Properties

Label 342.4.a.m.1.2
Level $342$
Weight $4$
Character 342.1
Self dual yes
Analytic conductor $20.179$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [342,4,Mod(1,342)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(342, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("342.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,0,12,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1786532220\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.56956.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 31x - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.70956\) of defining polynomial
Character \(\chi\) \(=\) 342.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} +5.12868 q^{5} -6.23917 q^{7} +8.00000 q^{8} +10.2574 q^{10} -13.8644 q^{11} +67.4714 q^{13} -12.4783 q^{14} +16.0000 q^{16} +77.5706 q^{17} +19.0000 q^{19} +20.5147 q^{20} -27.7287 q^{22} +179.164 q^{23} -98.6967 q^{25} +134.943 q^{26} -24.9567 q^{28} -178.107 q^{29} +302.291 q^{31} +32.0000 q^{32} +155.141 q^{34} -31.9987 q^{35} -280.291 q^{37} +38.0000 q^{38} +41.0294 q^{40} +264.906 q^{41} -47.8197 q^{43} -55.4575 q^{44} +358.327 q^{46} +491.993 q^{47} -304.073 q^{49} -197.393 q^{50} +269.886 q^{52} -56.6073 q^{53} -71.1059 q^{55} -49.9133 q^{56} -356.213 q^{58} +588.974 q^{59} -3.89778 q^{61} +604.582 q^{62} +64.0000 q^{64} +346.039 q^{65} -488.369 q^{67} +310.283 q^{68} -63.9974 q^{70} +447.575 q^{71} -231.943 q^{73} -560.582 q^{74} +76.0000 q^{76} +86.5021 q^{77} -486.736 q^{79} +82.0589 q^{80} +529.813 q^{82} -898.560 q^{83} +397.835 q^{85} -95.6394 q^{86} -110.915 q^{88} +825.497 q^{89} -420.965 q^{91} +716.655 q^{92} +983.987 q^{94} +97.4449 q^{95} -1432.98 q^{97} -608.146 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} + 12 q^{4} + 14 q^{7} + 24 q^{8} + 70 q^{11} + 10 q^{13} + 28 q^{14} + 48 q^{16} + 148 q^{17} + 57 q^{19} + 140 q^{22} + 118 q^{23} + 183 q^{25} + 20 q^{26} + 56 q^{28} + 270 q^{29} + 64 q^{31}+ \cdots - 966 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.12868 0.458723 0.229361 0.973341i \(-0.426336\pi\)
0.229361 + 0.973341i \(0.426336\pi\)
\(6\) 0 0
\(7\) −6.23917 −0.336883 −0.168442 0.985712i \(-0.553873\pi\)
−0.168442 + 0.985712i \(0.553873\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 10.2574 0.324366
\(11\) −13.8644 −0.380024 −0.190012 0.981782i \(-0.560853\pi\)
−0.190012 + 0.981782i \(0.560853\pi\)
\(12\) 0 0
\(13\) 67.4714 1.43948 0.719738 0.694246i \(-0.244262\pi\)
0.719738 + 0.694246i \(0.244262\pi\)
\(14\) −12.4783 −0.238213
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 77.5706 1.10668 0.553342 0.832954i \(-0.313352\pi\)
0.553342 + 0.832954i \(0.313352\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 20.5147 0.229361
\(21\) 0 0
\(22\) −27.7287 −0.268718
\(23\) 179.164 1.62427 0.812135 0.583469i \(-0.198305\pi\)
0.812135 + 0.583469i \(0.198305\pi\)
\(24\) 0 0
\(25\) −98.6967 −0.789573
\(26\) 134.943 1.01786
\(27\) 0 0
\(28\) −24.9567 −0.168442
\(29\) −178.107 −1.14047 −0.570234 0.821483i \(-0.693147\pi\)
−0.570234 + 0.821483i \(0.693147\pi\)
\(30\) 0 0
\(31\) 302.291 1.75139 0.875695 0.482865i \(-0.160404\pi\)
0.875695 + 0.482865i \(0.160404\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) 155.141 0.782544
\(35\) −31.9987 −0.154536
\(36\) 0 0
\(37\) −280.291 −1.24539 −0.622697 0.782463i \(-0.713963\pi\)
−0.622697 + 0.782463i \(0.713963\pi\)
\(38\) 38.0000 0.162221
\(39\) 0 0
\(40\) 41.0294 0.162183
\(41\) 264.906 1.00906 0.504530 0.863394i \(-0.331666\pi\)
0.504530 + 0.863394i \(0.331666\pi\)
\(42\) 0 0
\(43\) −47.8197 −0.169592 −0.0847958 0.996398i \(-0.527024\pi\)
−0.0847958 + 0.996398i \(0.527024\pi\)
\(44\) −55.4575 −0.190012
\(45\) 0 0
\(46\) 358.327 1.14853
\(47\) 491.993 1.52691 0.763453 0.645863i \(-0.223502\pi\)
0.763453 + 0.645863i \(0.223502\pi\)
\(48\) 0 0
\(49\) −304.073 −0.886510
\(50\) −197.393 −0.558313
\(51\) 0 0
\(52\) 269.886 0.719738
\(53\) −56.6073 −0.146710 −0.0733549 0.997306i \(-0.523371\pi\)
−0.0733549 + 0.997306i \(0.523371\pi\)
\(54\) 0 0
\(55\) −71.1059 −0.174326
\(56\) −49.9133 −0.119106
\(57\) 0 0
\(58\) −356.213 −0.806432
\(59\) 588.974 1.29962 0.649812 0.760095i \(-0.274847\pi\)
0.649812 + 0.760095i \(0.274847\pi\)
\(60\) 0 0
\(61\) −3.89778 −0.00818130 −0.00409065 0.999992i \(-0.501302\pi\)
−0.00409065 + 0.999992i \(0.501302\pi\)
\(62\) 604.582 1.23842
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 346.039 0.660321
\(66\) 0 0
\(67\) −488.369 −0.890504 −0.445252 0.895405i \(-0.646886\pi\)
