Properties

Label 338.8.a.j.1.4
Level $338$
Weight $8$
Character 338.1
Self dual yes
Analytic conductor $105.586$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,8,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6981x^{2} - 35424x + 7188480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(79.2712\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +79.2712 q^{3} +64.0000 q^{4} -132.638 q^{5} +634.170 q^{6} -1508.92 q^{7} +512.000 q^{8} +4096.92 q^{9} -1061.10 q^{10} +2926.23 q^{11} +5073.36 q^{12} -12071.3 q^{14} -10514.4 q^{15} +4096.00 q^{16} -21738.9 q^{17} +32775.4 q^{18} -53478.1 q^{19} -8488.82 q^{20} -119614. q^{21} +23409.8 q^{22} -28447.9 q^{23} +40586.9 q^{24} -60532.2 q^{25} +151402. q^{27} -96570.7 q^{28} +152648. q^{29} -84114.8 q^{30} -83326.6 q^{31} +32768.0 q^{32} +231966. q^{33} -173911. q^{34} +200139. q^{35} +262203. q^{36} -112459. q^{37} -427825. q^{38} -67910.5 q^{40} -110130. q^{41} -956910. q^{42} +105935. q^{43} +187279. q^{44} -543407. q^{45} -227584. q^{46} -413100. q^{47} +324695. q^{48} +1.45329e6 q^{49} -484258. q^{50} -1.72327e6 q^{51} -889607. q^{53} +1.21122e6 q^{54} -388128. q^{55} -772566. q^{56} -4.23928e6 q^{57} +1.22119e6 q^{58} -2.41070e6 q^{59} -672919. q^{60} +2.38459e6 q^{61} -666613. q^{62} -6.18192e6 q^{63} +262144. q^{64} +1.85573e6 q^{66} +369763. q^{67} -1.39129e6 q^{68} -2.25510e6 q^{69} +1.60112e6 q^{70} +3.18718e6 q^{71} +2.09762e6 q^{72} -5.84239e6 q^{73} -899671. q^{74} -4.79846e6 q^{75} -3.42260e6 q^{76} -4.41544e6 q^{77} +1.07694e6 q^{79} -543284. q^{80} +3.04184e6 q^{81} -881042. q^{82} -647944. q^{83} -7.65528e6 q^{84} +2.88340e6 q^{85} +847478. q^{86} +1.21006e7 q^{87} +1.49823e6 q^{88} +1.16258e7 q^{89} -4.34725e6 q^{90} -1.82067e6 q^{92} -6.60540e6 q^{93} -3.30480e6 q^{94} +7.09322e6 q^{95} +2.59756e6 q^{96} -62366.7 q^{97} +1.16263e7 q^{98} +1.19885e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} + 256 q^{4} - 278 q^{5} - 548 q^{7} + 2048 q^{8} + 5214 q^{9} - 2224 q^{10} - 7392 q^{11} - 4384 q^{14} + 15528 q^{15} + 16384 q^{16} - 28316 q^{17} + 41712 q^{18} - 99888 q^{19} - 17792 q^{20}+ \cdots + 10357656 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 79.2712 1.69508 0.847542 0.530729i \(-0.178082\pi\)
0.847542 + 0.530729i \(0.178082\pi\)
\(4\) 64.0000 0.500000
\(5\) −132.638 −0.474539 −0.237270 0.971444i \(-0.576252\pi\)
−0.237270 + 0.971444i \(0.576252\pi\)
\(6\) 634.170 1.19860
\(7\) −1508.92 −1.66273 −0.831366 0.555725i \(-0.812441\pi\)
−0.831366 + 0.555725i \(0.812441\pi\)
\(8\) 512.000 0.353553
\(9\) 4096.92 1.87331
\(10\) −1061.10 −0.335550
\(11\) 2926.23 0.662879 0.331439 0.943477i \(-0.392466\pi\)
0.331439 + 0.943477i \(0.392466\pi\)
\(12\) 5073.36 0.847542
\(13\) 0 0
\(14\) −12071.3 −1.17573
\(15\) −10514.4 −0.804383
\(16\) 4096.00 0.250000
\(17\) −21738.9 −1.07317 −0.536583 0.843848i \(-0.680285\pi\)
−0.536583 + 0.843848i \(0.680285\pi\)
\(18\) 32775.4 1.32463
\(19\) −53478.1 −1.78870 −0.894352 0.447363i \(-0.852363\pi\)
−0.894352 + 0.447363i \(0.852363\pi\)
\(20\) −8488.82 −0.237270
\(21\) −119614. −2.81847
\(22\) 23409.8 0.468726
\(23\) −28447.9 −0.487532 −0.243766 0.969834i \(-0.578383\pi\)
−0.243766 + 0.969834i \(0.578383\pi\)
\(24\) 40586.9 0.599302
\(25\) −60532.2 −0.774813
\(26\) 0 0
\(27\) 151402. 1.48033
\(28\) −96570.7 −0.831366
\(29\) 152648. 1.16225 0.581124 0.813815i \(-0.302613\pi\)
0.581124 + 0.813815i \(0.302613\pi\)
\(30\) −84114.8 −0.568785
\(31\) −83326.6 −0.502363 −0.251182 0.967940i \(-0.580819\pi\)
−0.251182 + 0.967940i \(0.580819\pi\)
\(32\) 32768.0 0.176777
\(33\) 231966. 1.12363
\(34\) −173911. −0.758843
\(35\) 200139. 0.789032
\(36\) 262203. 0.936654
\(37\) −112459. −0.364996 −0.182498 0.983206i \(-0.558418\pi\)
−0.182498 + 0.983206i \(0.558418\pi\)
\(38\) −427825. −1.26481
\(39\) 0 0
\(40\) −67910.5 −0.167775
\(41\) −110130. −0.249553 −0.124777 0.992185i \(-0.539821\pi\)
−0.124777 + 0.992185i \(0.539821\pi\)
\(42\) −956910. −1.99296
\(43\) 105935. 0.203188 0.101594 0.994826i \(-0.467606\pi\)
0.101594 + 0.994826i \(0.467606\pi\)
\(44\) 187279. 0.331439
\(45\) −543407. −0.888958
\(46\) −227584. −0.344737
\(47\) −413100. −0.580381 −0.290190 0.956969i \(-0.593719\pi\)
−0.290190 + 0.956969i \(0.593719\pi\)
\(48\) 324695. 0.423771
\(49\) 1.45329e6 1.76468
\(50\) −484258. −0.547875
\(51\) −1.72327e6 −1.81911
\(52\) 0 0
\(53\) −889607. −0.820791 −0.410395 0.911908i \(-0.634609\pi\)
−0.410395 + 0.911908i \(0.634609\pi\)
\(54\) 1.21122e6 1.04675
\(55\) −388128. −0.314562
\(56\) −772566. −0.587865
\(57\) −4.23928e6 −3.03200
\(58\) 1.22119e6 0.821834
\(59\) −2.41070e6 −1.52813 −0.764066 0.645138i \(-0.776800\pi\)
−0.764066 + 0.645138i \(0.776800\pi\)
\(60\) −672919. −0.402192
\(61\) 2.38459e6 1.34511 0.672557 0.740045i \(-0.265196\pi\)
0.672557 + 0.740045i \(0.265196\pi\)
\(62\) −666613. −0.355224
\(63\) −6.18192e6 −3.11481
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) 1.85573e6 0.794530
\(67\) 369763. 0.150197 0.0750986 0.997176i \(-0.476073\pi\)
0.0750986 + 0.997176i \(0.476073\pi\)
\(68\) −1.39129e6 −0.536583
\(69\) −2.25510e6 −0.826408
\(70\) 1.60112e6 0.557930
