036.7 −1.65198
\(597\) 1587.18 1587.18i 0.108809 0.108809i
\(598\) 786.672 786.672i 0.0537950 0.0537950i
\(599\) 6066.56i 0.413811i 0.978361 + 0.206906i \(0.0663393\pi\)
−0.978361 + 0.206906i \(0.933661\pi\)
\(600\) −1069.45 + 1698.41i −0.0727665 + 0.115562i
\(601\) 14162.7i 0.961245i 0.876928 + 0.480622i \(0.159589\pi\)
−0.876928 + 0.480622i \(0.840411\pi\)
\(602\) 68.2936 13.4008i 0.00462366 0.000907269i
\(603\) −399.318 399.318i −0.0269676 0.0269676i
\(604\) 16890.6i 1.13786i
\(605\) 10782.8 5952.73i 0.724600 0.400021i
\(606\) 1065.15 0.0714003
\(607\) 13148.7 + 13148.7i 0.879223 + 0.879223i 0.993454 0.114231i \(-0.0364405\pi\)
−0.114231 + 0.993454i \(0.536440\pi\)
\(608\) −2135.56 + 2135.56i −0.142448 + 0.142448i
\(609\) −6630.01 4454.89i −0.441152 0.296422i
\(610\) 826.223 + 238.458i 0.0548407 + 0.0158277i
\(611\) −8095.29 −0.536007
\(612\) −2376.13 2376.13i −0.156944 0.156944i
\(613\) −6838.92 6838.92i −0.450606 0.450606i 0.444950 0.895556i \(-0.353222\pi\)
−0.895556 + 0.444950i \(0.853222\pi\)
\(614\) 1993.55 0.131031
\(615\) −16445.4 4746.34i −1.07828 0.311205i
\(616\) −905.389 608.357i −0.0592194 0.0397912i
\(617\) −10902.0 + 10902.0i −0.711343 + 0.711343i −0.966816 0.255473i \(-0.917769\pi\)
0.255473 + 0.966816i \(0.417769\pi\)
\(618\) −56.5319 56.5319i −0.00367969 0.00367969i
\(619\) 19890.2 1.29153 0.645764 0.763537i \(-0.276539\pi\)
0.645764 + 0.763537i \(0.276539\pi\)
\(620\) 24695.7 13633.5i 1.59968 0.883118i
\(621\) 12211.9i 0.789122i
\(622\) 642.570 + 642.570i 0.0414223 + 0.0414223i
\(623\) 19340.0 3794.96i 1.24373 0.244048i
\(624\) 14718.5i 0.944251i
\(625\) −6752.55 14090.6i −0.432163 0.901795i
\(626\) 1035.64i 0.0661220i
\(627\) 2879.03 2879.03i 0.183377 0.183377i
\(628\) 12415.8 12415.8i 0.788927 0.788927i
\(629\) 11475.4 0.727429
\(630\) −500.960 43.8024i −0.0316805 0.00277004i
\(631\) −1793.20 −0.113132 −0.0565660 0.998399i \(-0.518015\pi\)
−0.0565660 + 0.998399i \(0.518015\pi\)
\(632\) −974.780 + 974.780i −0.0613523 + 0.0613523i
\(633\) −2420.61 + 2420.61i −0.151992 + 0.151992i
\(634\) 848.634i 0.0531602i
\(635\) 3206.27 11109.3i 0.200373 0.694265i
\(636\) 15404.2i 0.960405i
\(637\) 7571.43 18014.7i 0.470943 1.12052i
\(638\) −272.926 272.926i −0.0169361 0.0169361i
\(639\) 9027.45i 0.558874i
\(640\) 5267.89 + 1520.38i 0.325362 + 0.0939034i
\(641\) −6815.86 −0.419985 −0.209992 0.977703i \(-0.567344\pi\)
−0.209992 + 0.977703i \(0.567344\pi\)
\(642\) 1344.73 + 1344.73i 0.0826671 + 0.0826671i
\(643\) −5954.74 + 5954.74i −0.365213 + 0.365213i −0.865728 0.500515i \(-0.833144\pi\)
0.500515 + 0.865728i \(0.333144\pi\)
\(644\) −6564.77 + 9770.03i −0.401689 + 0.597816i
\(645\) 622.428 343.616i 0.0379971 0.0209766i
\(646\) 675.422 0.0411364