−0.445252 + 0.895405i \(0.646886\pi\)
\(68\) 310.283 0.553342
\(69\) 0 0
\(70\) −63.9974 −0.109274
\(71\) 447.575 0.748132 0.374066 0.927402i \(-0.377963\pi\)
0.374066 + 0.927402i \(0.377963\pi\)
\(72\) 0 0
\(73\) −231.943 −0.371875 −0.185937 0.982562i \(-0.559532\pi\)
−0.185937 + 0.982562i \(0.559532\pi\)
\(74\) −560.582 −0.880626
\(75\) 0 0
\(76\) 76.0000 0.114708
\(77\) 86.5021 0.128024
\(78\) 0 0
\(79\) −486.736 −0.693191 −0.346596 0.938015i \(-0.612662\pi\)
−0.346596 + 0.938015i \(0.612662\pi\)
\(80\) 82.0589 0.114681
\(81\) 0 0
\(82\) 529.813 0.713513
\(83\) −898.560 −1.18831 −0.594156 0.804350i \(-0.702514\pi\)
−0.594156 + 0.804350i \(0.702514\pi\)
\(84\) 0 0
\(85\) 397.835 0.507662
\(86\) −95.6394 −0.119919
\(87\) 0 0
\(88\) −110.915 −0.134359
\(89\) 825.497 0.983174 0.491587 0.870829i \(-0.336417\pi\)
0.491587 + 0.870829i \(0.336417\pi\)
\(90\) 0 0
\(91\) −420.965 −0.484936
\(92\) 716.655 0.812135
\(93\) 0 0
\(94\) 983.987 1.07969
\(95\) 97.4449 0.105238
\(96\) 0 0
\(97\) −1432.98 −1.49997 −0.749986 0.661453i \(-0.769940\pi\)
−0.749986 + 0.661453i \(0.769940\pi\)
\(98\) −608.146 −0.626857
\(99\) 0 0
\(100\) −394.787 −0.394787
\(101\) 290.043 0.285746 0.142873 0.989741i \(-0.454366\pi\)
0.142873 + 0.989741i \(0.454366\pi\)
\(102\) 0 0
\(103\) −1316.31 −1.25922 −0.629612 0.776910i \(-0.716786\pi\)
−0.629612 + 0.776910i \(0.716786\pi\)
\(104\) 539.771 0.508932
\(105\) 0 0
\(106\) −113.215 −0.103739
\(107\) −1609.50 −1.45417 −0.727084 0.686548i \(-0.759125\pi\)
−0.727084 + 0.686548i \(0.759125\pi\)
\(108\) 0 0
\(109\) 538.636 0.473321 0.236660 0.971592i \(-0.423947\pi\)
0.236660 + 0.971592i \(0.423947\pi\)
\(110\) −142.212 −0.123267
\(111\) 0 0
\(112\) −99.8267 −0.0842208
\(113\) −1294.51 −1.07767 −0.538837 0.842410i \(-0.681136\pi\)
−0.538837 + 0.842410i \(0.681136\pi\)
\(114\) 0 0
\(115\) 918.873 0.745090
\(116\) −712.426 −0.570234
\(117\) 0 0
\(118\) 1177.95 0.918973
\(119\) −483.976 −0.372824
\(120\) 0 0
\(121\) −1138.78 −0.855582
\(122\) −7.79555 −0.00578505
\(123\) 0 0
\(124\) 1209.16 0.875695
\(125\) −1147.27 −0.820918
\(126\) 0 0
\(127\) 214.660 0.149984 0.0749922 0.997184i \(-0.476107\pi\)
0.0749922 + 0.997184i \(0.476107\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) 692.078 0.466917
\(131\) 921.583 0.614649 0.307325 0.951605i \(-0.400566\pi\)
0.307325 + 0.951605i \(0.400566\pi\)
\(132\) 0 0
\(133\) −118.544 −0.0772863
\(134\) −976.738 −0.629682
\(135\) 0 0
\(136\) 620.565 0.391272
\(137\) −1484.44 −0.925722 −0.462861 0.886431i \(-0.653177\pi\)
−0.462861 + 0.886431i \(0.653177\pi\)
\(138\) 0 0
\(139\) 154.260 0.0941304 0.0470652 0.998892i \(-0.485013\pi\)
0.0470652 + 0.998892i \(0.485013\pi\)
\(140\) −127.995 −0.0772681
\(141\) 0 0
\(142\) 895.150 0.529010
\(143\) −935.448 −0.547036
\(144\) 0 0
\(145\) −913.451 −0.523159
\(146\) −463.885 −0.262955
\(147\) 0 0
\(148\) −1121.16 −0.622697
\(149\) −1018.24 −0.559848 −0.279924 0.960022i \(-0.590309\pi\)
−0.279924 + 0.960022i \(0.590309\pi\)
\(150\) 0 0
\(151\) 1110.49 0.598479 0.299240 0.954178i \(-0.403267\pi\)
0.299240 + 0.954178i \(0.403267\pi\)
\(152\) 152.000 0.0811107
\(153\) 0 0
\(154\) 173.004 0.0905265
\(155\) 1550.35 0.803403
\(156\) 0 0
\(157\) 332.551 0.169048 0.0845238 0.996421i \(-0.473063\pi\)
0.0845238 + 0.996421i \(0.473063\pi\)
\(158\) −973.473 −0.490160
\(159\) 0 0
\(160\) 164.118 0.0810915
\(161\) −1117.83 −0.547190
\(162\) 0 0
\(163\) 3542.26 1.70215 0.851076 0.525042i \(-0.175950\pi\)
0.851076 + 0.525042i \(0.175950\pi\)
\(164\) 1059.63 0.504530
\(165\) 0 0
\(166\) −1797.12 −0.840263
\(167\) 561.206 0.260044 0.130022 0.991511i \(-0.458495\pi\)
0.130022 + 0.991511i \(0.458495\pi\)
\(168\) 0 0
\(169\) 2355.39 1.07209
\(170\) 795.670 0.358971
\(171\) 0 0
\(172\) −191.279 −0.0847958
\(173\) −1911.12 −0.839883 −0.419942 0.907551i \(-0.637949\pi\)
−0.419942 + 0.907551i \(0.637949\pi\)
\(174\) 0 0
\(175\) 615.785 0.265994
\(176\) −221.830 −0.0950060
\(177\) 0 0
\(178\) 1650.99 0.695209
\(179\) −1690.06 −0.705703 −0.352851 0.935679i \(-0.614788\pi\)
−0.352851 + 0.935679i \(0.614788\pi\)
\(180\) 0 0
\(181\) −1961.52 −0.805518 −0.402759 0.915306i \(-0.631949\pi\)
−0.402759 + 0.915306i \(0.631949\pi\)
\(182\) −841.931 −0.342901
\(183\) 0 0
\(184\) 1433.31 0.574266
\(185\) −1437.52 −0.571291
\(186\) 0 0
\(187\) −1075.47 −0.420567
\(188\) 1967.97 0.763453
\(189\) 0 0
\(190\) 194.890 0.0744147
\(191\) −3455.41 −1.30903 −0.654514 0.756050i \(-0.727127\pi\)
−0.654514 + 0.756050i \(0.727127\pi\)