\(71\) 3.18718e6 1.05682 0.528412 0.848988i \(-0.322788\pi\)
0.528412 + 0.848988i \(0.322788\pi\)
\(72\) 2.09762e6 0.662314
\(73\) −5.84239e6 −1.75776 −0.878882 0.477038i \(-0.841710\pi\)
−0.878882 + 0.477038i \(0.841710\pi\)
\(74\) −899671. −0.258091
\(75\) −4.79846e6 −1.31337
\(76\) −3.42260e6 −0.894352
\(77\) −4.41544e6 −1.10219
\(78\) 0 0
\(79\) 1.07694e6 0.245751 0.122876 0.992422i \(-0.460788\pi\)
0.122876 + 0.992422i \(0.460788\pi\)
\(80\) −543284. −0.118635
\(81\) 3.04184e6 0.635973
\(82\) −881042. −0.176461
\(83\) −647944. −0.124384 −0.0621920 0.998064i \(-0.519809\pi\)
−0.0621920 + 0.998064i \(0.519809\pi\)
\(84\) −7.65528e6 −1.40924
\(85\) 2.88340e6 0.509259
\(86\) 847478. 0.143676
\(87\) 1.21006e7 1.97011
\(88\) 1.49823e6 0.234363
\(89\) 1.16258e7 1.74807 0.874034 0.485865i \(-0.161495\pi\)
0.874034 + 0.485865i \(0.161495\pi\)
\(90\) −4.34725e6 −0.628588
\(91\) 0 0
\(92\) −1.82067e6 −0.243766
\(93\) −6.60540e6 −0.851548
\(94\) −3.30480e6 −0.410391
\(95\) 7.09322e6 0.848811
\(96\) 2.59756e6 0.299651
\(97\) −62366.7 −0.00693828 −0.00346914 0.999994i \(-0.501104\pi\)
−0.00346914 + 0.999994i \(0.501104\pi\)
\(98\) 1.16263e7 1.24782
\(99\) 1.19885e7 1.24178
\(100\) −3.87406e6 −0.387406
\(101\) −1.48059e7 −1.42991 −0.714955 0.699171i \(-0.753553\pi\)
−0.714955 + 0.699171i \(0.753553\pi\)
\(102\) −1.37862e7 −1.28630
\(103\) −1.24059e7 −1.11866 −0.559332 0.828944i \(-0.688942\pi\)
−0.559332 + 0.828944i \(0.688942\pi\)
\(104\) 0 0
\(105\) 1.58653e7 1.33747
\(106\) −7.11685e6 −0.580387
\(107\) 569302. 0.0449262 0.0224631 0.999748i \(-0.492849\pi\)
0.0224631 + 0.999748i \(0.492849\pi\)
\(108\) 9.68972e6 0.740164
\(109\) 3.87174e6 0.286361 0.143181 0.989697i \(-0.454267\pi\)
0.143181 + 0.989697i \(0.454267\pi\)
\(110\) −3.10503e6 −0.222429
\(111\) −8.91475e6 −0.618698
\(112\) −6.18053e6 −0.415683
\(113\) −2.78061e7 −1.81287 −0.906433 0.422349i \(-0.861206\pi\)
−0.906433 + 0.422349i \(0.861206\pi\)
\(114\) −3.39142e7 −2.14395
\(115\) 3.77327e6 0.231353
\(116\) 9.76949e6 0.581124
\(117\) 0 0
\(118\) −1.92856e7 −1.08055
\(119\) 3.28022e7 1.78439
\(120\) −5.38335e6 −0.284393
\(121\) −1.09244e7 −0.560592
\(122\) 1.90767e7 0.951140
\(123\) −8.73016e6 −0.423014
\(124\) −5.33290e6 −0.251182
\(125\) 1.83912e7 0.842218
\(126\) −4.94554e7 −2.20250
\(127\) 1.60372e7 0.694730 0.347365 0.937730i \(-0.387076\pi\)
0.347365 + 0.937730i \(0.387076\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 8.39757e6 0.344421
\(130\) 0 0
\(131\) 2.10431e7 0.817824 0.408912 0.912574i \(-0.365908\pi\)
0.408912 + 0.912574i \(0.365908\pi\)
\(132\) 1.48458e7 0.561817
\(133\) 8.06941e7 2.97414
\(134\) 2.95811e6 0.106206
\(135\) −2.00816e7 −0.702474
\(136\) −1.11303e7 −0.379421
\(137\) −4.38736e7 −1.45775 −0.728873 0.684649i \(-0.759955\pi\)
−0.728873 + 0.684649i \(0.759955\pi\)
\(138\) −1.80408e7 −0.584359
\(139\) 1.39014e7 0.439043 0.219521 0.975608i \(-0.429550\pi\)
0.219521 + 0.975608i \(0.429550\pi\)
\(140\) 1.28089e7 0.394516
\(141\) −3.27470e7 −0.983794
\(142\) 2.54974e7 0.747287
\(143\) 0 0
\(144\) 1.67810e7 0.468327
\(145\) −2.02469e7 −0.551532
\(146\) −4.67391e7 −1.24293
\(147\) 1.15204e8 2.99128
\(148\) −7.19737e6 −0.182498
\(149\) −4.07753e7 −1.00982 −0.504912 0.863171i \(-0.668475\pi\)
−0.504912 + 0.863171i \(0.668475\pi\)
\(150\) −3.83877e7 −0.928694
\(151\) 6.68855e7 1.58093 0.790465 0.612507i \(-0.209839\pi\)
0.790465 + 0.612507i \(0.209839\pi\)
\(152\) −2.73808e7 −0.632403
\(153\) −8.90627e7 −2.01037
\(154\) −3.53235e7 −0.779366
\(155\) 1.10523e7 0.238391
\(156\) 0 0
\(157\) 7.74485e7 1.59722 0.798609 0.601850i \(-0.205569\pi\)
0.798609 + 0.601850i \(0.205569\pi\)
\(158\) 8.61550e6 0.173772
\(159\) −7.05202e7 −1.39131
\(160\) −4.34627e6 −0.0838875
\(161\) 4.29256e7 0.810636
\(162\) 2.43347e7 0.449701
\(163\) 3.07976e7 0.557006 0.278503 0.960435i \(-0.410162\pi\)
0.278503 + 0.960435i \(0.410162\pi\)
\(164\) −7.04834e6 −0.124777
\(165\) −3.07674e7 −0.533209
\(166\) −5.18355e6 −0.0879527
\(167\) −4.07252e7 −0.676637 −0.338318 0.941032i \(-0.609858\pi\)
−0.338318 + 0.941032i \(0.609858\pi\)
\(168\) −6.12422e7 −0.996480
\(169\) 0 0
\(170\) 2.30672e7 0.360101
\(171\) −2.19096e8 −3.35079
\(172\) 6.77982e6 0.101594
\(173\) 2.94018e7 0.431730 0.215865 0.976423i \(-0.430743\pi\)
0.215865 + 0.976423i \(0.430743\pi\)
\(174\) 9.68049e7 1.39308
\(175\) 9.13381e7 1.28831
\(176\) 1.19858e7 0.165720
\(177\) −1.91099e8 −2.59031
\(178\) 9.30065e7 1.23607
\(179\) 4.50362e7 0.586917 0.293458 0.955972i \(-0.405194\pi\)
0.293458 + 0.955972i \(0.405194\pi\)
\(180\) −3.47780e7 −0.444479
\(181\) −7.76931e7 −0.973885 −0.486942 0.873434i \(-0.661888\pi\)
−0.486942 + 0.873434i \(0.661888\pi\)
\(182\) 0 0
\(183\) 1.89029e8 2.28008
\(184\) −1.45653e7 −0.172369
\(185\) 1.49163e7 0.173205
\(186\) −5.28432e7 −0.602135
\(187\) −6.36131e7 −0.711379
\(188\) −2.64384e7 −0.290190
\(189\) −2.28453e8 −2.46139
\(190\) 5.67458e7 0.600200
\(191\) 1.65531e7 0.171895 0.0859476 0.996300i \(-0.472608\pi\)
0.0859476 + 0.996300i \(0.472608\pi\)
\(192\) 2.07805e7 0.211885
\(193\) 5.80414e7 0.581149 0.290574 0.956852i \(-0.406154\pi\)
0.290574 + 0.956852i \(0.406154\pi\)
\(194\) −498934. −0.00490611
