Newspace parameters
Level: | \( N \) | \(=\) | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 342.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(20.1786532220\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{177}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 44 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 38) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{177})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
2.00000 | 0 | 4.00000 | −18.3041 | 0 | 21.8479 | 8.00000 | 0 | −36.6083 | ||||||||||||||||||||||||
1.2 | 2.00000 | 0 | 4.00000 | 8.30413 | 0 | 35.1521 | 8.00000 | 0 | 16.6083 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(3\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 342.4.a.k | 2 | |
3.b | odd | 2 | 1 | 38.4.a.b | ✓ | 2 | |
12.b | even | 2 | 1 | 304.4.a.d | 2 | ||
15.d | odd | 2 | 1 | 950.4.a.h | 2 | ||
15.e | even | 4 | 2 | 950.4.b.g | 4 | ||
21.c | even | 2 | 1 | 1862.4.a.b | 2 | ||
24.f | even | 2 | 1 | 1216.4.a.l | 2 | ||
24.h | odd | 2 | 1 | 1216.4.a.j | 2 | ||
57.d | even | 2 | 1 | 722.4.a.i | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
38.4.a.b | ✓ | 2 | 3.b | odd | 2 | 1 | |
304.4.a.d | 2 | 12.b | even | 2 | 1 | ||
342.4.a.k | 2 | 1.a | even | 1 | 1 | trivial | |
722.4.a.i | 2 | 57.d | even | 2 | 1 | ||
950.4.a.h | 2 | 15.d | odd | 2 | 1 | ||
950.4.b.g | 4 | 15.e | even | 4 | 2 | ||
1216.4.a.j | 2 | 24.h | odd | 2 | 1 | ||
1216.4.a.l | 2 | 24.f | even | 2 | 1 | ||
1862.4.a.b | 2 | 21.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} + 10T_{5} - 152 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(342))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T - 2)^{2} \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 10T - 152 \)
$7$
\( T^{2} - 57T + 768 \)
$11$
\( T^{2} + 10T - 152 \)
$13$
\( T^{2} - 13T - 2126 \)
$17$
\( T^{2} - 51T - 9306 \)
$19$
\( (T + 19)^{2} \)
$23$
\( T^{2} - 155T - 1472 \)
$29$
\( T^{2} - 79T - 35654 \)
$31$
\( T^{2} + 16T - 11264 \)
$37$
\( T^{2} - 380T + 24772 \)
$41$
\( T^{2} - 790T + 154432 \)
$43$
\( T^{2} - 296T - 80048 \)
$47$
\( T^{2} - 200T - 60800 \)
$53$
\( T^{2} + 397T + 35818 \)
$59$
\( T^{2} + 201T - 212964 \)
$61$
\( T^{2} + 680T + 29932 \)
$67$
\( T^{2} + 939T + 138612 \)
$71$
\( T^{2} + 406T + 19792 \)
$73$
\( T^{2} - 123T + 3738 \)
$79$
\( T^{2} - 106T - 146048 \)
$83$
\( T^{2} + 2226 T + 1237176 \)
$89$
\( T^{2} - 870T + 184800 \)
$97$
\( T^{2} + 1864 T + 613036 \)
show more
show less