\(647\) −10290.5 10290.5i −0.625288 0.625288i 0.321591 0.946879i \(-0.395782\pi\)
−0.946879 + 0.321591i \(0.895782\pi\)
\(648\) 993.142 + 993.142i 0.0602072 + 0.0602072i
\(649\) 7341.70 0.444048
\(650\) −1470.25 925.777i −0.0887199 0.0558646i
\(651\) −20166.7 13550.6i −1.21412 0.815805i
\(652\) 10678.6 10678.6i 0.641418 0.641418i
\(653\) 20937.8 + 20937.8i 1.25476 + 1.25476i 0.953561 + 0.301202i \(0.0973877\pi\)
0.301202 + 0.953561i \(0.402612\pi\)
\(654\) 326.765 0.0195375
\(655\) −8123.27 14714.5i −0.484584 0.877778i
\(656\) 23203.7i 1.38102i
\(657\) −961.009 961.009i −0.0570663 0.0570663i
\(658\) −630.032 + 123.627i −0.0373271 + 0.00732444i
\(659\) 4483.31i 0.265015i 0.991182 + 0.132508i \(0.0423029\pi\)
−0.991182 + 0.132508i \(0.957697\pi\)
\(660\) −5333.17 1539.22i −0.314535 0.0907787i
\(661\) 10736.8i 0.631793i −0.948794 0.315896i \(-0.897695\pi\)
0.948794 0.315896i \(-0.102305\pi\)
\(662\) −1175.25 + 1175.25i −0.0689991 + 0.0689991i
\(663\) −7070.92 + 7070.92i −0.414196 + 0.414196i
\(664\) −2873.40 −0.167936
\(665\) −10328.6 + 8667.63i −0.602295 + 0.505438i
\(666\) 655.532 0.0381402
\(667\) −5912.36 + 5912.36i −0.343219 + 0.343219i
\(668\) 11622.4 11622.4i 0.673182 0.673182i
\(669\) 14779.3i 0.854113i
\(670\) −74.7892 135.473i −0.00431247 0.00781164i
\(671\) 4774.45i 0.274688i
\(672\) −682.847 3479.95i −0.0391985 0.199765i
\(673\) 1551.60 + 1551.60i 0.0888706 + 0.0888706i 0.750145 0.661274i \(-0.229984\pi\)
−0.661274 + 0.750145i \(0.729984\pi\)
\(674\) 638.491i 0.0364893i
\(675\) −18597.3 + 4226.04i −1.06046 + 0.240978i
\(676\) 8327.43 0.473795
\(677\) −1139.42 1139.42i −0.0646844 0.0646844i 0.674025 0.738709i \(-0.264564\pi\)
−0.738709 + 0.674025i \(0.764564\pi\)
\(678\) −137.091 + 137.091i −0.00776543 + 0.00776543i
\(679\) 12553.8 + 8435.27i 0.709531 + 0.476754i
\(680\) −893.398 1618.31i −0.0503827 0.0912635i
\(681\) −1655.87 −0.0931764
\(682\) −830.168 830.168i −0.0466111 0.0466111i
\(683\) −6497.27 6497.27i −0.363999 0.363999i 0.501284 0.865283i \(-0.332861\pi\)
−0.865283 + 0.501284i \(0.832861\pi\)
\(684\) −5147.10 −0.287725
\(685\) −8412.82 + 29149.2i −0.469251 + 1.62589i
\(686\) 314.150 1517.66i 0.0174844 0.0844672i
\(687\) 13064.7 13064.7i 0.725542 0.725542i
\(688\) −681.522 681.522i −0.0377657 0.0377657i
\(689\) −26769.6 −1.48018
\(690\) 249.951 866.046i 0.0137905 0.0477823i
\(691\) 19123.4i 1.05280i 0.850236 + 0.526402i \(0.176459\pi\)
−0.850236 + 0.526402i \(0.823541\pi\)
\(692\) 16023.2 + 16023.2i 0.880216 + 0.880216i
\(693\) −537.596 2739.71i −0.0294683 0.150178i
\(694\) 1398.64i 0.0765011i
\(695\) −6450.18 + 3560.87i −0.352042 + 0.194348i
\(696\) 1677.33i 0.0913491i
\(697\) 11147.3 11147.3i 0.605786 0.605786i
\(698\) 299.235 299.235i 0.0162267 0.0162267i
\(699\) 12117.1 0.655664
