Properties

Label 342.4.a
Level $342$
Weight $4$
Character orbit 342.a
Rep. character $\chi_{342}(1,\cdot)$
Character field $\Q$
Dimension $23$
Newform subspaces $13$
Sturm bound $240$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(240\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(342))\).

Total New Old
Modular forms 188 23 165
Cusp forms 172 23 149
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(27\)\(2\)\(25\)\(25\)\(2\)\(23\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(21\)\(3\)\(18\)\(19\)\(3\)\(16\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(22\)\(3\)\(19\)\(20\)\(3\)\(17\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(25\)\(4\)\(21\)\(23\)\(4\)\(19\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(23\)\(2\)\(21\)\(21\)\(2\)\(19\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(23\)\(3\)\(20\)\(21\)\(3\)\(18\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(22\)\(4\)\(18\)\(20\)\(4\)\(16\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(25\)\(2\)\(23\)\(23\)\(2\)\(21\)\(2\)\(0\)\(2\)
Plus space\(+\)\(97\)\(13\)\(84\)\(89\)\(13\)\(76\)\(8\)\(0\)\(8\)
Minus space\(-\)\(91\)\(10\)\(81\)\(83\)\(10\)\(73\)\(8\)\(0\)\(8\)

Trace form

\( 23 q - 2 q^{2} + 92 q^{4} + 4 q^{5} - 16 q^{7} - 8 q^{8} + 4 q^{10} - 26 q^{11} - 10 q^{13} + 88 q^{14} + 368 q^{16} - 198 q^{17} + 19 q^{19} + 16 q^{20} + 168 q^{22} - 26 q^{23} + 667 q^{25} - 40 q^{26}+ \cdots + 1918 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(342))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 19
342.4.a.a 342.a 1.a $1$ $20.179$ \(\Q\) None 114.4.a.d \(-2\) \(0\) \(11\) \(-15\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+11q^{5}-15q^{7}-8q^{8}+\cdots\)
342.4.a.b 342.a 1.a $1$ $20.179$ \(\Q\) None 114.4.a.c \(2\) \(0\) \(-12\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-12q^{5}+4q^{7}+8q^{8}+\cdots\)
342.4.a.c 342.a 1.a $1$ $20.179$ \(\Q\) None 114.4.a.b \(2\) \(0\) \(7\) \(-15\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+7q^{5}-15q^{7}+8q^{8}+\cdots\)
342.4.a.d 342.a 1.a $1$ $20.179$ \(\Q\) None 38.4.a.a \(2\) \(0\) \(9\) \(-31\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+9q^{5}-31q^{7}+8q^{8}+\cdots\)
342.4.a.e 342.a 1.a $1$ $20.179$ \(\Q\) None 114.4.a.a \(2\) \(0\) \(19\) \(9\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+19q^{5}+9q^{7}+8q^{8}+\cdots\)
342.4.a.f 342.a 1.a $2$ $20.179$ \(\Q(\sqrt{17}) \) None 114.4.a.e \(-4\) \(0\) \(-18\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-9-\beta )q^{5}+(2-2\beta )q^{7}+\cdots\)
342.4.a.g 342.a 1.a $2$ $20.179$ \(\Q(\sqrt{273}) \) None 114.4.a.f \(-4\) \(0\) \(-11\) \(9\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-5-\beta )q^{5}+(5-\beta )q^{7}+\cdots\)
342.4.a.h 342.a 1.a $2$ $20.179$ \(\Q(\sqrt{73}) \) None 38.4.a.c \(-4\) \(0\) \(9\) \(-18\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(3+3\beta )q^{5}+(-7-4\beta )q^{7}+\cdots\)
342.4.a.i 342.a 1.a $2$ $20.179$ \(\Q(\sqrt{33}) \) None 342.4.a.i \(-4\) \(0\) \(10\) \(-24\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(5-\beta )q^{5}+(-12-4\beta )q^{7}+\cdots\)
342.4.a.j 342.a 1.a $2$ $20.179$ \(\Q(\sqrt{33}) \) None 342.4.a.i \(4\) \(0\) \(-10\) \(-24\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-5-\beta )q^{5}+(-12+\cdots)q^{7}+\cdots\)
342.4.a.k 342.a 1.a $2$ $20.179$ \(\Q(\sqrt{177}) \) None 38.4.a.b \(4\) \(0\) \(-10\) \(57\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-4-2\beta )q^{5}+(29+\cdots)q^{7}+\cdots\)
342.4.a.l 342.a 1.a $3$ $20.179$ 3.3.56956.1 None 342.4.a.l \(-6\) \(0\) \(0\) \(14\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(\beta _{1}+\beta _{2})q^{5}+(5-\beta _{2})q^{7}+\cdots\)
342.4.a.m 342.a 1.a $3$ $20.179$ 3.3.56956.1 None 342.4.a.l \(6\) \(0\) \(0\) \(14\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-\beta _{1}-\beta _{2})q^{5}+(5+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(342))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(342)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)