\(192\) 0 0
\(193\) −5163.92 −1.92595 −0.962973 0.269599i \(-0.913109\pi\)
−0.962973 + 0.269599i \(0.913109\pi\)
\(194\) −2865.96 −1.06064
\(195\) 0 0
\(196\) −1216.29 −0.443255
\(197\) 4896.38 1.77082 0.885412 0.464806i \(-0.153876\pi\)
0.885412 + 0.464806i \(0.153876\pi\)
\(198\) 0 0
\(199\) −3439.87 −1.22536 −0.612678 0.790333i \(-0.709908\pi\)
−0.612678 + 0.790333i \(0.709908\pi\)
\(200\) −789.573 −0.279156
\(201\) 0 0
\(202\) 580.086 0.202053
\(203\) 1111.24 0.384204
\(204\) 0 0
\(205\) 1358.62 0.462879
\(206\) −2632.62 −0.890406
\(207\) 0 0
\(208\) 1079.54 0.359869
\(209\) −263.423 −0.0871835
\(210\) 0 0
\(211\) 2501.99 0.816323 0.408161 0.912910i \(-0.366170\pi\)
0.408161 + 0.912910i \(0.366170\pi\)
\(212\) −226.429 −0.0733549
\(213\) 0 0
\(214\) −3219.00 −1.02825
\(215\) −245.252 −0.0777955
\(216\) 0 0
\(217\) −1886.04 −0.590014
\(218\) 1077.27 0.334688
\(219\) 0 0
\(220\) −284.424 −0.0871629
\(221\) 5233.80 1.59305
\(222\) 0 0
\(223\) 3067.08 0.921019 0.460509 0.887655i \(-0.347667\pi\)
0.460509 + 0.887655i \(0.347667\pi\)
\(224\) −199.653 −0.0595531
\(225\) 0 0
\(226\) −2589.02 −0.762031
\(227\) 112.623 0.0329299 0.0164649 0.999864i \(-0.494759\pi\)
0.0164649 + 0.999864i \(0.494759\pi\)
\(228\) 0 0
\(229\) −4159.86 −1.20040 −0.600200 0.799850i \(-0.704912\pi\)
−0.600200 + 0.799850i \(0.704912\pi\)
\(230\) 1837.75 0.526858
\(231\) 0 0
\(232\) −1424.85 −0.403216
\(233\) 149.875 0.0421401 0.0210701 0.999778i \(-0.493293\pi\)
0.0210701 + 0.999778i \(0.493293\pi\)
\(234\) 0 0
\(235\) 2523.28 0.700427
\(236\) 2355.90 0.649812
\(237\) 0 0
\(238\) −967.952 −0.263626
\(239\) −205.107 −0.0555117 −0.0277559 0.999615i \(-0.508836\pi\)
−0.0277559 + 0.999615i \(0.508836\pi\)
\(240\) 0 0
\(241\) 5813.07 1.55375 0.776873 0.629657i \(-0.216805\pi\)
0.776873 + 0.629657i \(0.216805\pi\)
\(242\) −2277.56 −0.604988
\(243\) 0 0
\(244\) −15.5911 −0.00409065
\(245\) −1559.49 −0.406662
\(246\) 0 0
\(247\) 1281.96 0.330239
\(248\) 2418.33 0.619210
\(249\) 0 0
\(250\) −2294.54 −0.580477
\(251\) −6244.43 −1.57030 −0.785149 0.619307i \(-0.787414\pi\)
−0.785149 + 0.619307i \(0.787414\pi\)
\(252\) 0 0
\(253\) −2483.99 −0.617262
\(254\) 429.320 0.106055
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 6047.76 1.46789 0.733947 0.679207i \(-0.237676\pi\)
0.733947 + 0.679207i \(0.237676\pi\)
\(258\) 0 0
\(259\) 1748.78 0.419552
\(260\) 1384.16 0.330160
\(261\) 0 0
\(262\) 1843.17 0.434623
\(263\) 5302.97 1.24333 0.621664 0.783284i \(-0.286457\pi\)
0.621664 + 0.783284i \(0.286457\pi\)
\(264\) 0 0
\(265\) −290.321 −0.0672991
\(266\) −237.088 −0.0546497
\(267\) 0 0
\(268\) −1953.48 −0.445252
\(269\) −4450.53 −1.00875 −0.504375 0.863485i \(-0.668277\pi\)
−0.504375 + 0.863485i \(0.668277\pi\)
\(270\) 0 0
\(271\) 4337.79 0.972331 0.486165 0.873867i \(-0.338395\pi\)
0.486165 + 0.873867i \(0.338395\pi\)
\(272\) 1241.13 0.276671
\(273\) 0 0
\(274\) −2968.87 −0.654584
\(275\) 1368.37 0.300057
\(276\) 0 0
\(277\) −3501.12 −0.759429 −0.379714 0.925104i \(-0.623978\pi\)
−0.379714 + 0.925104i \(0.623978\pi\)
\(278\) 308.519 0.0665602
\(279\) 0 0
\(280\) −255.989 −0.0546368
\(281\) −3580.65 −0.760156 −0.380078 0.924955i \(-0.624103\pi\)
−0.380078 + 0.924955i \(0.624103\pi\)
\(282\) 0 0
\(283\) −5899.36 −1.23915 −0.619577 0.784936i \(-0.712696\pi\)
−0.619577 + 0.784936i \(0.712696\pi\)
\(284\) 1790.30 0.374066
\(285\) 0 0
\(286\) −1870.90 −0.386813
\(287\) −1652.80 −0.339935
\(288\) 0 0
\(289\) 1104.20 0.224751
\(290\) −1826.90 −0.369929
\(291\) 0 0
\(292\) −927.771 −0.185937
\(293\) 6333.11 1.26274 0.631372 0.775480i \(-0.282492\pi\)
0.631372 + 0.775480i \(0.282492\pi\)
\(294\) 0 0
\(295\) 3020.66 0.596168
\(296\) −2242.33 −0.440313
\(297\) 0 0
\(298\) −2036.48 −0.395872
\(299\) 12088.4 2.33810
\(300\) 0 0
\(301\) 298.355 0.0571326
\(302\) 2220.98 0.423189
\(303\) 0 0
\(304\) 304.000 0.0573539
\(305\) −19.9904 −0.00375295
\(306\) 0 0
\(307\) 6092.56 1.13264 0.566321 0.824185i \(-0.308366\pi\)
0.566321 + 0.824185i \(0.308366\pi\)
\(308\) 346.009 0.0640119
\(309\) 0 0
\(310\) 3100.71 0.568092
\(311\) 2086.40 0.380415 0.190207 0.981744i \(-0.439084\pi\)
0.190207 + 0.981744i \(0.439084\pi\)
\(312\) 0 0
\(313\) 7369.87 1.33089 0.665447 0.746445i \(-0.268241\pi\)
0.665447 + 0.746445i \(0.268241\pi\)
\(314\) 665.103 0.119535
\(315\) 0 0
\(316\) −1946.95 −0.346596
\(317\) 10787.0 1.91123 0.955613 0.294624i \(-0.0951942\pi\)
0.955613 + 0.294624i \(0.0951942\pi\)
\(318\) 0 0
\(319\) 2469.33 0.433405