\(700\) 17150.5 + 6616.38i 0.926038 + 0.357251i
\(701\) 1396.73 0.0752551 0.0376275 0.999292i \(-0.488020\pi\)
0.0376275 + 0.999292i \(0.488020\pi\)
\(702\) −1499.54 + 1499.54i −0.0806216 + 0.0806216i
\(703\) 12428.8 12428.8i 0.666799 0.666799i
\(704\) 7409.89i 0.396692i
\(705\) −5742.11 + 3169.98i −0.306752 + 0.169345i
\(706\) 2661.26i 0.141867i
\(707\) −3770.96 19217.7i −0.200596 1.02229i
\(708\) 11237.9 + 11237.9i 0.596534 + 0.596534i
\(709\) 23710.1i 1.25592i 0.778244 + 0.627962i \(0.216111\pi\)
−0.778244 + 0.627962i \(0.783889\pi\)
\(710\) −685.950 + 2376.72i −0.0362581 + 0.125629i
\(711\) −3528.49 −0.186116
\(712\) 2926.47 + 2926.47i 0.154037 + 0.154037i
\(713\) −17983.8 + 17983.8i −0.944598 + 0.944598i
\(714\) −442.325 + 658.292i −0.0231843 + 0.0345041i
\(715\) 2674.87 9268.04i 0.139908 0.484762i
\(716\) −17570.8 −0.917110
\(717\) −1639.24 1639.24i −0.0853817 0.0853817i
\(718\) 337.745 + 337.745i 0.0175551 + 0.0175551i
\(719\) −19736.1 −1.02369 −0.511844 0.859078i \(-0.671037\pi\)
−0.511844 + 0.859078i \(0.671037\pi\)
\(720\) 3365.78 + 6096.78i 0.174215 + 0.315575i
\(721\) −819.826 + 1220.11i −0.0423466 + 0.0630225i
\(722\) −451.747 + 451.747i −0.0232857 + 0.0232857i
\(723\) −1435.54 1435.54i −0.0738429 0.0738429i
\(724\) 16492.6 0.846608
\(725\) 11049.9 + 6957.82i 0.566045 + 0.356423i
\(726\) 1109.67i 0.0567269i
\(727\) 6487.90 + 6487.90i 0.330981 + 0.330981i 0.852959 0.521978i \(-0.174806\pi\)
−0.521978 + 0.852959i \(0.674806\pi\)
\(728\) 4026.65 790.123i 0.204997 0.0402251i
\(729\) 20602.6i 1.04672i
\(730\) −179.990 326.034i −0.00912563 0.0165302i
\(731\) 654.819i 0.0331318i
\(732\) −7308.22 + 7308.22i −0.369016 + 0.369016i
\(733\) −2787.63 + 2787.63i −0.140469 + 0.140469i −0.773844 0.633376i \(-0.781669\pi\)
0.633376 + 0.773844i \(0.281669\pi\)
\(734\) 514.061 0.0258506
\(735\) −1683.73 15743.0i −0.0844972 0.790052i
\(736\) −3712.20 −0.185915
\(737\) 607.516 607.516i 0.0303638 0.0303638i
\(738\) 636.789 636.789i 0.0317623 0.0317623i
\(739\) 10052.4i 0.500384i −0.968196 0.250192i \(-0.919506\pi\)
0.968196 0.250192i \(-0.0804938\pi\)
\(740\) −23023.3 6644.79i −1.14372 0.330091i
\(741\) 15316.8i 0.759347i
\(742\) −2083.40 + 408.812i −0.103078 + 0.0202263i
\(743\) −12894.8 12894.8i −0.636697 0.636697i 0.313042 0.949739i \(-0.398652\pi\)
−0.949739 + 0.313042i \(0.898652\pi\)
\(744\) 5101.98i 0.251408i
\(745\) −16356.9 29629.0i −0.804391 1.45708i
\(746\) 240.697 0.0118131
\(747\) −5200.54 5200.54i −0.254723 0.254723i
\(748\) 3615.01 3615.01i 0.176708 0.176708i
\(749\) 19501.3 29022.8i 0.951350 1.41585i
\(750\) −1405.39 80.9432i −0.0684234 0.00394084i
\(751\) 11311.9 0.549637 0.274818 0.961496i \(-0.411382\pi\)
0.274818 + 0.961496i \(0.411382\pi\)
\(752\) 6287.27 + 6287.27i 0.304884 + 0.304884i