\(195\) 0 0
\(196\) 9.30105e7 0.882340
\(197\) −3.87910e7 −0.361492 −0.180746 0.983530i \(-0.557851\pi\)
−0.180746 + 0.983530i \(0.557851\pi\)
\(198\) 9.59083e7 0.878068
\(199\) 2.83672e7 0.255170 0.127585 0.991828i \(-0.459277\pi\)
0.127585 + 0.991828i \(0.459277\pi\)
\(200\) −3.09925e7 −0.273938
\(201\) 2.93116e7 0.254597
\(202\) −1.18447e8 −1.01110
\(203\) −2.30334e8 −1.93251
\(204\) −1.10289e8 −0.909553
\(205\) 1.46074e7 0.118423
\(206\) −9.92476e7 −0.791015
\(207\) −1.16549e8 −0.913298
\(208\) 0 0
\(209\) −1.56489e8 −1.18569
\(210\) 1.26922e8 0.945737
\(211\) −6.52934e7 −0.478499 −0.239249 0.970958i \(-0.576901\pi\)
−0.239249 + 0.970958i \(0.576901\pi\)
\(212\) −5.69348e7 −0.410395
\(213\) 2.52652e8 1.79140
\(214\) 4.55441e6 0.0317676
\(215\) −1.40509e7 −0.0964208
\(216\) 7.75178e7 0.523375
\(217\) 1.25733e8 0.835296
\(218\) 3.09740e7 0.202488
\(219\) −4.63134e8 −2.97956
\(220\) −2.48402e7 −0.157281
\(221\) 0 0
\(222\) −7.13180e7 −0.437485
\(223\) 1.04880e8 0.633325 0.316663 0.948538i \(-0.397438\pi\)
0.316663 + 0.948538i \(0.397438\pi\)
\(224\) −4.94442e7 −0.293932
\(225\) −2.47996e8 −1.45146
\(226\) −2.22449e8 −1.28189
\(227\) −4.98470e7 −0.282845 −0.141423 0.989949i \(-0.545168\pi\)
−0.141423 + 0.989949i \(0.545168\pi\)
\(228\) −2.71314e8 −1.51600
\(229\) −1.15632e8 −0.636287 −0.318144 0.948043i \(-0.603059\pi\)
−0.318144 + 0.948043i \(0.603059\pi\)
\(230\) 3.01862e7 0.163591
\(231\) −3.50017e8 −1.86830
\(232\) 7.81559e7 0.410917
\(233\) 7.04962e7 0.365107 0.182553 0.983196i \(-0.441564\pi\)
0.182553 + 0.983196i \(0.441564\pi\)
\(234\) 0 0
\(235\) 5.47927e7 0.275413
\(236\) −1.54285e8 −0.764066
\(237\) 8.53701e7 0.416569
\(238\) 2.62418e8 1.26175
\(239\) 3.08705e8 1.46269 0.731343 0.682010i \(-0.238894\pi\)
0.731343 + 0.682010i \(0.238894\pi\)
\(240\) −4.30668e7 −0.201096
\(241\) −1.23764e8 −0.569554 −0.284777 0.958594i \(-0.591919\pi\)
−0.284777 + 0.958594i \(0.591919\pi\)
\(242\) −8.73948e7 −0.396398
\(243\) −8.99857e7 −0.402301
\(244\) 1.52614e8 0.672557
\(245\) −1.92761e8 −0.837410
\(246\) −6.98413e7 −0.299116
\(247\) 0 0
\(248\) −4.26632e7 −0.177612
\(249\) −5.13633e7 −0.210841
\(250\) 1.47129e8 0.595538
\(251\) 3.36476e8 1.34306 0.671531 0.740977i \(-0.265637\pi\)
0.671531 + 0.740977i \(0.265637\pi\)
\(252\) −3.95643e8 −1.55740
\(253\) −8.32452e7 −0.323175
\(254\) 1.28298e8 0.491249
\(255\) 2.28571e8 0.863237
\(256\) 1.67772e7 0.0625000
\(257\) 2.70499e8 0.994032 0.497016 0.867741i \(-0.334429\pi\)
0.497016 + 0.867741i \(0.334429\pi\)
\(258\) 6.71806e7 0.243543
\(259\) 1.69691e8 0.606890
\(260\) 0 0
\(261\) 6.25388e8 2.17725
\(262\) 1.68345e8 0.578289
\(263\) −4.02987e8 −1.36598 −0.682992 0.730426i \(-0.739321\pi\)
−0.682992 + 0.730426i \(0.739321\pi\)
\(264\) 1.18766e8 0.397265
\(265\) 1.17995e8 0.389497
\(266\) 6.45553e8 2.10303
\(267\) 9.21592e8 2.96312
\(268\) 2.36649e7 0.0750986
\(269\) −1.45527e8 −0.455839 −0.227920 0.973680i \(-0.573192\pi\)
−0.227920 + 0.973680i \(0.573192\pi\)
\(270\) −1.60653e8 −0.496724
\(271\) 3.56078e8 1.08681 0.543403 0.839472i \(-0.317135\pi\)
0.543403 + 0.839472i \(0.317135\pi\)
\(272\) −8.90426e7 −0.268291
\(273\) 0 0
\(274\) −3.50989e8 −1.03078
\(275\) −1.77131e8 −0.513607
\(276\) −1.44327e8 −0.413204
\(277\) 4.86354e8 1.37491 0.687454 0.726228i \(-0.258728\pi\)
0.687454 + 0.726228i \(0.258728\pi\)
\(278\) 1.11211e8 0.310450
\(279\) −3.41383e8 −0.941081
\(280\) 1.02471e8 0.278965
\(281\) 4.89344e7 0.131566 0.0657828 0.997834i \(-0.479046\pi\)
0.0657828 + 0.997834i \(0.479046\pi\)
\(282\) −2.61976e8 −0.695647
\(283\) −2.75406e8 −0.722306 −0.361153 0.932507i \(-0.617617\pi\)
−0.361153 + 0.932507i \(0.617617\pi\)
\(284\) 2.03980e8 0.528412
\(285\) 5.62288e8 1.43880
\(286\) 0 0
\(287\) 1.66178e8 0.414940
\(288\) 1.34248e8 0.331157
\(289\) 6.22422e7 0.151685
\(290\) −1.61975e8 −0.389992
\(291\) −4.94389e6 −0.0117610
\(292\) −3.73913e8 −0.878882
\(293\) 3.06879e8 0.712738 0.356369 0.934345i \(-0.384015\pi\)
0.356369 + 0.934345i \(0.384015\pi\)
\(294\) 9.21632e8 2.11515
\(295\) 3.19750e8 0.725159
\(296\) −5.75789e7 −0.129045
\(297\) 4.43037e8 0.981278
\(298\) −3.26203e8 −0.714053
\(299\) 0 0
\(300\) −3.07102e8 −0.656686
\(301\) −1.59847e8 −0.337848
\(302\) 5.35084e8 1.11789
\(303\) −1.17368e9 −2.42382
\(304\) −2.19046e8 −0.447176
\(305\) −3.16287e8 −0.638310
\(306\) −7.12502e8 −1.42155
\(307\) 1.55157e8 0.306046 0.153023 0.988223i \(-0.451099\pi\)
0.153023 + 0.988223i \(0.451099\pi\)
\(308\) −2.82588e8 −0.551095
\(309\) −9.83434e8 −1.89623
\(310\) 8.84180e7 0.168568
\(311\) −5.61165e8 −1.05786 −0.528931 0.848665i \(-0.677407\pi\)
−0.528931 + 0.848665i \(0.677407\pi\)
\(312\) 0 0
\(313\) −3.88240e8 −0.715640 −0.357820 0.933791i \(-0.616480\pi\)
−0.357820 + 0.933791i \(0.616480\pi\)
\(314\) 6.19588e8 1.12940
\(315\) 8.19956e8 1.47810
\(316\) 6.89240e7 0.122876
\(317\) −6.56778e7 −0.115801 −0.0579003 0.998322i \(-0.518441\pi\)
−0.0579003 + 0.998322i \(0.518441\pi\)
\(318\) −5.64162e8 −0.983804
\(319\) 4.46684e8 0.770429
\(320\) −3.47702e7 −0.0593174
\(321\) 4.51292e7 0.0761536
\(322\) 3.43405e8 0.573206
\(323\) 1.16256e9 1.91958
\(324\) 1.94678e8 0.317987