\(320\) 328.235 0.0573404
\(321\) 0 0
\(322\) −2235.67 −0.386922
\(323\) 1473.84 0.253891
\(324\) 0 0
\(325\) −6659.20 −1.13657
\(326\) 7084.51 1.20360
\(327\) 0 0
\(328\) 2119.25 0.356756
\(329\) −3069.63 −0.514389
\(330\) 0 0
\(331\) −3269.08 −0.542854 −0.271427 0.962459i \(-0.587496\pi\)
−0.271427 + 0.962459i \(0.587496\pi\)
\(332\) −3594.24 −0.594156
\(333\) 0 0
\(334\) 1122.41 0.183879
\(335\) −2504.69 −0.408495
\(336\) 0 0
\(337\) −1903.68 −0.307716 −0.153858 0.988093i \(-0.549170\pi\)
−0.153858 + 0.988093i \(0.549170\pi\)
\(338\) 4710.78 0.758084
\(339\) 0 0
\(340\) 1591.34 0.253831
\(341\) −4191.08 −0.665570
\(342\) 0 0
\(343\) 4037.20 0.635534
\(344\) −382.558 −0.0599597
\(345\) 0 0
\(346\) −3822.24 −0.593887
\(347\) −1580.07 −0.244446 −0.122223 0.992503i \(-0.539002\pi\)
−0.122223 + 0.992503i \(0.539002\pi\)
\(348\) 0 0
\(349\) 5266.11 0.807702 0.403851 0.914825i \(-0.367671\pi\)
0.403851 + 0.914825i \(0.367671\pi\)
\(350\) 1231.57 0.188086
\(351\) 0 0
\(352\) −443.660 −0.0671794
\(353\) 7057.79 1.06416 0.532079 0.846694i \(-0.321411\pi\)
0.532079 + 0.846694i \(0.321411\pi\)
\(354\) 0 0
\(355\) 2295.47 0.343186
\(356\) 3301.99 0.491587
\(357\) 0 0
\(358\) −3380.12 −0.499007
\(359\) 563.567 0.0828522 0.0414261 0.999142i \(-0.486810\pi\)
0.0414261 + 0.999142i \(0.486810\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) −3923.04 −0.569587
\(363\) 0 0
\(364\) −1683.86 −0.242468
\(365\) −1189.56 −0.170587
\(366\) 0 0
\(367\) 4952.13 0.704357 0.352178 0.935933i \(-0.385441\pi\)
0.352178 + 0.935933i \(0.385441\pi\)
\(368\) 2866.62 0.406068
\(369\) 0 0
\(370\) −2875.05 −0.403964
\(371\) 353.183 0.0494241
\(372\) 0 0
\(373\) 453.156 0.0629049 0.0314524 0.999505i \(-0.489987\pi\)
0.0314524 + 0.999505i \(0.489987\pi\)
\(374\) −2150.94 −0.297386
\(375\) 0 0
\(376\) 3935.95 0.539843
\(377\) −12017.1 −1.64168
\(378\) 0 0
\(379\) 7544.45 1.02251 0.511256 0.859428i \(-0.329180\pi\)
0.511256 + 0.859428i \(0.329180\pi\)
\(380\) 389.780 0.0526191
\(381\) 0 0
\(382\) −6910.81 −0.925623
\(383\) 6217.70 0.829529 0.414765 0.909929i \(-0.363864\pi\)
0.414765 + 0.909929i \(0.363864\pi\)
\(384\) 0 0
\(385\) 443.642 0.0587275
\(386\) −10327.8 −1.36185
\(387\) 0 0
\(388\) −5731.93 −0.749986
\(389\) 2147.15 0.279858 0.139929 0.990162i \(-0.455313\pi\)
0.139929 + 0.990162i \(0.455313\pi\)
\(390\) 0 0
\(391\) 13897.8 1.79756
\(392\) −2432.58 −0.313428
\(393\) 0 0
\(394\) 9792.76 1.25216
\(395\) −2496.31 −0.317983
\(396\) 0 0
\(397\) −13761.4 −1.73971 −0.869856 0.493305i \(-0.835789\pi\)
−0.869856 + 0.493305i \(0.835789\pi\)
\(398\) −6879.73 −0.866457
\(399\) 0 0
\(400\) −1579.15 −0.197393
\(401\) 8937.99 1.11307 0.556536 0.830824i \(-0.312130\pi\)
0.556536 + 0.830824i \(0.312130\pi\)
\(402\) 0 0
\(403\) 20396.0 2.52108
\(404\) 1160.17 0.142873
\(405\) 0 0
\(406\) 2222.47 0.271674
\(407\) 3886.06 0.473280
\(408\) 0 0
\(409\) 993.253 0.120081 0.0600406 0.998196i \(-0.480877\pi\)
0.0600406 + 0.998196i \(0.480877\pi\)
\(410\) 2717.24 0.327305
\(411\) 0 0
\(412\) −5265.25 −0.629612
\(413\) −3674.71 −0.437822
\(414\) 0 0
\(415\) −4608.43 −0.545106
\(416\) 2159.08 0.254466
\(417\) 0 0
\(418\) −526.846 −0.0616481
\(419\) 1358.74 0.158422 0.0792109 0.996858i \(-0.474760\pi\)
0.0792109 + 0.996858i \(0.474760\pi\)
\(420\) 0 0
\(421\) −10002.0 −1.15789 −0.578943 0.815368i \(-0.696535\pi\)
−0.578943 + 0.815368i \(0.696535\pi\)
\(422\) 5003.98 0.577227
\(423\) 0 0
\(424\) −452.859 −0.0518697
\(425\) −7655.96 −0.873809
\(426\) 0 0
\(427\) 24.3189 0.00275614
\(428\) −6437.99 −0.727084
\(429\) 0 0
\(430\) −490.504 −0.0550097
\(431\) −11218.8 −1.25381 −0.626904 0.779097i \(-0.715678\pi\)
−0.626904 + 0.779097i \(0.715678\pi\)
\(432\) 0 0
\(433\) −1572.19 −0.174491 −0.0872456 0.996187i \(-0.527806\pi\)
−0.0872456 + 0.996187i \(0.527806\pi\)
\(434\) −3772.09 −0.417203
\(435\) 0 0
\(436\) 2154.54 0.236660
\(437\) 3404.11 0.372633
\(438\) 0 0
\(439\) −9499.44 −1.03276 −0.516382 0.856358i \(-0.672722\pi\)
−0.516382 + 0.856358i \(0.672722\pi\)
\(440\) −568.847 −0.0616335
\(441\) 0 0
\(442\) 10467.6 1.12645
\(443\) −10703.4 −1.14793 −0.573967 0.818878i \(-0.694596\pi\)
−0.573967 + 0.818878i \(0.694596\pi\)
\(444\) 0 0
\(445\) 4233.71 0.451004
\(446\) 6134.17 0.651259
\(447\) 0 0
\(448\) −399.307 −0.0421104
\(449\) −11068.5 −1.16338 −0.581689 0.813411i \(-0.697608\pi\)
−0.581689 + 0.813411i \(0.697608\pi\)
\(450\) 0 0
\(451\) −3672.76 −0.383467
\(452\) −5178.04 −0.538837
\(453\) 0 0
\(454\) 225.247 0.0232849
\(455\) −2159.00 −0.222451