\(753\) 13846.1 + 13846.1i 0.670094 + 0.670094i
\(754\) 1452.00 0.0701308
\(755\) 20820.3 11494.0i 1.00361 0.554052i
\(756\) 12513.6 18623.4i 0.602005 0.895935i
\(757\) −3513.21 + 3513.21i −0.168679 + 0.168679i −0.786398 0.617720i \(-0.788057\pi\)
0.617720 + 0.786398i \(0.288057\pi\)
\(758\) 1248.23 + 1248.23i 0.0598126 + 0.0598126i
\(759\) 5004.57 0.239334
\(760\) −2720.38 785.135i −0.129840 0.0374735i
\(761\) 24202.1i 1.15286i −0.817147 0.576430i \(-0.804446\pi\)
0.817147 0.576430i \(-0.195554\pi\)
\(762\) −736.615 736.615i −0.0350193 0.0350193i
\(763\) −1156.85 5895.59i −0.0548897 0.279731i
\(764\) 16192.8i 0.766797i
\(765\) 1312.00 4545.90i 0.0620072 0.214846i
\(766\) 1328.72i 0.0626743i
\(767\) −19529.3 + 19529.3i −0.919379 + 0.919379i
\(768\) −11078.0 + 11078.0i −0.520499 + 0.520499i
\(769\) −13151.0 −0.616691 −0.308346 0.951274i \(-0.599775\pi\)
−0.308346 + 0.951274i \(0.599775\pi\)
\(770\) 66.6402 762.153i 0.00311889 0.0356702i
\(771\) −5294.33 −0.247303
\(772\) 3202.55 3202.55i 0.149303 0.149303i
\(773\) 1544.91 1544.91i 0.0718842 0.0718842i −0.670251 0.742135i \(-0.733813\pi\)
0.742135 + 0.670251i \(0.233813\pi\)
\(774\) 37.4066i 0.00173715i
\(775\) 33610.8 + 21163.8i 1.55785 + 0.980937i
\(776\) 3176.00i 0.146922i
\(777\) 3974.11 + 20253.0i 0.183488 + 0.935099i
\(778\) −244.376 244.376i −0.0112613 0.0112613i
\(779\) 24146.8i 1.11059i
\(780\) 18280.9 10092.1i 0.839183 0.463277i
\(781\) −13734.2 −0.629256
\(782\) 587.036 + 587.036i 0.0268445 + 0.0268445i
\(783\) 11270.0 11270.0i 0.514377 0.514377i
\(784\) −19871.7 + 8110.87i −0.905233 + 0.369482i
\(785\) 23753.4 + 6855.51i 1.07999 + 0.311699i
\(786\) −1514.29 −0.0687187
\(787\) −13390.9 13390.9i −0.606522 0.606522i 0.335514 0.942035i \(-0.391090\pi\)
−0.942035 + 0.335514i \(0.891090\pi\)
\(788\) −16818.1 16818.1i −0.760303 0.760303i
\(789\) 21683.0 0.978371
\(790\) −928.970 268.112i −0.0418370 0.0120747i
\(791\) 2958.80 + 1988.10i 0.133000 + 0.0893662i
\(792\) 414.564 414.564i 0.0185996 0.0185996i
\(793\) −12700.3 12700.3i −0.568728 0.568728i
\(794\) −3549.21 −0.158636
\(795\) −18988.1 + 10482.5i −0.847093 + 0.467644i
\(796\) 4316.99i 0.192226i
\(797\) 10313.5 + 10313.5i 0.458372 + 0.458372i 0.898121 0.439749i \(-0.144933\pi\)
−0.439749 + 0.898121i \(0.644933\pi\)
\(798\) 233.910 + 1192.06i 0.0103763 + 0.0528802i
\(799\) 6040.93i 0.267475i
\(800\) 1284.65 + 5653.27i 0.0567739 + 0.249842i
\(801\) 10593.2i 0.467280i
\(802\) 1691.50 1691.50i 0.0744750 0.0744750i
\(803\) 1462.06 1462.06i 0.0642530 0.0642530i
\(804\) 1859.84 0.0815816
\(805\) −16510.4 1443.62i −0.722876 0.0632059i
\(806\) 4416.59 0.193012
\(807\) −409.673 + 409.673i −0.0178701 + 0.0178701i
\(808\) 2907.96 2907.96i 0.126611 0.126611i
\(809\) 18738.4i 0.814347i −0.913351 0.407173i \(-0.866514\pi\)
