Defining parameters
Level: | \( N \) | \(=\) | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 342.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(342))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 188 | 23 | 165 |
Cusp forms | 172 | 23 | 149 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(27\) | \(2\) | \(25\) | \(25\) | \(2\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(21\) | \(3\) | \(18\) | \(19\) | \(3\) | \(16\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(22\) | \(3\) | \(19\) | \(20\) | \(3\) | \(17\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(25\) | \(4\) | \(21\) | \(23\) | \(4\) | \(19\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(23\) | \(2\) | \(21\) | \(21\) | \(2\) | \(19\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(23\) | \(3\) | \(20\) | \(21\) | \(3\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(22\) | \(4\) | \(18\) | \(20\) | \(4\) | \(16\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(25\) | \(2\) | \(23\) | \(23\) | \(2\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(97\) | \(13\) | \(84\) | \(89\) | \(13\) | \(76\) | \(8\) | \(0\) | \(8\) | |||||
Minus space | \(-\) | \(91\) | \(10\) | \(81\) | \(83\) | \(10\) | \(73\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(342))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(342))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(342)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)