\(456\) 0 0
\(457\) −15993.1 −1.63704 −0.818519 0.574479i \(-0.805205\pi\)
−0.818519 + 0.574479i \(0.805205\pi\)
\(458\) −8319.73 −0.848811
\(459\) 0 0
\(460\) 3675.49 0.372545
\(461\) −211.411 −0.0213588 −0.0106794 0.999943i \(-0.503399\pi\)
−0.0106794 + 0.999943i \(0.503399\pi\)
\(462\) 0 0
\(463\) 8714.30 0.874704 0.437352 0.899291i \(-0.355916\pi\)
0.437352 + 0.899291i \(0.355916\pi\)
\(464\) −2849.70 −0.285117
\(465\) 0 0
\(466\) 299.750 0.0297976
\(467\) −2200.09 −0.218004 −0.109002 0.994042i \(-0.534766\pi\)
−0.109002 + 0.994042i \(0.534766\pi\)
\(468\) 0 0
\(469\) 3047.02 0.299996
\(470\) 5046.55 0.495277
\(471\) 0 0
\(472\) 4711.79 0.459487
\(473\) 662.990 0.0644489
\(474\) 0 0
\(475\) −1875.24 −0.181141
\(476\) −1935.90 −0.186412
\(477\) 0 0
\(478\) −410.215 −0.0392527
\(479\) −12464.6 −1.18898 −0.594492 0.804102i \(-0.702647\pi\)
−0.594492 + 0.804102i \(0.702647\pi\)
\(480\) 0 0
\(481\) −18911.6 −1.79272
\(482\) 11626.1 1.09866
\(483\) 0 0
\(484\) −4555.12 −0.427791
\(485\) −7349.31 −0.688072
\(486\) 0 0
\(487\) −9659.55 −0.898801 −0.449401 0.893330i \(-0.648362\pi\)
−0.449401 + 0.893330i \(0.648362\pi\)
\(488\) −31.1822 −0.00289253
\(489\) 0 0
\(490\) −3118.98 −0.287554
\(491\) −9209.41 −0.846466 −0.423233 0.906021i \(-0.639105\pi\)
−0.423233 + 0.906021i \(0.639105\pi\)
\(492\) 0 0
\(493\) −13815.8 −1.26214
\(494\) 2563.91 0.233514
\(495\) 0 0
\(496\) 4836.66 0.437847
\(497\) −2792.50 −0.252033
\(498\) 0 0
\(499\) −5030.99 −0.451339 −0.225669 0.974204i \(-0.572457\pi\)
−0.225669 + 0.974204i \(0.572457\pi\)
\(500\) −4589.07 −0.410459
\(501\) 0 0
\(502\) −12488.9 −1.11037
\(503\) 8172.48 0.724439 0.362220 0.932093i \(-0.382019\pi\)
0.362220 + 0.932093i \(0.382019\pi\)
\(504\) 0 0
\(505\) 1487.54 0.131078
\(506\) −4967.99 −0.436470
\(507\) 0 0
\(508\) 858.641 0.0749922
\(509\) −19218.2 −1.67354 −0.836771 0.547553i \(-0.815560\pi\)
−0.836771 + 0.547553i \(0.815560\pi\)
\(510\) 0 0
\(511\) 1447.13 0.125278
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 12095.5 1.03796
\(515\) −6750.94 −0.577635
\(516\) 0 0
\(517\) −6821.18 −0.580261
\(518\) 3497.57 0.296668
\(519\) 0 0
\(520\) 2768.31 0.233459
\(521\) 12193.1 1.02532 0.512660 0.858592i \(-0.328660\pi\)
0.512660 + 0.858592i \(0.328660\pi\)
\(522\) 0 0
\(523\) 16254.2 1.35898 0.679490 0.733685i \(-0.262201\pi\)
0.679490 + 0.733685i \(0.262201\pi\)
\(524\) 3686.33 0.307325
\(525\) 0 0
\(526\) 10605.9 0.879165
\(527\) 23448.9 1.93824
\(528\) 0 0
\(529\) 19932.6 1.63825
\(530\) −580.642 −0.0475877
\(531\) 0 0
\(532\) −474.177 −0.0386432
\(533\) 17873.6 1.45252
\(534\) 0 0
\(535\) −8254.60 −0.667061
\(536\) −3906.95 −0.314841
\(537\) 0 0
\(538\) −8901.06 −0.713293
\(539\) 4215.78 0.336895
\(540\) 0 0
\(541\) −22038.0 −1.75136 −0.875680 0.482892i \(-0.839586\pi\)
−0.875680 + 0.482892i \(0.839586\pi\)
\(542\) 8675.57 0.687542
\(543\) 0 0
\(544\) 2482.26 0.195636
\(545\) 2762.49 0.217123
\(546\) 0 0
\(547\) 657.058 0.0513597 0.0256798 0.999670i \(-0.491825\pi\)
0.0256798 + 0.999670i \(0.491825\pi\)
\(548\) −5937.74 −0.462861
\(549\) 0 0
\(550\) 2736.73 0.212172
\(551\) −3384.02 −0.261641
\(552\) 0 0
\(553\) 3036.83 0.233525
\(554\) −7002.23 −0.536997
\(555\) 0 0
\(556\) 617.038 0.0470652
\(557\) −16627.1 −1.26484 −0.632419 0.774627i \(-0.717938\pi\)
−0.632419 + 0.774627i \(0.717938\pi\)
\(558\) 0 0
\(559\) −3226.46 −0.244123
\(560\) −511.979 −0.0386340
\(561\) 0 0
\(562\) −7161.30 −0.537511
\(563\) 2379.19 0.178101 0.0890506 0.996027i \(-0.471617\pi\)
0.0890506 + 0.996027i \(0.471617\pi\)
\(564\) 0 0
\(565\) −6639.13 −0.494354
\(566\) −11798.7 −0.876215
\(567\) 0 0
\(568\) 3580.60 0.264505
\(569\) −9386.07 −0.691537 −0.345769 0.938320i \(-0.612382\pi\)
−0.345769 + 0.938320i \(0.612382\pi\)
\(570\) 0 0
\(571\) −13268.7 −0.972463 −0.486231 0.873830i \(-0.661629\pi\)
−0.486231 + 0.873830i \(0.661629\pi\)
\(572\) −3741.79 −0.273518
\(573\) 0 0
\(574\) −3305.59 −0.240371
\(575\) −17682.9 −1.28248
\(576\) 0 0
\(577\) 12823.8 0.925238 0.462619 0.886557i \(-0.346910\pi\)
0.462619 + 0.886557i \(0.346910\pi\)
\(578\) 2208.41 0.158923
\(579\) 0 0
\(580\) −3653.80 −0.261579
\(581\) 5606.27 0.400322
\(582\) 0 0
\(583\) 784.825 0.0557532
\(584\) −1855.54 −0.131478
\(585\) 0 0
\(586\) 12666.2 0.892895
\(587\) −13425.6 −0.944009 −0.472005 0.881596i \(-0.656469\pi\)
−0.472005 + 0.881596i \(0.656469\pi\)
\(588\) 0 0
\(589\) 5743.53 0.401796
\(590\) 6041.32 0.421554
\(591\) 0 0
\(592\) −4484.66 −0.311348
\(593\) −24121.5 −1.67041 −0.835204 0.549941i \(-0.814650\pi\)