0.913351 0.407173i \(-0.133486\pi\)
\(810\) −273.162 + 946.468i −0.0118493 + 0.0410562i
\(811\) 3494.94i 0.151324i −0.997134 0.0756621i \(-0.975893\pi\)
0.997134 0.0756621i \(-0.0241070\pi\)
\(812\) −15075.0 + 2958.06i −0.651511 + 0.127842i
\(813\) −12454.4 12454.4i −0.537262 0.537262i
\(814\) 997.316i 0.0429434i
\(815\) 20429.7 + 5896.26i 0.878063 + 0.253419i
\(816\) 10983.4 0.471194
\(817\) 709.224 + 709.224i 0.0303704 + 0.0303704i
\(818\) −256.355 + 256.355i −0.0109575 + 0.0109575i
\(819\) 8717.83 + 5857.76i 0.371948 + 0.249923i
\(820\) −28819.8 + 15910.2i −1.22735 + 0.677571i
\(821\) 23319.4 0.991296 0.495648 0.868524i \(-0.334931\pi\)
0.495648 + 0.868524i \(0.334931\pi\)
\(822\) 1932.78 + 1932.78i 0.0820113 + 0.0820113i
\(823\) 18512.9 + 18512.9i 0.784105 + 0.784105i 0.980521 0.196416i \(-0.0629303\pi\)
−0.196416 + 0.980521i \(0.562930\pi\)
\(824\) −308.676 −0.0130500
\(825\) −1731.88 7621.40i −0.0730866 0.321628i
\(826\) −1221.67 + 1818.15i −0.0514616 + 0.0765878i
\(827\) −17866.3 + 17866.3i −0.751236 + 0.751236i −0.974710 0.223474i \(-0.928260\pi\)
0.223474 + 0.974710i \(0.428260\pi\)
\(828\) −4473.55 4473.55i −0.187762 0.187762i
\(829\) −31760.9 −1.33064 −0.665321 0.746557i \(-0.731706\pi\)
−0.665321 + 0.746557i \(0.731706\pi\)
\(830\) −974.021 1764.35i −0.0407335 0.0737848i
\(831\) 8913.76i 0.372100i
\(832\) −19710.7 19710.7i −0.821330 0.821330i
\(833\) 13443.1 + 5650.01i 0.559154 + 0.235007i
\(834\) 663.795i 0.0275604i
\(835\) 22235.5 + 6417.43i 0.921546 + 0.265969i
\(836\) 7830.71i 0.323960i
\(837\) 34280.3 34280.3i 1.41565 1.41565i
\(838\) −726.336 + 726.336i −0.0299414 + 0.0299414i
\(839\) −33411.9 −1.37486 −0.687429 0.726251i \(-0.741261\pi\)
−0.687429 + 0.726251i \(0.741261\pi\)
\(840\) 2546.77 2137.21i 0.104609 0.0877868i
\(841\) 13476.3 0.552556
\(842\) −737.022 + 737.022i −0.0301656 + 0.0301656i
\(843\) −21003.5 + 21003.5i −0.858123 + 0.858123i
\(844\) 6583.85i 0.268514i
\(845\) 5666.79 + 10264.9i 0.230702 + 0.417895i
\(846\) 345.089i 0.0140241i
\(847\) −20021.0 + 3928.59i −0.812197 + 0.159372i
\(848\) 20790.8 + 20790.8i 0.841934 + 0.841934i
\(849\) 15079.4i 0.609567i
\(850\) 690.840 1097.14i 0.0278772 0.0442725i
\(851\) 21604.7 0.870270
\(852\) −21022.9 21022.9i −0.845343 0.845343i
\(853\) −13286.0 + 13286.0i −0.533301 + 0.533301i −0.921553 0.388252i \(-0.873079\pi\)
0.388252 + 0.921553i \(0.373079\pi\)
\(854\) −1182.38 794.474i −0.0473772 0.0318341i
\(855\) −3502.58 6344.60i −0.140100 0.253779i
\(856\) 7342.51 0.293180
\(857\) 28818.2 + 28818.2i 1.14867 + 1.14867i 0.986814 + 0.161857i \(0.0517483\pi\)
0.161857 + 0.986814i \(0.448252\pi\)
\(858\) −614.529 614.529i −0.0244518 0.0244518i
\(859\) 39733.3 1.57821 0.789106 0.614258i \(-0.210544\pi\)