\(325\) 0 0
\(326\) 2.46381e8 0.393863
\(327\) 3.06918e8 0.485406
\(328\) −5.63867e7 −0.0882304
\(329\) 6.23334e8 0.965018
\(330\) −2.46139e8 −0.377035
\(331\) −6.82173e8 −1.03394 −0.516971 0.856003i \(-0.672941\pi\)
−0.516971 + 0.856003i \(0.672941\pi\)
\(332\) −4.14684e7 −0.0621920
\(333\) −4.60735e8 −0.683749
\(334\) −3.25802e8 −0.478454
\(335\) −4.90446e7 −0.0712745
\(336\) −4.89938e8 −0.704618
\(337\) 5.06834e8 0.721375 0.360687 0.932687i \(-0.382542\pi\)
0.360687 + 0.932687i \(0.382542\pi\)
\(338\) 0 0
\(339\) −2.20422e9 −3.07296
\(340\) 1.84538e8 0.254630
\(341\) −2.43833e8 −0.333006
\(342\) −1.75277e9 −2.36937
\(343\) −9.50235e8 −1.27146
\(344\) 5.42386e7 0.0718379
\(345\) 2.99112e8 0.392163
\(346\) 2.35214e8 0.305279
\(347\) −4.84709e8 −0.622770 −0.311385 0.950284i \(-0.600793\pi\)
−0.311385 + 0.950284i \(0.600793\pi\)
\(348\) 7.74439e8 0.985054
\(349\) −2.92464e8 −0.368284 −0.184142 0.982900i \(-0.558951\pi\)
−0.184142 + 0.982900i \(0.558951\pi\)
\(350\) 7.30705e8 0.910970
\(351\) 0 0
\(352\) 9.58867e7 0.117181
\(353\) −7.90376e8 −0.956361 −0.478181 0.878261i \(-0.658704\pi\)
−0.478181 + 0.878261i \(0.658704\pi\)
\(354\) −1.52879e9 −1.83163
\(355\) −4.22740e8 −0.501504
\(356\) 7.44052e8 0.874034
\(357\) 2.60027e9 3.02469
\(358\) 3.60290e8 0.415013
\(359\) 1.31770e8 0.150309 0.0751544 0.997172i \(-0.476055\pi\)
0.0751544 + 0.997172i \(0.476055\pi\)
\(360\) −2.78224e8 −0.314294
\(361\) 1.96604e9 2.19947
\(362\) −6.21545e8 −0.688640
\(363\) −8.65986e8 −0.950250
\(364\) 0 0
\(365\) 7.74922e8 0.834128
\(366\) 1.51223e9 1.61226
\(367\) −8.73299e8 −0.922214 −0.461107 0.887345i \(-0.652548\pi\)
−0.461107 + 0.887345i \(0.652548\pi\)
\(368\) −1.16523e8 −0.121883
\(369\) −4.51195e8 −0.467490
\(370\) 1.19330e8 0.122474
\(371\) 1.34234e9 1.36476
\(372\) −4.22746e8 −0.425774
\(373\) 1.26136e9 1.25851 0.629255 0.777199i \(-0.283360\pi\)
0.629255 + 0.777199i \(0.283360\pi\)
\(374\) −5.08905e8 −0.503021
\(375\) 1.45789e9 1.42763
\(376\) −2.11507e8 −0.205196
\(377\) 0 0
\(378\) −1.82762e9 −1.74047
\(379\) −4.71021e8 −0.444430 −0.222215 0.974998i \(-0.571329\pi\)
−0.222215 + 0.974998i \(0.571329\pi\)
\(380\) 4.53966e8 0.424405
\(381\) 1.27129e9 1.17763
\(382\) 1.32425e8 0.121548
\(383\) −8.33063e8 −0.757674 −0.378837 0.925463i \(-0.623676\pi\)
−0.378837 + 0.925463i \(0.623676\pi\)
\(384\) 1.66244e8 0.149826
\(385\) 5.85654e8 0.523032
\(386\) 4.64331e8 0.410934
\(387\) 4.34006e8 0.380634
\(388\) −3.99147e6 −0.00346914
\(389\) −1.21290e8 −0.104472 −0.0522362 0.998635i \(-0.516635\pi\)
−0.0522362 + 0.998635i \(0.516635\pi\)
\(390\) 0 0
\(391\) 6.18428e8 0.523203
\(392\) 7.44084e8 0.623908
\(393\) 1.66811e9 1.38628
\(394\) −3.10328e8 −0.255614
\(395\) −1.42842e8 −0.116619
\(396\) 7.67266e8 0.620888
\(397\) 7.91465e8 0.634841 0.317420 0.948285i \(-0.397183\pi\)
0.317420 + 0.948285i \(0.397183\pi\)
\(398\) 2.26937e8 0.180433
\(399\) 6.39672e9 5.04141
\(400\) −2.47940e8 −0.193703
\(401\) 1.51079e9 1.17003 0.585017 0.811021i \(-0.301088\pi\)
0.585017 + 0.811021i \(0.301088\pi\)
\(402\) 2.34493e8 0.180027
\(403\) 0 0
\(404\) −9.47575e8 −0.714955
\(405\) −4.03463e8 −0.301794
\(406\) −1.84267e9 −1.36649
\(407\) −3.29080e8 −0.241948
\(408\) −8.82315e8 −0.643151
\(409\) 2.33328e9 1.68630 0.843151 0.537677i \(-0.180698\pi\)
0.843151 + 0.537677i \(0.180698\pi\)
\(410\) 1.16859e8 0.0837376
\(411\) −3.47792e9 −2.47100
\(412\) −7.93981e8 −0.559332
\(413\) 3.63755e9 2.54088
\(414\) −9.32392e8 −0.645799
\(415\) 8.59418e7 0.0590250
\(416\) 0 0
\(417\) 1.10198e9 0.744214
\(418\) −1.25191e9 −0.838412
\(419\) 1.01986e9 0.677313 0.338656 0.940910i \(-0.390028\pi\)
0.338656 + 0.940910i \(0.390028\pi\)
\(420\) 1.01538e9 0.668737
\(421\) 1.73659e9 1.13426 0.567128 0.823630i \(-0.308055\pi\)
0.567128 + 0.823630i \(0.308055\pi\)
\(422\) −5.22347e8 −0.338350
\(423\) −1.69244e9 −1.08723
\(424\) −4.55479e8 −0.290193
\(425\) 1.31591e9 0.831502
\(426\) 2.02121e9 1.26671
\(427\) −3.59815e9 −2.23657
\(428\) 3.64353e7 0.0224631
\(429\) 0 0
\(430\) −1.12408e8 −0.0681798
\(431\) 2.40870e8 0.144915 0.0724573 0.997372i \(-0.476916\pi\)
0.0724573 + 0.997372i \(0.476916\pi\)
\(432\) 6.20142e8 0.370082
\(433\) −2.21033e9 −1.30842 −0.654212 0.756311i \(-0.727000\pi\)
−0.654212 + 0.756311i \(0.727000\pi\)
\(434\) 1.00586e9 0.590643
\(435\) −1.60500e9 −0.934893
\(436\) 2.47792e8 0.143181
\(437\) 1.52134e9 0.872052
\(438\) −3.70507e9 −2.10687
\(439\) −2.30612e9 −1.30094 −0.650468 0.759534i \(-0.725427\pi\)
−0.650468 + 0.759534i \(0.725427\pi\)
\(440\) −1.98722e8 −0.111214
\(441\) 5.95401e9 3.30579
\(442\) 0 0
\(443\) 1.10170e9 0.602073 0.301036 0.953613i \(-0.402667\pi\)
0.301036 + 0.953613i \(0.402667\pi\)
\(444\) −5.70544e8 −0.309349
\(445\) −1.54202e9 −0.829527
\(446\) 8.39042e8 0.447829
\(447\) −3.23231e9 −1.71173
\(448\) −3.95554e8 −0.207842
\(449\) −1.80705e9 −0.942126 −0.471063 0.882100i \(-0.656130\pi\)
−0.471063 + 0.882100i \(0.656130\pi\)
\(450\) −1.98397e9 −1.02634
\(451\) −3.22267e8 −0.165424
\(452\) −1.77959e9 −0.906433
\(453\) 5.30209e9 2.67981
\(454\) −3.98776e8 −0.200002
\(455\) 0 0
\(456\) −2.17051e9 −1.07198
\(457\) −1.80207e9 −0.883212 −0.441606 0.897209i \(-0.645591\pi\)