−0.835204 + 0.549941i \(0.814650\pi\)
\(594\) 0 0
\(595\) −2482.16 −0.171023
\(596\) −4072.96 −0.279924
\(597\) 0 0
\(598\) 24176.9 1.65329
\(599\) 11853.3 0.808534 0.404267 0.914641i \(-0.367527\pi\)
0.404267 + 0.914641i \(0.367527\pi\)
\(600\) 0 0
\(601\) −4097.82 −0.278126 −0.139063 0.990284i \(-0.544409\pi\)
−0.139063 + 0.990284i \(0.544409\pi\)
\(602\) 596.710 0.0403988
\(603\) 0 0
\(604\) 4441.96 0.299240
\(605\) −5840.43 −0.392475
\(606\) 0 0
\(607\) −1836.71 −0.122817 −0.0614085 0.998113i \(-0.519559\pi\)
−0.0614085 + 0.998113i \(0.519559\pi\)
\(608\) 608.000 0.0405554
\(609\) 0 0
\(610\) −39.9809 −0.00265374
\(611\) 33195.5 2.19795
\(612\) 0 0
\(613\) 2088.93 0.137636 0.0688182 0.997629i \(-0.478077\pi\)
0.0688182 + 0.997629i \(0.478077\pi\)
\(614\) 12185.1 0.800898
\(615\) 0 0
\(616\) 692.017 0.0452632
\(617\) 257.433 0.0167972 0.00839860 0.999965i \(-0.497327\pi\)
0.00839860 + 0.999965i \(0.497327\pi\)
\(618\) 0 0
\(619\) 6453.03 0.419013 0.209506 0.977807i \(-0.432814\pi\)
0.209506 + 0.977807i \(0.432814\pi\)
\(620\) 6201.42 0.401701
\(621\) 0 0
\(622\) 4172.80 0.268994
\(623\) −5150.41 −0.331215
\(624\) 0 0
\(625\) 6453.11 0.412999
\(626\) 14739.7 0.941084
\(627\) 0 0
\(628\) 1330.21 0.0845238
\(629\) −21742.4 −1.37826
\(630\) 0 0
\(631\) 4879.66 0.307854 0.153927 0.988082i \(-0.450808\pi\)
0.153927 + 0.988082i \(0.450808\pi\)
\(632\) −3893.89 −0.245080
\(633\) 0 0
\(634\) 21574.0 1.35144
\(635\) 1100.92 0.0688013
\(636\) 0 0
\(637\) −20516.2 −1.27611
\(638\) 4938.67 0.306464
\(639\) 0 0
\(640\) 656.471 0.0405458
\(641\) 32225.5 1.98570 0.992848 0.119387i \(-0.0380930\pi\)
0.992848 + 0.119387i \(0.0380930\pi\)
\(642\) 0 0
\(643\) 4756.76 0.291739 0.145870 0.989304i \(-0.453402\pi\)
0.145870 + 0.989304i \(0.453402\pi\)
\(644\) −4471.33 −0.273595
\(645\) 0 0
\(646\) 2947.68 0.179528
\(647\) −1565.49 −0.0951246 −0.0475623 0.998868i \(-0.515145\pi\)
−0.0475623 + 0.998868i \(0.515145\pi\)
\(648\) 0 0
\(649\) −8165.75 −0.493889
\(650\) −13318.4 −0.803678
\(651\) 0 0
\(652\) 14169.0 0.851076
\(653\) 26483.2 1.58708 0.793542 0.608515i \(-0.208235\pi\)
0.793542 + 0.608515i \(0.208235\pi\)
\(654\) 0 0
\(655\) 4726.50 0.281954
\(656\) 4238.50 0.252265
\(657\) 0 0
\(658\) −6139.26 −0.363728
\(659\) 19012.9 1.12388 0.561940 0.827178i \(-0.310055\pi\)
0.561940 + 0.827178i \(0.310055\pi\)
\(660\) 0 0
\(661\) 14742.7 0.867511 0.433756 0.901030i \(-0.357188\pi\)
0.433756 + 0.901030i \(0.357188\pi\)
\(662\) −6538.16 −0.383856
\(663\) 0 0
\(664\) −7188.48 −0.420131
\(665\) −607.975 −0.0354530
\(666\) 0 0
\(667\) −31910.2 −1.85243
\(668\) 2244.82 0.130022
\(669\) 0 0
\(670\) −5009.38 −0.288849
\(671\) 54.0402 0.00310909
\(672\) 0 0
\(673\) −2127.97 −0.121883 −0.0609416 0.998141i \(-0.519410\pi\)
−0.0609416 + 0.998141i \(0.519410\pi\)
\(674\) −3807.36 −0.217588
\(675\) 0 0
\(676\) 9421.55 0.536046
\(677\) −18032.2 −1.02369 −0.511843 0.859079i \(-0.671037\pi\)
−0.511843 + 0.859079i \(0.671037\pi\)
\(678\) 0 0
\(679\) 8940.62 0.505316
\(680\) 3182.68 0.179486
\(681\) 0 0
\(682\) −8382.15 −0.470629
\(683\) 21854.0 1.22433 0.612166 0.790729i \(-0.290298\pi\)
0.612166 + 0.790729i \(0.290298\pi\)
\(684\) 0 0
\(685\) −7613.19 −0.424650
\(686\) 8074.39 0.449390
\(687\) 0 0
\(688\) −765.115 −0.0423979
\(689\) −3819.38 −0.211185
\(690\) 0 0
\(691\) 3323.35 0.182961 0.0914806 0.995807i \(-0.470840\pi\)
0.0914806 + 0.995807i \(0.470840\pi\)
\(692\) −7644.48 −0.419942
\(693\) 0 0
\(694\) −3160.15 −0.172849
\(695\) 791.148 0.0431798
\(696\) 0 0
\(697\) 20549.0 1.11671
\(698\) 10532.2 0.571132
\(699\) 0 0
\(700\) 2463.14 0.132997
\(701\) 33127.4 1.78489 0.892443 0.451161i \(-0.148990\pi\)
0.892443 + 0.451161i \(0.148990\pi\)
\(702\) 0 0
\(703\) −5325.53 −0.285713
\(704\) −887.320 −0.0475030
\(705\) 0 0
\(706\) 14115.6 0.752474
\(707\) −1809.63 −0.0962631
\(708\) 0 0
\(709\) 9647.34 0.511021 0.255510 0.966806i \(-0.417757\pi\)
0.255510 + 0.966806i \(0.417757\pi\)
\(710\) 4590.94 0.242669
\(711\) 0 0
\(712\) 6603.97 0.347604
\(713\) 54159.6 2.84473
\(714\) 0 0
\(715\) −4797.61 −0.250938
\(716\) −6760.23 −0.352851
\(717\) 0 0
\(718\) 1127.13 0.0585854
\(719\) −35313.7 −1.83168 −0.915840 0.401543i \(-0.868474\pi\)
−0.915840 + 0.401543i \(0.868474\pi\)
\(720\) 0 0
\(721\) 8212.69 0.424211
\(722\) 722.000 0.0372161
\(723\) 0 0
\(724\) −7846.08 −0.402759
\(725\) 17578.5 0.900482
\(726\) 0 0
\(727\) 31494.8 1.60671 0.803354 0.595501i \(-0.203047\pi\)
0.803354 + 0.595501i \(0.203047\pi\)
