Properties

Label 342.4.a.k
Level $342$
Weight $4$
Character orbit 342.a
Self dual yes
Analytic conductor $20.179$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [342,4,Mod(1,342)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(342, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("342.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1786532220\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{177})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + ( - 2 \beta - 4) q^{5} + ( - \beta + 29) q^{7} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + 4 q^{4} + ( - 2 \beta - 4) q^{5} + ( - \beta + 29) q^{7} + 8 q^{8} + ( - 4 \beta - 8) q^{10} + (2 \beta - 6) q^{11} + (7 \beta + 3) q^{13} + ( - 2 \beta + 58) q^{14} + 16 q^{16} + ( - 15 \beta + 33) q^{17} - 19 q^{19} + ( - 8 \beta - 16) q^{20} + (4 \beta - 12) q^{22} + (13 \beta + 71) q^{23} + (20 \beta + 67) q^{25} + (14 \beta + 6) q^{26} + ( - 4 \beta + 116) q^{28} + (29 \beta + 25) q^{29} + (16 \beta - 16) q^{31} + 32 q^{32} + ( - 30 \beta + 66) q^{34} + ( - 52 \beta - 28) q^{35} + (16 \beta + 182) q^{37} - 38 q^{38} + ( - 16 \beta - 32) q^{40} + (6 \beta + 392) q^{41} + ( - 48 \beta + 172) q^{43} + (8 \beta - 24) q^{44} + (26 \beta + 142) q^{46} + (40 \beta + 80) q^{47} + ( - 57 \beta + 542) q^{49} + (40 \beta + 134) q^{50} + (28 \beta + 12) q^{52} + (9 \beta - 203) q^{53} - 152 q^{55} + ( - 8 \beta + 232) q^{56} + (58 \beta + 50) q^{58} + ( - 71 \beta - 65) q^{59} + ( - 44 \beta - 318) q^{61} + (32 \beta - 32) q^{62} + 64 q^{64} + ( - 48 \beta - 628) q^{65} + (43 \beta - 491) q^{67} + ( - 60 \beta + 132) q^{68} + ( - 104 \beta - 56) q^{70} + (22 \beta - 214) q^{71} + (\beta + 61) q^{73} + (32 \beta + 364) q^{74} - 76 q^{76} + (62 \beta - 262) q^{77} + ( - 58 \beta + 82) q^{79} + ( - 32 \beta - 64) q^{80} + (12 \beta + 784) q^{82} + ( - 6 \beta - 1110) q^{83} + (24 \beta + 1188) q^{85} + ( - 96 \beta + 344) q^{86} + (16 \beta - 48) q^{88} + ( - 10 \beta + 440) q^{89} + (193 \beta - 221) q^{91} + (52 \beta + 284) q^{92} + (80 \beta + 160) q^{94} + (38 \beta + 76) q^{95} + (76 \beta - 970) q^{97} + ( - 114 \beta + 1084) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 8 q^{4} - 10 q^{5} + 57 q^{7} + 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} + 8 q^{4} - 10 q^{5} + 57 q^{7} + 16 q^{8} - 20 q^{10} - 10 q^{11} + 13 q^{13} + 114 q^{14} + 32 q^{16} + 51 q^{17} - 38 q^{19} - 40 q^{20} - 20 q^{22} + 155 q^{23} + 154 q^{25} + 26 q^{26} + 228 q^{28} + 79 q^{29} - 16 q^{31} + 64 q^{32} + 102 q^{34} - 108 q^{35} + 380 q^{37} - 76 q^{38} - 80 q^{40} + 790 q^{41} + 296 q^{43} - 40 q^{44} + 310 q^{46} + 200 q^{47} + 1027 q^{49} + 308 q^{50} + 52 q^{52} - 397 q^{53} - 304 q^{55} + 456 q^{56} + 158 q^{58} - 201 q^{59} - 680 q^{61} - 32 q^{62} + 128 q^{64} - 1304 q^{65} - 939 q^{67} + 204 q^{68} - 216 q^{70} - 406 q^{71} + 123 q^{73} + 760 q^{74} - 152 q^{76} - 462 q^{77} + 106 q^{79} - 160 q^{80} + 1580 q^{82} - 2226 q^{83} + 2400 q^{85} + 592 q^{86} - 80 q^{88} + 870 q^{89} - 249 q^{91} + 620 q^{92} + 400 q^{94} + 190 q^{95} - 1864 q^{97} + 2054 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.15207
−6.15207
2.00000 0 4.00000 −18.3041 0 21.8479 8.00000 0 −36.6083
1.2 2.00000 0 4.00000 8.30413 0 35.1521 8.00000 0 16.6083
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 342.4.a.k 2
3.b odd 2 1 38.4.a.b 2
12.b even 2 1 304.4.a.d 2
15.d odd 2 1 950.4.a.h 2
15.e even 4 2 950.4.b.g 4
21.c even 2 1 1862.4.a.b 2
24.f even 2 1 1216.4.a.l 2
24.h odd 2 1 1216.4.a.j 2
57.d even 2 1 722.4.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.4.a.b 2 3.b odd 2 1
304.4.a.d 2 12.b even 2 1
342.4.a.k 2 1.a even 1 1 trivial
722.4.a.i 2 57.d even 2 1
950.4.a.h 2 15.d odd 2 1
950.4.b.g 4 15.e even 4 2
1216.4.a.j 2 24.h odd 2 1
1216.4.a.l 2 24.f even 2 1
1862.4.a.b 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 10T_{5} - 152 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(342))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 10T - 152 \) Copy content Toggle raw display
$7$ \( T^{2} - 57T + 768 \) Copy content Toggle raw display
$11$ \( T^{2} + 10T - 152 \) Copy content Toggle raw display
$13$ \( T^{2} - 13T - 2126 \) Copy content Toggle raw display
$17$ \( T^{2} - 51T - 9306 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 155T - 1472 \) Copy content Toggle raw display
$29$ \( T^{2} - 79T - 35654 \) Copy content Toggle raw display
$31$ \( T^{2} + 16T - 11264 \) Copy content Toggle raw display
$37$ \( T^{2} - 380T + 24772 \) Copy content Toggle raw display
$41$ \( T^{2} - 790T + 154432 \) Copy content Toggle raw display
$43$ \( T^{2} - 296T - 80048 \) Copy content Toggle raw display
$47$ \( T^{2} - 200T - 60800 \) Copy content Toggle raw display
$53$ \( T^{2} + 397T + 35818 \) Copy content Toggle raw display
$59$ \( T^{2} + 201T - 212964 \) Copy content Toggle raw display
$61$ \( T^{2} + 680T + 29932 \) Copy content Toggle raw display
$67$ \( T^{2} + 939T + 138612 \) Copy content Toggle raw display
$71$ \( T^{2} + 406T + 19792 \) Copy content Toggle raw display
$73$ \( T^{2} - 123T + 3738 \) Copy content Toggle raw display
$79$ \( T^{2} - 106T - 146048 \) Copy content Toggle raw display
$83$ \( T^{2} + 2226 T + 1237176 \) Copy content Toggle raw display
$89$ \( T^{2} - 870T + 184800 \) Copy content Toggle raw display
$97$ \( T^{2} + 1864 T + 613036 \) Copy content Toggle raw display
show more
show less