0.789106 + 0.614258i \(0.210544\pi\)
\(860\) 379.172 1313.78i 0.0150345 0.0520924i
\(861\) 23534.4 + 15813.4i 0.931534 + 0.625924i
\(862\) −354.588 + 354.588i −0.0140108 + 0.0140108i
\(863\) −22961.7 22961.7i −0.905709 0.905709i 0.0902133 0.995922i \(-0.471245\pi\)
−0.995922 + 0.0902133i \(0.971245\pi\)
\(864\) 7076.12 0.278628
\(865\) −8847.33 + 30654.8i −0.347767 + 1.20496i
\(866\) 579.495i 0.0227391i
\(867\) 9066.45 + 9066.45i 0.355147 + 0.355147i
\(868\) −45853.9 + 8997.61i −1.79307 + 0.351842i
\(869\) 5368.18i 0.209555i
\(870\) 1029.92 568.578i 0.0401353 0.0221570i
\(871\) 3232.05i 0.125734i
\(872\) 892.101 892.101i 0.0346449 0.0346449i
\(873\) −5748.21 + 5748.21i −0.222849 + 0.222849i
\(874\) 1271.62 0.0492141
\(875\) 3515.13 + 25643.0i 0.135809 + 0.990735i
\(876\) 4475.95 0.172635
\(877\) 154.614 154.614i 0.00595319 0.00595319i −0.704124 0.710077i \(-0.748660\pi\)
0.710077 + 0.704124i \(0.248660\pi\)
\(878\) −1622.86 + 1622.86i −0.0623791 + 0.0623791i
\(879\) 37177.0i 1.42656i
\(880\) −9275.55 + 5120.64i −0.355317 + 0.196155i
\(881\) 18280.7i 0.699082i −0.936921 0.349541i \(-0.886338\pi\)
0.936921 0.349541i \(-0.113662\pi\)
\(882\) 767.938 + 322.757i 0.0293173 + 0.0123218i
\(883\) −571.541 571.541i −0.0217824 0.0217824i 0.696132 0.717914i \(-0.254903\pi\)
−0.717914 + 0.696132i \(0.754903\pi\)
\(884\) 19232.3i 0.731732i
\(885\) −6205.10 + 21499.8i −0.235686 + 0.816619i
\(886\) 785.632 0.0297899
\(887\) 8548.86 + 8548.86i 0.323611 + 0.323611i 0.850151 0.526540i \(-0.176511\pi\)
−0.526540 + 0.850151i \(0.676511\pi\)
\(888\) −3064.61 + 3064.61i −0.115813 + 0.115813i
\(889\) −10682.4 + 15898.1i −0.403010 + 0.599781i
\(890\) −804.920 + 2788.94i −0.0303157 + 0.105040i
\(891\) −5469.30 −0.205644
\(892\) 20099.2 + 20099.2i 0.754452 + 0.754452i
\(893\) −6542.83 6542.83i −0.245182 0.245182i
\(894\) −3049.15 −0.114070
\(895\) −11956.9 21658.7i −0.446563 0.808906i
\(896\) −7538.69 5065.46i −0.281083 0.188867i
\(897\) −13312.4 + 13312.4i −0.495529 + 0.495529i
\(898\) −867.573 867.573i −0.0322397 0.0322397i
\(899\) −33193.5 −1.23144
\(900\) −5264.59 + 8360.83i −0.194985 + 0.309660i
\(901\) 19976.2i 0.738629i
\(902\) 968.801 + 968.801i 0.0357623 + 0.0357623i
\(903\) −1155.70 + 226.775i −0.0425905 + 0.00835724i
\(904\) 748.548i 0.0275402i
\(905\) 11223.2 + 20329.7i 0.412234 + 0.746722i
\(906\) 2142.64i 0.0785699i
\(907\) 6054.46 6054.46i 0.221648 0.221648i −0.587544 0.809192i \(-0.699905\pi\)
0.809192 + 0.587544i \(0.199905\pi\)
\(908\) −2251.91 + 2251.91i −0.0823043 + 0.0823043i
\(909\) 10526.2 0.384082
\(910\) 1850.10 + 2204.64i 0.0673959 + 0.0803110i
\(911\) 23536.9 0.855995 0.427998 0.903780i \(-0.359219\pi\)
0.427998 + 0.903780i \(0.359219\pi\)
\(912\) 11895.9 11895.9i 0.431922 0.431922i