\(728\) −3367.72 −0.171451
\(729\) 0 0
\(730\) −2379.12 −0.120624
\(731\) −3709.40 −0.187684
\(732\) 0 0
\(733\) −12254.6 −0.617510 −0.308755 0.951142i \(-0.599912\pi\)
−0.308755 + 0.951142i \(0.599912\pi\)
\(734\) 9904.25 0.498055
\(735\) 0 0
\(736\) 5733.24 0.287133
\(737\) 6770.93 0.338413
\(738\) 0 0
\(739\) −14573.9 −0.725451 −0.362726 0.931896i \(-0.618154\pi\)
−0.362726 + 0.931896i \(0.618154\pi\)
\(740\) −5750.09 −0.285645
\(741\) 0 0
\(742\) 706.365 0.0349481
\(743\) −34917.7 −1.72410 −0.862050 0.506824i \(-0.830819\pi\)
−0.862050 + 0.506824i \(0.830819\pi\)
\(744\) 0 0
\(745\) −5222.22 −0.256815
\(746\) 906.312 0.0444805
\(747\) 0 0
\(748\) −4301.87 −0.210283
\(749\) 10041.9 0.489885
\(750\) 0 0
\(751\) 16411.2 0.797410 0.398705 0.917079i \(-0.369460\pi\)
0.398705 + 0.917079i \(0.369460\pi\)
\(752\) 7871.89 0.381727
\(753\) 0 0
\(754\) −24034.2 −1.16084
\(755\) 5695.35 0.274536
\(756\) 0 0
\(757\) −23798.7 −1.14264 −0.571321 0.820727i \(-0.693569\pi\)
−0.571321 + 0.820727i \(0.693569\pi\)
\(758\) 15088.9 0.723026
\(759\) 0 0
\(760\) 779.559 0.0372073
\(761\) −644.338 −0.0306928 −0.0153464 0.999882i \(-0.504885\pi\)
−0.0153464 + 0.999882i \(0.504885\pi\)
\(762\) 0 0
\(763\) −3360.64 −0.159454
\(764\) −13821.6 −0.654514
\(765\) 0 0
\(766\) 12435.4 0.586566
\(767\) 39738.9 1.87078
\(768\) 0 0
\(769\) −37826.3 −1.77380 −0.886900 0.461961i \(-0.847146\pi\)
−0.886900 + 0.461961i \(0.847146\pi\)
\(770\) 887.283 0.0415266
\(771\) 0 0
\(772\) −20655.7 −0.962973
\(773\) −25716.5 −1.19658 −0.598292 0.801278i \(-0.704154\pi\)
−0.598292 + 0.801278i \(0.704154\pi\)
\(774\) 0 0
\(775\) −29835.1 −1.38285
\(776\) −11463.9 −0.530320
\(777\) 0 0
\(778\) 4294.30 0.197889
\(779\) 5033.22 0.231494
\(780\) 0 0
\(781\) −6205.35 −0.284308
\(782\) 27795.7 1.27106
\(783\) 0 0
\(784\) −4865.16 −0.221627
\(785\) 1705.55 0.0775460
\(786\) 0 0
\(787\) 10892.3 0.493354 0.246677 0.969098i \(-0.420661\pi\)
0.246677 + 0.969098i \(0.420661\pi\)
\(788\) 19585.5 0.885412
\(789\) 0 0
\(790\) −4992.63 −0.224848
\(791\) 8076.66 0.363051
\(792\) 0 0
\(793\) −262.988 −0.0117768
\(794\) −27522.8 −1.23016
\(795\) 0 0
\(796\) −13759.5 −0.612678
\(797\) 22513.1 1.00057 0.500286 0.865860i \(-0.333228\pi\)
0.500286 + 0.865860i \(0.333228\pi\)
\(798\) 0 0
\(799\) 38164.2 1.68980
\(800\) −3158.29 −0.139578
\(801\) 0 0
\(802\) 17876.0 0.787061
\(803\) 3215.74 0.141321
\(804\) 0 0
\(805\) −5733.00 −0.251009
\(806\) 40792.0 1.78268
\(807\) 0 0
\(808\) 2320.34 0.101026
\(809\) 26389.4 1.14685 0.573426 0.819258i \(-0.305614\pi\)
0.573426 + 0.819258i \(0.305614\pi\)
\(810\) 0 0
\(811\) −1587.61 −0.0687406 −0.0343703 0.999409i \(-0.510943\pi\)
−0.0343703 + 0.999409i \(0.510943\pi\)
\(812\) 4444.95 0.192102
\(813\) 0 0
\(814\) 7772.12 0.334659
\(815\) 18167.1 0.780817
\(816\) 0 0
\(817\) −908.574 −0.0389070
\(818\) 1986.51 0.0849102
\(819\) 0 0
\(820\) 5434.48 0.231439
\(821\) −29155.2 −1.23937 −0.619685 0.784851i \(-0.712739\pi\)
−0.619685 + 0.784851i \(0.712739\pi\)
\(822\) 0 0
\(823\) −17328.6 −0.733947 −0.366973 0.930231i \(-0.619606\pi\)
−0.366973 + 0.930231i \(0.619606\pi\)
\(824\) −10530.5 −0.445203
\(825\) 0 0
\(826\) −7349.41 −0.309587
\(827\) −14899.3 −0.626482 −0.313241 0.949674i \(-0.601415\pi\)
−0.313241 + 0.949674i \(0.601415\pi\)
\(828\) 0 0
\(829\) 47237.1 1.97903 0.989513 0.144445i \(-0.0461397\pi\)
0.989513 + 0.144445i \(0.0461397\pi\)
\(830\) −9216.86 −0.385448
\(831\) 0 0
\(832\) 4318.17 0.179935
\(833\) −23587.1 −0.981087
\(834\) 0 0
\(835\) 2878.24 0.119288
\(836\) −1053.69 −0.0435918
\(837\) 0 0
\(838\) 2717.48 0.112021
\(839\) −18848.6 −0.775596 −0.387798 0.921744i \(-0.626764\pi\)
−0.387798 + 0.921744i \(0.626764\pi\)
\(840\) 0 0
\(841\) 7332.93 0.300665
\(842\) −20004.1 −0.818749
\(843\) 0 0
\(844\) 10008.0 0.408161
\(845\) 12080.0 0.491794
\(846\) 0 0
\(847\) 7105.03 0.288231
\(848\) −905.717 −0.0366774
\(849\) 0 0
\(850\) −15311.9 −0.617876
\(851\) −50218.0 −2.02286
\(852\) 0 0
\(853\) −10105.7 −0.405640 −0.202820 0.979216i \(-0.565011\pi\)
−0.202820 + 0.979216i \(0.565011\pi\)
\(854\) 48.6378 0.00194889
\(855\) 0 0
\(856\) −12876.0 −0.514126
\(857\) −41405.4 −1.65039 −0.825193 0.564851i \(-0.808934\pi\)
−0.825193 + 0.564851i \(0.808934\pi\)
\(858\) 0 0
\(859\) 29850.9 1.18568 0.592840 0.805320i \(-0.298007\pi\)
0.592840 + 0.805320i \(0.298007\pi\)
\(860\) −981.007 −0.0388978
\(861\) 0 0
\(862\) −22437.6 −0.886576
\(863\) 28597.1 1.12799 0.563996 0.825778i \(-0.309263\pi\)
0.563996 + 0.825778i \(0.309263\pi\)
