Properties

Label 342.4.a.m
Level $342$
Weight $4$
Character orbit 342.a
Self dual yes
Analytic conductor $20.179$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [342,4,Mod(1,342)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(342, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("342.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,0,12,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1786532220\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.56956.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 31x - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + ( - \beta_{2} - \beta_1) q^{5} + ( - \beta_{2} + 5) q^{7} + 8 q^{8} + ( - 2 \beta_{2} - 2 \beta_1) q^{10} + (\beta_{2} + 3 \beta_1 + 24) q^{11} + ( - 4 \beta_1 + 2) q^{13} + ( - 2 \beta_{2} + 10) q^{14}+ \cdots + ( - 38 \beta_{2} - 8 \beta_1 - 312) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} + 12 q^{4} + 14 q^{7} + 24 q^{8} + 70 q^{11} + 10 q^{13} + 28 q^{14} + 48 q^{16} + 148 q^{17} + 57 q^{19} + 140 q^{22} + 118 q^{23} + 183 q^{25} + 20 q^{26} + 56 q^{28} + 270 q^{29} + 64 q^{31}+ \cdots - 966 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 31x - 48 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu - 21 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 4\nu + 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 4\beta _1 + 63 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.22209
−1.70956
−4.51253
2.00000 0 4.00000 −18.6663 0 −2.17393 8.00000 0 −37.3326
1.2 2.00000 0 4.00000 5.12868 0 −6.23917 8.00000 0 10.2574
1.3 2.00000 0 4.00000 13.5376 0 22.4131 8.00000 0 27.0752
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 342.4.a.m yes 3
3.b odd 2 1 342.4.a.l 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
342.4.a.l 3 3.b odd 2 1
342.4.a.m yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 279T_{5} + 1296 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(342))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 279T + 1296 \) Copy content Toggle raw display
$7$ \( T^{3} - 14 T^{2} + \cdots - 304 \) Copy content Toggle raw display
$11$ \( T^{3} - 70 T^{2} + \cdots + 16578 \) Copy content Toggle raw display
$13$ \( T^{3} - 10 T^{2} + \cdots - 40056 \) Copy content Toggle raw display
$17$ \( T^{3} - 148 T^{2} + \cdots + 640908 \) Copy content Toggle raw display
$19$ \( (T - 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 118 T^{2} + \cdots - 43416 \) Copy content Toggle raw display
$29$ \( T^{3} - 270 T^{2} + \cdots + 8937864 \) Copy content Toggle raw display
$31$ \( T^{3} - 64 T^{2} + \cdots + 1773456 \) Copy content Toggle raw display
$37$ \( T^{3} - 2 T^{2} + \cdots - 39328 \) Copy content Toggle raw display
$41$ \( T^{3} - 406 T^{2} + \cdots - 410976 \) Copy content Toggle raw display
$43$ \( T^{3} - 70 T^{2} + \cdots - 3318156 \) Copy content Toggle raw display
$47$ \( T^{3} - 310 T^{2} + \cdots + 14922882 \) Copy content Toggle raw display
$53$ \( T^{3} - 950 T^{2} + \cdots + 13096296 \) Copy content Toggle raw display
$59$ \( T^{3} - 628 T^{2} + \cdots + 117658944 \) Copy content Toggle raw display
$61$ \( T^{3} + 564 T^{2} + \cdots + 249574 \) Copy content Toggle raw display
$67$ \( T^{3} + 1388 T^{2} + \cdots + 57295488 \) Copy content Toggle raw display
$71$ \( T^{3} - 404 T^{2} + \cdots + 166405248 \) Copy content Toggle raw display
$73$ \( T^{3} + 748 T^{2} + \cdots - 33055258 \) Copy content Toggle raw display
$79$ \( T^{3} + 160 T^{2} + \cdots - 658521856 \) Copy content Toggle raw display
$83$ \( T^{3} - 818 T^{2} + \cdots + 644667768 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 1295799048 \) Copy content Toggle raw display
$97$ \( T^{3} + 1782 T^{2} + \cdots + 7892872 \) Copy content Toggle raw display
show more
show less