−0.441606 + 0.897209i \(0.645591\pi\)
\(458\) −9.25055e8 −0.449923
\(459\) −3.29131e9 −1.58864
\(460\) 2.41489e8 0.115677
\(461\) 7.81569e8 0.371547 0.185774 0.982593i \(-0.440521\pi\)
0.185774 + 0.982593i \(0.440521\pi\)
\(462\) −2.80014e9 −1.32109
\(463\) 7.80510e8 0.365464 0.182732 0.983163i \(-0.441506\pi\)
0.182732 + 0.983163i \(0.441506\pi\)
\(464\) 6.25247e8 0.290562
\(465\) 8.76126e8 0.404093
\(466\) 5.63969e8 0.258169
\(467\) −2.48897e9 −1.13087 −0.565433 0.824794i \(-0.691291\pi\)
−0.565433 + 0.824794i \(0.691291\pi\)
\(468\) 0 0
\(469\) −5.57942e8 −0.249738
\(470\) 4.38342e8 0.194747
\(471\) 6.13944e9 2.70742
\(472\) −1.23428e9 −0.540276
\(473\) 3.09989e8 0.134689
\(474\) 6.82961e8 0.294558
\(475\) 3.23715e9 1.38591
\(476\) 2.09934e9 0.892194
\(477\) −3.64465e9 −1.53759
\(478\) 2.46964e9 1.03427
\(479\) 3.46691e9 1.44135 0.720673 0.693275i \(-0.243833\pi\)
0.720673 + 0.693275i \(0.243833\pi\)
\(480\) −3.44534e8 −0.142196
\(481\) 0 0
\(482\) −9.90112e8 −0.402735
\(483\) 3.40276e9 1.37410
\(484\) −6.99159e8 −0.280296
\(485\) 8.27218e6 0.00329249
\(486\) −7.19885e8 −0.284470
\(487\) 1.00101e9 0.392724 0.196362 0.980531i \(-0.437087\pi\)
0.196362 + 0.980531i \(0.437087\pi\)
\(488\) 1.22091e9 0.475570
\(489\) 2.44136e9 0.944172
\(490\) −1.54209e9 −0.592138
\(491\) −1.47873e8 −0.0563771 −0.0281885 0.999603i \(-0.508974\pi\)
−0.0281885 + 0.999603i \(0.508974\pi\)
\(492\) −5.58730e8 −0.211507
\(493\) −3.31841e9 −1.24729
\(494\) 0 0
\(495\) −1.59013e9 −0.589271
\(496\) −3.41306e8 −0.125591
\(497\) −4.80919e9 −1.75721
\(498\) −4.10906e8 −0.149087
\(499\) 3.44602e9 1.24155 0.620777 0.783988i \(-0.286817\pi\)
0.620777 + 0.783988i \(0.286817\pi\)
\(500\) 1.17704e9 0.421109
\(501\) −3.22834e9 −1.14696
\(502\) 2.69181e9 0.949688
\(503\) −5.67817e9 −1.98939 −0.994696 0.102861i \(-0.967200\pi\)
−0.994696 + 0.102861i \(0.967200\pi\)
\(504\) −3.16514e9 −1.10125
\(505\) 1.96382e9 0.678548
\(506\) −6.65962e8 −0.228519
\(507\) 0 0
\(508\) 1.02638e9 0.347365
\(509\) −3.65083e9 −1.22710 −0.613549 0.789656i \(-0.710259\pi\)
−0.613549 + 0.789656i \(0.710259\pi\)
\(510\) 1.82857e9 0.610401
\(511\) 8.81569e9 2.92269
\(512\) 1.34218e8 0.0441942
\(513\) −8.09669e9 −2.64787
\(514\) 2.16400e9 0.702887
\(515\) 1.64550e9 0.530850
\(516\) 5.37445e8 0.172211
\(517\) −1.20883e9 −0.384722
\(518\) 1.35753e9 0.429136
\(519\) 2.33071e9 0.731819
\(520\) 0 0
\(521\) 3.14626e9 0.974680 0.487340 0.873212i \(-0.337967\pi\)
0.487340 + 0.873212i \(0.337967\pi\)
\(522\) 5.00311e9 1.53955
\(523\) −6.43264e9 −1.96623 −0.983113 0.183000i \(-0.941419\pi\)
−0.983113 + 0.183000i \(0.941419\pi\)
\(524\) 1.34676e9 0.408912
\(525\) 7.24048e9 2.18379
\(526\) −3.22389e9 −0.965896
\(527\) 1.81143e9 0.539119
\(528\) 9.50132e8 0.280909
\(529\) −2.59554e9 −0.762312
\(530\) 9.43963e8 0.275416
\(531\) −9.87645e9 −2.86266
\(532\) 5.16442e9 1.48707
\(533\) 0 0
\(534\) 7.37274e9 2.09524
\(535\) −7.55109e7 −0.0213192
\(536\) 1.89319e8 0.0531028
\(537\) 3.57008e9 0.994873
\(538\) −1.16422e9 −0.322327
\(539\) 4.25266e9 1.16977
\(540\) −1.28522e9 −0.351237
\(541\) −1.42344e9 −0.386500 −0.193250 0.981150i \(-0.561903\pi\)
−0.193250 + 0.981150i \(0.561903\pi\)
\(542\) 2.84862e9 0.768488
\(543\) −6.15883e9 −1.65082
\(544\) −7.12341e8 −0.189711
\(545\) −5.13539e8 −0.135890
\(546\) 0 0
\(547\) −1.52035e9 −0.397181 −0.198591 0.980083i \(-0.563636\pi\)
−0.198591 + 0.980083i \(0.563636\pi\)
\(548\) −2.80791e9 −0.728873
\(549\) 9.76948e9 2.51981
\(550\) −1.41705e9 −0.363175
\(551\) −8.16335e9 −2.07892
\(552\) −1.15461e9 −0.292179
\(553\) −1.62501e9 −0.408618
\(554\) 3.89084e9 0.972207
\(555\) 1.18243e9 0.293596
\(556\) 8.89689e8 0.219521
\(557\) 8.30213e8 0.203562 0.101781 0.994807i \(-0.467546\pi\)
0.101781 + 0.994807i \(0.467546\pi\)
\(558\) −2.73106e9 −0.665445
\(559\) 0 0
\(560\) 8.19771e8 0.197258
\(561\) −5.04269e9 −1.20585
\(562\) 3.91475e8 0.0930309
\(563\) −3.23721e9 −0.764524 −0.382262 0.924054i \(-0.624855\pi\)
−0.382262 + 0.924054i \(0.624855\pi\)
\(564\) −2.09581e9 −0.491897
\(565\) 3.68814e9 0.860276
\(566\) −2.20325e9 −0.510747
\(567\) −4.58989e9 −1.05745
\(568\) 1.63184e9 0.373644
\(569\) −4.71974e9 −1.07405 −0.537026 0.843565i \(-0.680452\pi\)
−0.537026 + 0.843565i \(0.680452\pi\)
\(570\) 4.49830e9 1.01739
\(571\) 3.95218e9 0.888403 0.444201 0.895927i \(-0.353487\pi\)
0.444201 + 0.895927i \(0.353487\pi\)
\(572\) 0 0
\(573\) 1.31219e9 0.291377
\(574\) 1.32942e9 0.293407
\(575\) 1.72202e9 0.377746
\(576\) 1.07398e9 0.234163
\(577\) 2.12731e9 0.461016 0.230508 0.973070i \(-0.425961\pi\)
0.230508 + 0.973070i \(0.425961\pi\)
\(578\) 4.97938e8 0.107257
\(579\) 4.60101e9 0.985096
\(580\) −1.29580e9 −0.275766
\(581\) 9.77694e8 0.206817
\(582\) −3.95511e7 −0.00831626
\(583\) −2.60319e9 −0.544085
\(584\) −2.99131e9 −0.621464
\(585\) 0 0
\(586\) 2.45503e9 0.503982
\(587\) 5.30118e9 1.08178 0.540890 0.841093i \(-0.318087\pi\)
0.540890 + 0.841093i \(0.318087\pi\)
\(588\) 7.37305e9 1.49564
\(589\) 4.45615e9 0.898580
\(590\) 2.55800e9 0.512765
\(591\) −3.07501e9 −0.612760
\(592\) −4.60631e8 −0.0912489
\(593\) −7.20568e9 −1.41900 −0.709501 0.704704i \(-0.751080\pi\)
