Properties

Label 342.4
Level 342
Weight 4
Dimension 2551
Nonzero newspaces 16
Sturm bound 25920
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(25920\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(342))\).

Total New Old
Modular forms 10008 2551 7457
Cusp forms 9432 2551 6881
Eisenstein series 576 0 576

Trace form

\( 2551 q - 8 q^{2} - 6 q^{3} + 16 q^{4} - 24 q^{5} + 36 q^{6} + 8 q^{7} + 16 q^{8} + 210 q^{9} + 24 q^{10} - 54 q^{11} - 48 q^{12} + 260 q^{13} - 100 q^{14} - 180 q^{15} + 64 q^{16} - 384 q^{17} - 312 q^{18}+ \cdots - 14526 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(342))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
342.4.a \(\chi_{342}(1, \cdot)\) 342.4.a.a 1 1
342.4.a.b 1
342.4.a.c 1
342.4.a.d 1
342.4.a.e 1
342.4.a.f 2
342.4.a.g 2
342.4.a.h 2
342.4.a.i 2
342.4.a.j 2
342.4.a.k 2
342.4.a.l 3
342.4.a.m 3
342.4.b \(\chi_{342}(341, \cdot)\) 342.4.b.a 10 1
342.4.b.b 10
342.4.e \(\chi_{342}(115, \cdot)\) n/a 108 2
342.4.f \(\chi_{342}(7, \cdot)\) n/a 120 2
342.4.g \(\chi_{342}(163, \cdot)\) 342.4.g.a 2 2
342.4.g.b 2
342.4.g.c 2
342.4.g.d 2
342.4.g.e 4
342.4.g.f 6
342.4.g.g 6
342.4.g.h 6
342.4.g.i 10
342.4.g.j 10
342.4.h \(\chi_{342}(121, \cdot)\) n/a 120 2
342.4.j \(\chi_{342}(65, \cdot)\) n/a 120 2
342.4.n \(\chi_{342}(293, \cdot)\) n/a 120 2
342.4.p \(\chi_{342}(113, \cdot)\) n/a 120 2
342.4.s \(\chi_{342}(107, \cdot)\) 342.4.s.a 20 2
342.4.s.b 20
342.4.u \(\chi_{342}(55, \cdot)\) n/a 150 6
342.4.v \(\chi_{342}(25, \cdot)\) n/a 360 6
342.4.w \(\chi_{342}(43, \cdot)\) n/a 360 6
342.4.x \(\chi_{342}(29, \cdot)\) n/a 360 6
342.4.bb \(\chi_{342}(53, \cdot)\) n/a 120 6
342.4.bf \(\chi_{342}(155, \cdot)\) n/a 360 6

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(342))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(342)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(171))\)\(^{\oplus 2}\)