\(913\) 7912.02 7912.02i 0.286801 0.286801i
\(914\) 4400.61i 0.159255i
\(915\) −13981.7 4035.30i −0.505161 0.145795i
\(916\) 35534.7i 1.28177i
\(917\) 5361.07 + 27321.3i 0.193062 + 0.983891i
\(918\) −1119.00 1119.00i −0.0402313 0.0402313i
\(919\) 2009.73i 0.0721380i 0.999349 + 0.0360690i \(0.0114836\pi\)
−0.999349 + 0.0360690i \(0.988516\pi\)
\(920\) −1682.00 3046.79i −0.0602761 0.109184i
\(921\) −33735.8 −1.20699
\(922\) −2191.43 2191.43i −0.0782766 0.0782766i
\(923\) 36533.8 36533.8i 1.30284 1.30284i
\(924\) 7632.11 + 5128.23i 0.271729 + 0.182583i
\(925\) −7476.53 32901.5i −0.265759 1.16951i
\(926\) −3769.73 −0.133781
\(927\) −558.669 558.669i −0.0197941 0.0197941i
\(928\) −3425.90 3425.90i −0.121186 0.121186i
\(929\) −23919.9 −0.844764 −0.422382 0.906418i \(-0.638806\pi\)
−0.422382 + 0.906418i \(0.638806\pi\)
\(930\) 3132.75 1729.46i 0.110459 0.0609798i
\(931\) 20679.4 8440.55i 0.727970 0.297130i
\(932\) 16478.6 16478.6i 0.579159 0.579159i
\(933\) −10873.9 10873.9i −0.381559 0.381559i
\(934\) 2458.59 0.0861322
\(935\) 6916.07 + 1996.06i 0.241903 + 0.0698162i
\(936\) 2205.53i 0.0770192i
\(937\) −31840.2 31840.2i −1.11011 1.11011i −0.993135 0.116976i \(-0.962680\pi\)
−0.116976 0.993135i \(-0.537320\pi\)
\(938\) 49.3582 + 251.541i 0.00171813 + 0.00875598i
\(939\) 17525.5i 0.609078i
\(940\) −3497.99 + 12120.0i −0.121374 + 0.420545i
\(941\) 34998.1i 1.21244i 0.795297 + 0.606220i \(0.207315\pi\)
−0.795297 + 0.606220i \(0.792685\pi\)
\(942\) 1575.00 1575.00i 0.0544758 0.0544758i
\(943\) 20987.0 20987.0i 0.724741 0.724741i
\(944\) 30335.2 1.04590
\(945\) 31471.7 + 2751.79i 1.08336 + 0.0947256i
\(946\) −56.9099 −0.00195592
\(947\) 18008.6 18008.6i 0.617951 0.617951i −0.327055 0.945005i \(-0.606056\pi\)
0.945005 + 0.327055i \(0.106056\pi\)
\(948\) 8217.05 8217.05i 0.281516 0.281516i
\(949\) 7778.35i 0.266065i
\(950\) −440.057 1936.53i −0.0150288 0.0661362i
\(951\) 14361.0i 0.489681i
\(952\) 589.611 + 3004.80i 0.0200729 + 0.102296i
\(953\) 6157.51 + 6157.51i 0.209298 + 0.209298i 0.803969 0.594671i \(-0.202718\pi\)
−0.594671 + 0.803969i \(0.702718\pi\)
\(954\) 1141.15i 0.0387274i
\(955\) 19960.1 11019.1i 0.676328 0.373372i
\(956\) −4458.59 −0.150838
\(957\) 4618.59 + 4618.59i 0.156006 + 0.156006i
\(958\) 2199.15 2199.15i 0.0741662 0.0741662i
\(959\) 28029.1 41714.4i 0.943803 1.40462i
\(960\) −21699.5 6262.74i −0.729530 0.210551i
\(961\) −71174.7 −2.38913
\(962\) −2652.92 2652.92i −0.0889121 0.0889121i
\(963\) 13289.1 + 13289.1i 0.444689 + 0.444689i
\(964\) −3904.55 −0.130453
\(965\) 6126.96 + 1768.31i 0.204387 + 0.0589886i
\(966\) −832.766 + 1239.37i −0.0277369 + 0.0412795i
\(967\) −28380.1 + 28380.1i −0.943788 + 0.943788i −0.998502 0.0547136i \(-0.982575\pi\)
0.0547136 + 0.998502i \(0.482575\pi\)