\(864\) 0 0
\(865\) −9801.52 −0.385274
\(866\) −3144.38 −0.123384
\(867\) 0 0
\(868\) −7544.18 −0.295007
\(869\) 6748.29 0.263429
\(870\) 0 0
\(871\) −32950.9 −1.28186
\(872\) 4309.09 0.167344
\(873\) 0 0
\(874\) 6808.22 0.263491
\(875\) 7158.00 0.276554
\(876\) 0 0
\(877\) 16659.9 0.641465 0.320733 0.947170i \(-0.396071\pi\)
0.320733 + 0.947170i \(0.396071\pi\)
\(878\) −18998.9 −0.730275
\(879\) 0 0
\(880\) −1137.69 −0.0435814
\(881\) 4020.70 0.153758 0.0768790 0.997040i \(-0.475504\pi\)
0.0768790 + 0.997040i \(0.475504\pi\)
\(882\) 0 0
\(883\) −7727.54 −0.294510 −0.147255 0.989099i \(-0.547044\pi\)
−0.147255 + 0.989099i \(0.547044\pi\)
\(884\) 20935.2 0.796523
\(885\) 0 0
\(886\) −21406.8 −0.811712
\(887\) 30222.8 1.14406 0.572030 0.820233i \(-0.306156\pi\)
0.572030 + 0.820233i \(0.306156\pi\)
\(888\) 0 0
\(889\) −1339.30 −0.0505272
\(890\) 8467.41 0.318908
\(891\) 0 0
\(892\) 12268.3 0.460509
\(893\) 9347.87 0.350296
\(894\) 0 0
\(895\) −8667.76 −0.323722
\(896\) −798.613 −0.0297766
\(897\) 0 0
\(898\) −22137.1 −0.822632
\(899\) −53840.0 −1.99740
\(900\) 0 0
\(901\) −4391.07 −0.162361
\(902\) −7345.52 −0.271152
\(903\) 0 0
\(904\) −10356.1 −0.381016
\(905\) −10060.0 −0.369509
\(906\) 0 0
\(907\) −9450.13 −0.345961 −0.172980 0.984925i \(-0.555340\pi\)
−0.172980 + 0.984925i \(0.555340\pi\)
\(908\) 450.494 0.0164649
\(909\) 0 0
\(910\) −4317.99 −0.157297
\(911\) −19545.5 −0.710836 −0.355418 0.934707i \(-0.615661\pi\)
−0.355418 + 0.934707i \(0.615661\pi\)
\(912\) 0 0
\(913\) 12458.0 0.451587
\(914\) −31986.2 −1.15756
\(915\) 0 0
\(916\) −16639.5 −0.600200
\(917\) −5749.91 −0.207065
\(918\) 0 0
\(919\) −14437.2 −0.518214 −0.259107 0.965849i \(-0.583428\pi\)
−0.259107 + 0.965849i \(0.583428\pi\)
\(920\) 7350.99 0.263429
\(921\) 0 0
\(922\) −422.822 −0.0151029
\(923\) 30198.5 1.07692
\(924\) 0 0
\(925\) 27663.8 0.983330
\(926\) 17428.6 0.618509
\(927\) 0 0
\(928\) −5699.41 −0.201608
\(929\) −47411.7 −1.67441 −0.837205 0.546890i \(-0.815812\pi\)
−0.837205 + 0.546890i \(0.815812\pi\)
\(930\) 0 0
\(931\) −5777.38 −0.203379
\(932\) 599.501 0.0210701
\(933\) 0 0
\(934\) −4400.18 −0.154152
\(935\) −5515.73 −0.192924
\(936\) 0 0
\(937\) 3980.28 0.138773 0.0693864 0.997590i \(-0.477896\pi\)
0.0693864 + 0.997590i \(0.477896\pi\)
\(938\) 6094.03 0.212129
\(939\) 0 0
\(940\) 10093.1 0.350214
\(941\) −17823.8 −0.617469 −0.308734 0.951148i \(-0.599905\pi\)
−0.308734 + 0.951148i \(0.599905\pi\)
\(942\) 0 0
\(943\) 47461.6 1.63899
\(944\) 9423.58 0.324906
\(945\) 0 0
\(946\) 1325.98 0.0455722
\(947\) −45769.4 −1.57054 −0.785272 0.619151i \(-0.787477\pi\)
−0.785272 + 0.619151i \(0.787477\pi\)
\(948\) 0 0
\(949\) −15649.5 −0.535305
\(950\) −3750.47 −0.128086
\(951\) 0 0
\(952\) −3871.81 −0.131813
\(953\) 38065.7 1.29388 0.646941 0.762540i \(-0.276048\pi\)
0.646941 + 0.762540i \(0.276048\pi\)
\(954\) 0 0
\(955\) −17721.7 −0.600482
\(956\) −820.430 −0.0277559
\(957\) 0 0
\(958\) −24929.2 −0.840738
\(959\) 9261.64 0.311860
\(960\) 0 0
\(961\) 61588.9 2.06737
\(962\) −37823.3 −1.26764
\(963\) 0 0
\(964\) 23252.3 0.776873
\(965\) −26484.1 −0.883475
\(966\) 0 0
\(967\) 11933.6 0.396854 0.198427 0.980116i \(-0.436417\pi\)
0.198427 + 0.980116i \(0.436417\pi\)
\(968\) −9110.23 −0.302494
\(969\) 0 0
\(970\) −14698.6 −0.486540
\(971\) 33005.3 1.09083 0.545413 0.838168i \(-0.316373\pi\)
0.545413 + 0.838168i \(0.316373\pi\)
\(972\) 0 0
\(973\) −962.451 −0.0317110
\(974\) −19319.1 −0.635548
\(975\) 0 0
\(976\) −62.3644 −0.00204532
\(977\) −8727.11 −0.285778 −0.142889 0.989739i \(-0.545639\pi\)
−0.142889 + 0.989739i \(0.545639\pi\)
\(978\) 0 0
\(979\) −11445.0 −0.373630
\(980\) −6237.97 −0.203331
\(981\) 0 0
\(982\) −18418.8 −0.598542
\(983\) 38175.0 1.23865 0.619326 0.785134i \(-0.287406\pi\)
0.619326 + 0.785134i \(0.287406\pi\)
\(984\) 0 0
\(985\) 25112.0 0.812318
\(986\) −27631.7 −0.892466
\(987\) 0 0
\(988\) 5127.83 0.165119
\(989\) −8567.56 −0.275463
\(990\) 0 0
\(991\) −37770.2 −1.21071 −0.605354 0.795957i \(-0.706968\pi\)
−0.605354 + 0.795957i \(0.706968\pi\)
\(992\) 9673.32 0.309605
\(993\) 0 0
\(994\) −5584.99 −0.178215
\(995\) −17642.0 −0.562099
\(996\) 0 0
\(997\) 9465.53 0.300678 0.150339 0.988634i \(-0.451963\pi\)
0.150339 + 0.988634i \(0.451963\pi\)
\(998\) −10062.0 −0.319145
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 342.4.a.m.1.2 yes 3
3.2 odd 2 342.4.a.l.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
342.4.a.l.1.2 3 3.2 odd 2
342.4.a.m.1.2 yes 3 1.1 even 1 trivial