−0.709501 + 0.704704i \(0.751080\pi\)
\(594\) 3.54429e9 0.693868
\(595\) −4.35082e9 −0.846762
\(596\) −2.60962e9 −0.504912
\(597\) 2.24870e9 0.432535
\(598\) 0 0
\(599\) −1.75875e9 −0.334357 −0.167179 0.985927i \(-0.553466\pi\)
−0.167179 + 0.985927i \(0.553466\pi\)
\(600\) −2.45681e9 −0.464347
\(601\) −7.01266e9 −1.31772 −0.658858 0.752267i \(-0.728960\pi\)
−0.658858 + 0.752267i \(0.728960\pi\)
\(602\) −1.27877e9 −0.238895
\(603\) 1.51489e9 0.281366
\(604\) 4.28067e9 0.790465
\(605\) 1.44898e9 0.266023
\(606\) −9.38942e9 −1.71390
\(607\) 1.59340e9 0.289177 0.144588 0.989492i \(-0.453814\pi\)
0.144588 + 0.989492i \(0.453814\pi\)
\(608\) −1.75237e9 −0.316201
\(609\) −1.82588e10 −3.27576
\(610\) −2.53029e9 −0.451353
\(611\) 0 0
\(612\) −5.70001e9 −1.00518
\(613\) 1.08040e9 0.189441 0.0947205 0.995504i \(-0.469804\pi\)
0.0947205 + 0.995504i \(0.469804\pi\)
\(614\) 1.24125e9 0.216407
\(615\) 1.15795e9 0.200737
\(616\) −2.26070e9 −0.389683
\(617\) −6.51043e9 −1.11587 −0.557933 0.829886i \(-0.688405\pi\)
−0.557933 + 0.829886i \(0.688405\pi\)
\(618\) −7.86747e9 −1.34084
\(619\) 2.46380e9 0.417531 0.208766 0.977966i \(-0.433055\pi\)
0.208766 + 0.977966i \(0.433055\pi\)
\(620\) 7.07344e8 0.119196
\(621\) −4.30707e9 −0.721708
\(622\) −4.48932e9 −0.748022
\(623\) −1.75424e10 −2.90657
\(624\) 0 0
\(625\) 2.28972e9 0.375147
\(626\) −3.10592e9 −0.506034
\(627\) −1.24051e10 −2.00985
\(628\) 4.95671e9 0.798609
\(629\) 2.44473e9 0.391701
\(630\) 6.55965e9 1.04517
\(631\) 3.12429e9 0.495049 0.247524 0.968882i \(-0.420383\pi\)
0.247524 + 0.968882i \(0.420383\pi\)
\(632\) 5.51392e8 0.0868861
\(633\) −5.17589e9 −0.811095
\(634\) −5.25422e8 −0.0818834
\(635\) −2.12714e9 −0.329677
\(636\) −4.51329e9 −0.695654
\(637\) 0 0
\(638\) 3.57347e9 0.544776
\(639\) 1.30576e10 1.97976
\(640\) −2.78162e8 −0.0419437
\(641\) −8.30127e9 −1.24492 −0.622460 0.782651i \(-0.713867\pi\)
−0.622460 + 0.782651i \(0.713867\pi\)
\(642\) 3.61034e8 0.0538487
\(643\) −7.75399e9 −1.15024 −0.575118 0.818071i \(-0.695044\pi\)
−0.575118 + 0.818071i \(0.695044\pi\)
\(644\) 2.74724e9 0.405318
\(645\) −1.11384e9 −0.163441
\(646\) 9.30046e9 1.35735
\(647\) 9.75460e9 1.41594 0.707969 0.706243i \(-0.249612\pi\)
0.707969 + 0.706243i \(0.249612\pi\)
\(648\) 1.55742e9 0.224850
\(649\) −7.05426e9 −1.01297
\(650\) 0 0
\(651\) 9.96701e9 1.41590
\(652\) 1.97105e9 0.278503
\(653\) −2.80079e9 −0.393626 −0.196813 0.980441i \(-0.563059\pi\)
−0.196813 + 0.980441i \(0.563059\pi\)
\(654\) 2.45534e9 0.343234
\(655\) −2.79111e9 −0.388090
\(656\) −4.51094e8 −0.0623883
\(657\) −2.39358e10 −3.29283
\(658\) 4.98668e9 0.682371
\(659\) −9.29358e9 −1.26498 −0.632491 0.774568i \(-0.717967\pi\)
−0.632491 + 0.774568i \(0.717967\pi\)
\(660\) −1.96911e9 −0.266604
\(661\) −4.77913e9 −0.643641 −0.321820 0.946801i \(-0.604295\pi\)
−0.321820 + 0.946801i \(0.604295\pi\)
\(662\) −5.45738e9 −0.731108
\(663\) 0 0
\(664\) −3.31747e8 −0.0439763
\(665\) −1.07031e10 −1.41134
\(666\) −3.68588e9 −0.483483
\(667\) −4.34253e9 −0.566634
\(668\) −2.60641e9 −0.338318
\(669\) 8.31399e9 1.07354
\(670\) −3.92357e8 −0.0503987
\(671\) 6.97786e9 0.891648
\(672\) −3.91950e9 −0.498240
\(673\) 2.96698e9 0.375199 0.187599 0.982246i \(-0.439929\pi\)
0.187599 + 0.982246i \(0.439929\pi\)
\(674\) 4.05467e9 0.510089
\(675\) −9.16469e9 −1.14698
\(676\) 0 0
\(677\) −7.59327e8 −0.0940521 −0.0470260 0.998894i \(-0.514974\pi\)
−0.0470260 + 0.998894i \(0.514974\pi\)
\(678\) −1.76338e10 −2.17291
\(679\) 9.41063e7 0.0115365
\(680\) 1.47630e9 0.180050
\(681\) −3.95143e9 −0.479446
\(682\) −1.95066e9 −0.235471
\(683\) 6.60843e9 0.793644 0.396822 0.917896i \(-0.370113\pi\)
0.396822 + 0.917896i \(0.370113\pi\)
\(684\) −1.40221e10 −1.67540
\(685\) 5.81930e9 0.691757
\(686\) −7.60188e9 −0.899056
\(687\) −9.16628e9 −1.07856
\(688\) 4.33909e8 0.0507971
\(689\) 0 0
\(690\) 2.39289e9 0.277301
\(691\) −8.68411e9 −1.00127 −0.500636 0.865658i \(-0.666901\pi\)
−0.500636 + 0.865658i \(0.666901\pi\)
\(692\) 1.88171e9 0.215865
\(693\) −1.80897e10 −2.06474
\(694\) −3.87767e9 −0.440365
\(695\) −1.84385e9 −0.208343
\(696\) 6.19551e9 0.696538
\(697\) 2.39411e9 0.267812
\(698\) −2.33971e9 −0.260416
\(699\) 5.58831e9 0.618886
\(700\) 5.84564e9 0.644153
\(701\) 7.50161e9 0.822510 0.411255 0.911520i \(-0.365091\pi\)
0.411255 + 0.911520i \(0.365091\pi\)
\(702\) 0 0
\(703\) 6.01409e9 0.652869
\(704\) 7.67094e8 0.0828598
\(705\) 4.34348e9 0.466849
\(706\) −6.32301e9 −0.676250
\(707\) 2.23408e10 2.37756
\(708\) −1.22303e10 −1.29516
\(709\) −7.21866e9 −0.760668 −0.380334 0.924849i \(-0.624191\pi\)
−0.380334 + 0.924849i \(0.624191\pi\)
\(710\) −3.38192e9 −0.354617
\(711\) 4.41213e9 0.460367
\(712\) 5.95242e9 0.618035
\(713\) 2.37047e9 0.244918
\(714\) 2.08022e10 2.13878
\(715\) 0 0
\(716\) 2.88232e9 0.293458
\(717\) 2.44714e10 2.47937
\(718\) 1.05416e9 0.106284
\(719\) 1.47862e10 1.48356 0.741781 0.670642i \(-0.233981\pi\)
0.741781 + 0.670642i \(0.233981\pi\)
\(720\) −2.22579e9 −0.222239
\(721\) 1.87196e10 1.86004
\(722\) 1.57283e10 1.55526
\(723\) −9.81092e9 −0.965441
\(724\) −4.97236e9 −0.486942
\(725\) −9.24014e9 −0.900525
\(726\) −6.92789e9 −0.671928