\(968\) −3029.51 3029.51i −0.100591 0.100591i
\(969\) −11429.8 −0.378925
\(970\) −1950.15 + 1076.59i −0.0645520 + 0.0356364i
\(971\) 2873.09i 0.0949557i 0.998872 + 0.0474778i \(0.0151183\pi\)
−0.998872 + 0.0474778i \(0.984882\pi\)
\(972\) 14757.8 + 14757.8i 0.486991 + 0.486991i
\(973\) 11976.4 2350.05i 0.394600 0.0774297i
\(974\) 1468.24i 0.0483013i
\(975\) 24880.3 + 15666.4i 0.817237 + 0.514592i
\(976\) 19727.6i 0.646992i
\(977\) −16501.7 + 16501.7i −0.540366 + 0.540366i −0.923636 0.383270i \(-0.874798\pi\)
0.383270 + 0.923636i \(0.374798\pi\)
\(978\) 1354.62 1354.62i 0.0442903 0.0442903i
\(979\) −16116.3 −0.526127
\(980\) −23699.5 19119.9i −0.772503 0.623228i
\(981\) 3229.21 0.105098
\(982\) 1084.24 1084.24i 0.0352336 0.0352336i
\(983\) −26447.8 + 26447.8i −0.858143 + 0.858143i −0.991119 0.132976i \(-0.957547\pi\)
0.132976 + 0.991119i \(0.457547\pi\)
\(984\) 5953.99i 0.192892i
\(985\) 9286.24 32175.5i 0.300390 1.04081i
\(986\) 1083.52i 0.0349963i
\(987\) 10661.7 2092.07i 0.343835 0.0674685i
\(988\) 20830.1 + 20830.1i 0.670744 + 0.670744i
\(989\) 1232.83i 0.0396377i
\(990\) 395.081 + 114.025i 0.0126833 + 0.00366056i
\(991\) −15569.4 −0.499070 −0.249535 0.968366i \(-0.580278\pi\)
−0.249535 + 0.968366i \(0.580278\pi\)
\(992\) −10420.6 10420.6i −0.333524 0.333524i
\(993\) 19888.2 19888.2i 0.635581 0.635581i
\(994\) 2285.39 3401.24i 0.0729257 0.108532i
\(995\) 5321.37 2937.70i 0.169546 0.0935994i
\(996\) 24221.8 0.770578
\(997\) −5027.25 5027.25i −0.159694 0.159694i 0.622737 0.782431i \(-0.286021\pi\)
−0.782431 + 0.622737i \(0.786021\pi\)
\(998\) 1150.05 + 1150.05i 0.0364772 + 0.0364772i
\(999\) −41182.4 −1.30426
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.4.f.b.13.3 16
5.2 odd 4 inner 35.4.f.b.27.4 yes 16
5.3 odd 4 175.4.f.g.132.5 16
5.4 even 2 175.4.f.g.118.6 16
7.2 even 3 245.4.l.b.178.5 32
7.3 odd 6 245.4.l.b.68.3 32
7.4 even 3 245.4.l.b.68.4 32
7.5 odd 6 245.4.l.b.178.6 32
7.6 odd 2 inner 35.4.f.b.13.4 yes 16
35.2 odd 12 245.4.l.b.227.3 32
35.12 even 12 245.4.l.b.227.4 32
35.13 even 4 175.4.f.g.132.6 16
35.17 even 12 245.4.l.b.117.5 32
35.27 even 4 inner 35.4.f.b.27.3 yes 16
35.32 odd 12 245.4.l.b.117.6 32
35.34 odd 2 175.4.f.g.118.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.f.b.13.3 16 1.1 even 1 trivial
35.4.f.b.13.4 yes 16 7.6 odd 2 inner
35.4.f.b.27.3 yes 16 35.27 even 4 inner
35.4.f.b.27.4 yes 16 5.2 odd 4 inner
175.4.f.g.118.5 16 35.34 odd 2
175.4.f.g.118.6 16 5.4 even 2
175.4.f.g.132.5 16 5.3 odd 4
175.4.f.g.132.6 16 35.13 even 4
245.4.l.b.68.3 32 7.3 odd 6
245.4.l.b.68.4 32 7.4 even 3
245.4.l.b.117.5 32 35.17 even 12
245.4.l.b.117.6 32 35.32 odd 12
245.4.l.b.178.5 32 7.2 even 3
245.4.l.b.178.6 32 7.5 odd 6
245.4.l.b.227.3 32 35.2 odd 12
245.4.l.b.227.4 32 35.12 even 12