Properties

Label 342.4.a.h
Level $342$
Weight $4$
Character orbit 342.a
Self dual yes
Analytic conductor $20.179$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [342,4,Mod(1,342)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(342, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("342.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1786532220\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{73}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{73})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + (3 \beta + 3) q^{5} + ( - 4 \beta - 7) q^{7} - 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 4 q^{4} + (3 \beta + 3) q^{5} + ( - 4 \beta - 7) q^{7} - 8 q^{8} + ( - 6 \beta - 6) q^{10} + ( - \beta + 9) q^{11} + (13 \beta + 2) q^{13} + (8 \beta + 14) q^{14} + 16 q^{16} + (2 \beta + 39) q^{17} + 19 q^{19} + (12 \beta + 12) q^{20} + (2 \beta - 18) q^{22} + ( - 13 \beta - 30) q^{23} + (27 \beta + 46) q^{25} + ( - 26 \beta - 4) q^{26} + ( - 16 \beta - 28) q^{28} + (21 \beta - 12) q^{29} + ( - 44 \beta + 128) q^{31} - 32 q^{32} + ( - 4 \beta - 78) q^{34} + ( - 45 \beta - 237) q^{35} + ( - 28 \beta + 110) q^{37} - 38 q^{38} + ( - 24 \beta - 24) q^{40} + ( - 10 \beta + 30) q^{41} + (7 \beta + 335) q^{43} + ( - 4 \beta + 36) q^{44} + (26 \beta + 60) q^{46} + (71 \beta + 159) q^{47} + (72 \beta - 6) q^{49} + ( - 54 \beta - 92) q^{50} + (52 \beta + 8) q^{52} + ( - 17 \beta + 618) q^{53} + (21 \beta - 27) q^{55} + (32 \beta + 56) q^{56} + ( - 42 \beta + 24) q^{58} + ( - 25 \beta + 156) q^{59} + (111 \beta + 101) q^{61} + (88 \beta - 256) q^{62} + 64 q^{64} + (84 \beta + 708) q^{65} + ( - 77 \beta + 650) q^{67} + (8 \beta + 156) q^{68} + (90 \beta + 474) q^{70} + ( - 116 \beta - 42) q^{71} + ( - 184 \beta + 281) q^{73} + (56 \beta - 220) q^{74} + 76 q^{76} + ( - 25 \beta + 9) q^{77} + ( - 58 \beta + 704) q^{79} + (48 \beta + 48) q^{80} + (20 \beta - 60) q^{82} + ( - 194 \beta + 432) q^{83} + (129 \beta + 225) q^{85} + ( - 14 \beta - 670) q^{86} + (8 \beta - 72) q^{88} + (188 \beta + 24) q^{89} + ( - 151 \beta - 950) q^{91} + ( - 52 \beta - 120) q^{92} + ( - 142 \beta - 318) q^{94} + (57 \beta + 57) q^{95} + (102 \beta + 596) q^{97} + ( - 144 \beta + 12) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} + 9 q^{5} - 18 q^{7} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} + 8 q^{4} + 9 q^{5} - 18 q^{7} - 16 q^{8} - 18 q^{10} + 17 q^{11} + 17 q^{13} + 36 q^{14} + 32 q^{16} + 80 q^{17} + 38 q^{19} + 36 q^{20} - 34 q^{22} - 73 q^{23} + 119 q^{25} - 34 q^{26} - 72 q^{28} - 3 q^{29} + 212 q^{31} - 64 q^{32} - 160 q^{34} - 519 q^{35} + 192 q^{37} - 76 q^{38} - 72 q^{40} + 50 q^{41} + 677 q^{43} + 68 q^{44} + 146 q^{46} + 389 q^{47} + 60 q^{49} - 238 q^{50} + 68 q^{52} + 1219 q^{53} - 33 q^{55} + 144 q^{56} + 6 q^{58} + 287 q^{59} + 313 q^{61} - 424 q^{62} + 128 q^{64} + 1500 q^{65} + 1223 q^{67} + 320 q^{68} + 1038 q^{70} - 200 q^{71} + 378 q^{73} - 384 q^{74} + 152 q^{76} - 7 q^{77} + 1350 q^{79} + 144 q^{80} - 100 q^{82} + 670 q^{83} + 579 q^{85} - 1354 q^{86} - 136 q^{88} + 236 q^{89} - 2051 q^{91} - 292 q^{92} - 778 q^{94} + 171 q^{95} + 1294 q^{97} - 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.77200
4.77200
−2.00000 0 4.00000 −8.31601 0 8.08801 −8.00000 0 16.6320
1.2 −2.00000 0 4.00000 17.3160 0 −26.0880 −8.00000 0 −34.6320
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 342.4.a.h 2
3.b odd 2 1 38.4.a.c 2
12.b even 2 1 304.4.a.c 2
15.d odd 2 1 950.4.a.e 2
15.e even 4 2 950.4.b.i 4
21.c even 2 1 1862.4.a.e 2
24.f even 2 1 1216.4.a.p 2
24.h odd 2 1 1216.4.a.g 2
57.d even 2 1 722.4.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.4.a.c 2 3.b odd 2 1
304.4.a.c 2 12.b even 2 1
342.4.a.h 2 1.a even 1 1 trivial
722.4.a.f 2 57.d even 2 1
950.4.a.e 2 15.d odd 2 1
950.4.b.i 4 15.e even 4 2
1216.4.a.g 2 24.h odd 2 1
1216.4.a.p 2 24.f even 2 1
1862.4.a.e 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 9T_{5} - 144 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(342))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 9T - 144 \) Copy content Toggle raw display
$7$ \( T^{2} + 18T - 211 \) Copy content Toggle raw display
$11$ \( T^{2} - 17T + 54 \) Copy content Toggle raw display
$13$ \( T^{2} - 17T - 3012 \) Copy content Toggle raw display
$17$ \( T^{2} - 80T + 1527 \) Copy content Toggle raw display
$19$ \( (T - 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 73T - 1752 \) Copy content Toggle raw display
$29$ \( T^{2} + 3T - 8046 \) Copy content Toggle raw display
$31$ \( T^{2} - 212T - 24096 \) Copy content Toggle raw display
$37$ \( T^{2} - 192T - 5092 \) Copy content Toggle raw display
$41$ \( T^{2} - 50T - 1200 \) Copy content Toggle raw display
$43$ \( T^{2} - 677T + 113688 \) Copy content Toggle raw display
$47$ \( T^{2} - 389T - 54168 \) Copy content Toggle raw display
$53$ \( T^{2} - 1219 T + 366216 \) Copy content Toggle raw display
$59$ \( T^{2} - 287T + 9186 \) Copy content Toggle raw display
$61$ \( T^{2} - 313T - 200366 \) Copy content Toggle raw display
$67$ \( T^{2} - 1223 T + 265728 \) Copy content Toggle raw display
$71$ \( T^{2} + 200T - 235572 \) Copy content Toggle raw display
$73$ \( T^{2} - 378T - 582151 \) Copy content Toggle raw display
$79$ \( T^{2} - 1350 T + 394232 \) Copy content Toggle raw display
$83$ \( T^{2} - 670T - 574632 \) Copy content Toggle raw display
$89$ \( T^{2} - 236T - 631104 \) Copy content Toggle raw display
$97$ \( T^{2} - 1294 T + 228736 \) Copy content Toggle raw display
show more
show less