\(727\) −5.23529e9 −0.505325 −0.252662 0.967554i \(-0.581306\pi\)
−0.252662 + 0.967554i \(0.581306\pi\)
\(728\) 0 0
\(729\) −1.37858e10 −1.31791
\(730\) 6.19938e9 0.589818
\(731\) −2.30291e9 −0.218055
\(732\) 1.20979e10 1.14004
\(733\) −2.06458e10 −1.93628 −0.968138 0.250417i \(-0.919432\pi\)
−0.968138 + 0.250417i \(0.919432\pi\)
\(734\) −6.98639e9 −0.652104
\(735\) −1.52804e10 −1.41948
\(736\) −9.32182e8 −0.0861844
\(737\) 1.08201e9 0.0995625
\(738\) −3.60956e9 −0.330565
\(739\) 8.68404e9 0.791528 0.395764 0.918352i \(-0.370480\pi\)
0.395764 + 0.918352i \(0.370480\pi\)
\(740\) 9.54642e8 0.0866024
\(741\) 0 0
\(742\) 1.07387e10 0.965028
\(743\) −1.02783e10 −0.919307 −0.459653 0.888098i \(-0.652026\pi\)
−0.459653 + 0.888098i \(0.652026\pi\)
\(744\) −3.38197e9 −0.301068
\(745\) 5.40835e9 0.479201
\(746\) 1.00909e10 0.889901
\(747\) −2.65458e9 −0.233009
\(748\) −4.07124e9 −0.355689
\(749\) −8.59030e8 −0.0747002
\(750\) 1.16631e10 1.00949
\(751\) 8.82545e9 0.760321 0.380161 0.924921i \(-0.375869\pi\)
0.380161 + 0.924921i \(0.375869\pi\)
\(752\) −1.69206e9 −0.145095
\(753\) 2.66729e10 2.27660
\(754\) 0 0
\(755\) −8.87154e9 −0.750213
\(756\) −1.46210e10 −1.23070
\(757\) 1.62553e10 1.36194 0.680972 0.732309i \(-0.261557\pi\)
0.680972 + 0.732309i \(0.261557\pi\)
\(758\) −3.76817e9 −0.314259
\(759\) −6.59895e9 −0.547808
\(760\) 3.63173e9 0.300100
\(761\) 2.91445e8 0.0239723 0.0119862 0.999928i \(-0.496185\pi\)
0.0119862 + 0.999928i \(0.496185\pi\)
\(762\) 1.01703e10 0.832707
\(763\) −5.84214e9 −0.476142
\(764\) 1.05940e9 0.0859476
\(765\) 1.18131e10 0.953999
\(766\) −6.66451e9 −0.535756
\(767\) 0 0
\(768\) 1.32995e9 0.105943
\(769\) −4.44661e9 −0.352603 −0.176302 0.984336i \(-0.556413\pi\)
−0.176302 + 0.984336i \(0.556413\pi\)
\(770\) 4.68523e9 0.369840
\(771\) 2.14428e10 1.68497
\(772\) 3.71465e9 0.290574
\(773\) −5.13452e9 −0.399827 −0.199913 0.979814i \(-0.564066\pi\)
−0.199913 + 0.979814i \(0.564066\pi\)
\(774\) 3.47205e9 0.269149
\(775\) 5.04395e9 0.389237
\(776\) −3.19318e7 −0.00245305
\(777\) 1.34516e10 1.02873
\(778\) −9.70321e8 −0.0738732
\(779\) 5.88956e9 0.446377
\(780\) 0 0
\(781\) 9.32642e9 0.700546
\(782\) 4.94742e9 0.369960
\(783\) 2.31112e10 1.72051
\(784\) 5.95267e9 0.441170
\(785\) −1.02726e10 −0.757943
\(786\) 1.33449e10 0.980248
\(787\) −2.14114e10 −1.56579 −0.782895 0.622153i \(-0.786258\pi\)
−0.782895 + 0.622153i \(0.786258\pi\)
\(788\) −2.48262e9 −0.180746
\(789\) −3.19452e10 −2.31546
\(790\) −1.14274e9 −0.0824618
\(791\) 4.19571e10 3.01431
\(792\) 6.13813e9 0.439034
\(793\) 0 0
\(794\) 6.33172e9 0.448900
\(795\) 9.35364e9 0.660231
\(796\) 1.81550e9 0.127585
\(797\) 4.49892e9 0.314778 0.157389 0.987537i \(-0.449692\pi\)
0.157389 + 0.987537i \(0.449692\pi\)
\(798\) 5.11738e10 3.56482
\(799\) 8.98036e9 0.622845
\(800\) −1.98352e9 −0.136969
\(801\) 4.76301e10 3.27467
\(802\) 1.20863e10 0.827338
\(803\) −1.70962e10 −1.16518
\(804\) 1.87594e9 0.127298
\(805\) −5.69356e9 −0.384679
\(806\) 0 0
\(807\) −1.15361e10 −0.772685
\(808\) −7.58060e9 −0.505550
\(809\) −2.47066e10 −1.64056 −0.820282 0.571959i \(-0.806184\pi\)
−0.820282 + 0.571959i \(0.806184\pi\)
\(810\) −3.22770e9 −0.213401
\(811\) −1.66270e9 −0.109456 −0.0547282 0.998501i \(-0.517429\pi\)
−0.0547282 + 0.998501i \(0.517429\pi\)
\(812\) −1.47414e10 −0.966254
\(813\) 2.82267e10 1.84223
\(814\) −2.63264e9 −0.171083
\(815\) −4.08492e9 −0.264321
\(816\) −7.05852e9 −0.454776
\(817\) −5.66519e9 −0.363444
\(818\) 1.86662e10 1.19240
\(819\) 0 0
\(820\) 9.34876e8 0.0592114
\(821\) 1.48863e10 0.938830 0.469415 0.882978i \(-0.344465\pi\)
0.469415 + 0.882978i \(0.344465\pi\)
\(822\) −2.78233e10 −1.74726
\(823\) −9.38235e9 −0.586695 −0.293347 0.956006i \(-0.594769\pi\)
−0.293347 + 0.956006i \(0.594769\pi\)
\(824\) −6.35184e9 −0.395507
\(825\) −1.40414e10 −0.870606
\(826\) 2.91004e10 1.79667
\(827\) 5.95599e9 0.366172 0.183086 0.983097i \(-0.441391\pi\)
0.183086 + 0.983097i \(0.441391\pi\)
\(828\) −7.45914e9 −0.456649
\(829\) 2.05374e10 1.25200 0.626002 0.779822i \(-0.284690\pi\)
0.626002 + 0.779822i \(0.284690\pi\)
\(830\) 6.87535e8 0.0417370
\(831\) 3.85539e10 2.33058
\(832\) 0 0
\(833\) −3.15929e10 −1.89379
\(834\) 8.81584e9 0.526239
\(835\) 5.40170e9 0.321091
\(836\) −1.00153e10 −0.592847
\(837\) −1.26158e10 −0.743663
\(838\) 8.15884e9 0.478933
\(839\) 1.37499e10 0.803769 0.401884 0.915690i \(-0.368355\pi\)
0.401884 + 0.915690i \(0.368355\pi\)
\(840\) 8.12303e9 0.472869
\(841\) 6.05162e9 0.350821
\(842\) 1.38927e10 0.802040
\(843\) 3.87909e9 0.223015
\(844\) −4.17878e9 −0.239249
\(845\) 0 0
\(846\) −1.35395e10 −0.768789
\(847\) 1.64839e10 0.932115
\(848\) −3.64383e9 −0.205198
\(849\) −2.18318e10 −1.22437
\(850\) 1.05272e10 0.587961
\(851\) 3.19922e9 0.177947
\(852\) 1.61697e10 0.895702
\(853\) −9.49367e9 −0.523736 −0.261868 0.965104i \(-0.584339\pi\)
−0.261868 + 0.965104i \(0.584339\pi\)
\(854\) −2.87852e10 −1.58149
\(855\) 2.90604e10 1.59008
\(856\) 2.91483e8 0.0158838
\(857\) −1.03739e9 −0.0562998 −0.0281499 0.999604i \(-0.508962\pi\)
−0.0281499 + 0.999604i \(0.508962\pi\)
\(858\) 0 0
\(859\) −3.21586e10 −1.73110 −0.865549 0.500824i \(-0.833030\pi\)
−0.865549 + 0.500824i \(0.833030\pi\)
\(860\) −8.99260e8 −0.0482104
\(861\) 1.31731e10 0.703358
\(862\) 1.92696e9 0.102470
\(863\) 1.58573e10 0.839828 0.419914 0.907564i \(-0.362060\pi\)
0.419914 + 0.907564i \(0.362060\pi\)
\(864\) 4.96114e9 0.261688
\(865\) −3.89979e9 −0.204873
\(866\) −1.76826e10 −0.925196
\(867\) 4.93401e9 0.257119
\(868\) 8.04691e9 0.417648
\(869\) 3.15136e9 0.162903
\(870\) −1.28400e10 −0.661069
\(871\) 0 0
\(872\) 1.98233e9 0.101244
\(873\) −2.55512e8 −0.0129975
\(874\) 1.21707e10 0.616634
\(875\) −2.77508e10 −1.40038
\(876\) −2.96405e10 −1.48978
\(877\) 2.88105e10 1.44229 0.721145 0.692784i \(-0.243616\pi\)
0.721145 + 0.692784i \(0.243616\pi\)
\(878\) −1.84489e10 −0.919900
\(879\) 2.43266e10 1.20815
\(880\) −1.58977e9 −0.0786405
\(881\) −3.30491e10 −1.62833 −0.814167 0.580631i \(-0.802806\pi\)
−0.814167 + 0.580631i \(0.802806\pi\)
\(882\) 4.76321e10 2.33754
\(883\) −1.91851e9 −0.0937783 −0.0468891 0.998900i \(-0.514931\pi\)
−0.0468891 + 0.998900i \(0.514931\pi\)
\(884\) 0 0
\(885\) 2.53469e10 1.22920
\(886\) 8.81357e9 0.425730
\(887\) 2.25153e10 1.08329 0.541646 0.840606i \(-0.317801\pi\)
0.541646 + 0.840606i \(0.317801\pi\)
\(888\) −4.56435e9 −0.218743
\(889\) −2.41989e10 −1.15515
\(890\) −1.23362e10 −0.586564
\(891\) 8.90112e9 0.421573
\(892\) 6.71234e9 0.316663
\(893\) 2.20918e10 1.03813
\(894\) −2.58585e10 −1.21038
\(895\) −5.97350e9 −0.278515
\(896\) −3.16443e9 −0.146966
\(897\) 0 0
\(898\) −1.44564e10 −0.666184
\(899\) −1.27197e10 −0.583871
\(900\) −1.58717e10 −0.725731
\(901\) 1.93391e10 0.880845
\(902\) −2.57813e9 −0.116972
\(903\) −1.26712e10 −0.572680
\(904\) −1.42367e10 −0.640945
\(905\) 1.03050e10 0.462146
\(906\) 4.24167e10 1.89491
\(907\) 3.55964e10 1.58409 0.792047 0.610460i \(-0.209015\pi\)
0.792047 + 0.610460i \(0.209015\pi\)
\(908\) −3.19021e9 −0.141423
\(909\) −6.06585e10 −2.67866
\(910\) 0 0
\(911\) −2.01254e10 −0.881923 −0.440962 0.897526i \(-0.645363\pi\)
−0.440962 + 0.897526i \(0.645363\pi\)
\(912\) −1.73641e10 −0.758001
\(913\) −1.89603e9 −0.0824514
\(914\) −1.44166e10 −0.624525
\(915\) −2.50724e10 −1.08199
\(916\) −7.40044e9 −0.318144
\(917\) −3.17523e10 −1.35982
\(918\) −2.63305e10 −1.12334
\(919\) 1.00604e10 0.427573 0.213786 0.976880i \(-0.431420\pi\)
0.213786 + 0.976880i \(0.431420\pi\)
\(920\) 1.93191e9 0.0817957
\(921\) 1.22995e10 0.518773
\(922\) 6.25255e9 0.262724
\(923\) 0 0
\(924\) −2.24011e10 −0.934152
\(925\) 6.80738e9 0.282803
\(926\) 6.24408e9 0.258422
\(927\) −5.08262e10 −2.09560
\(928\) 5.00198e9 0.205458
\(929\) −2.49287e10 −1.02010 −0.510052 0.860144i \(-0.670374\pi\)
−0.510052 + 0.860144i \(0.670374\pi\)
\(930\) 7.00900e9 0.285737
\(931\) −7.77192e10 −3.15649
\(932\) 4.51175e9 0.182553
\(933\) −4.44842e10 −1.79316
\(934\) −1.99118e10 −0.799643
\(935\) 8.43750e9 0.337577
\(936\) 0 0
\(937\) 3.64214e9 0.144633 0.0723166 0.997382i \(-0.476961\pi\)
0.0723166 + 0.997382i \(0.476961\pi\)
\(938\) −4.46354e9 −0.176591
\(939\) −3.07762e10 −1.21307
\(940\) 3.50673e9 0.137707
\(941\) 3.92765e10 1.53663 0.768314 0.640073i \(-0.221096\pi\)
0.768314 + 0.640073i \(0.221096\pi\)
\(942\) 4.91155e10 1.91443
\(943\) 3.13298e9 0.121665
\(944\) −9.87422e9 −0.382033
\(945\) 3.03015e10 1.16803
\(946\) 2.47991e9 0.0952396
\(947\) −8.03964e9 −0.307618 −0.153809 0.988101i \(-0.549154\pi\)
−0.153809 + 0.988101i \(0.549154\pi\)
\(948\) 5.46369e9 0.208284
\(949\) 0 0
\(950\) 2.58972e10 0.979987
\(951\) −5.20636e9 −0.196292
\(952\) 1.67948e10 0.630876
\(953\) −1.55196e10 −0.580839 −0.290420 0.956899i \(-0.593795\pi\)
−0.290420 + 0.956899i \(0.593795\pi\)
\(954\) −2.91572e10 −1.08724
\(955\) −2.19557e9 −0.0815710
\(956\) 1.97571e10 0.731343
\(957\) 3.54092e10 1.30594
\(958\) 2.77353e10 1.01919
\(959\) 6.62017e10 2.42384
\(960\) −2.75627e9 −0.100548
\(961\) −2.05693e10 −0.747631
\(962\) 0 0
\(963\) 2.33239e9 0.0841605
\(964\) −7.92089e9 −0.284777
\(965\) −7.69848e9 −0.275778
\(966\) 2.72221e10 0.971632
\(967\) 1.65901e10 0.590006 0.295003 0.955496i \(-0.404679\pi\)
0.295003 + 0.955496i \(0.404679\pi\)
\(968\) −5.59327e9 −0.198199
\(969\) 9.21573e10 3.25384
\(970\) 6.61775e7 0.00232814
\(971\) 5.50167e9 0.192854 0.0964268 0.995340i \(-0.469259\pi\)
0.0964268 + 0.995340i \(0.469259\pi\)
\(972\) −5.75908e9 −0.201151
\(973\) −2.09761e10 −0.730010
\(974\) 8.00809e9 0.277698
\(975\) 0 0
\(976\) 9.76728e9 0.336279
\(977\) 2.72406e10 0.934513 0.467256 0.884122i \(-0.345243\pi\)
0.467256 + 0.884122i \(0.345243\pi\)
\(978\) 1.95309e10 0.667630
\(979\) 3.40198e10 1.15876
\(980\) −1.23367e10 −0.418705
\(981\) 1.58622e10 0.536442
\(982\) −1.18298e9 −0.0398646
\(983\) −3.12589e10 −1.04963 −0.524816 0.851216i \(-0.675866\pi\)
−0.524816 + 0.851216i \(0.675866\pi\)
\(984\) −4.46984e9 −0.149558
\(985\) 5.14515e9 0.171542
\(986\) −2.65473e10 −0.881964
\(987\) 4.94125e10 1.63579
\(988\) 0 0
\(989\) −3.01363e9 −0.0990609
\(990\) −1.27211e10 −0.416678
\(991\) −5.40942e10 −1.76560 −0.882802 0.469746i \(-0.844346\pi\)
−0.882802 + 0.469746i \(0.844346\pi\)
\(992\) −2.73045e9 −0.0888061
\(993\) −5.40767e10 −1.75262
\(994\) −3.84735e10 −1.24254
\(995\) −3.76256e9 −0.121088
\(996\) −3.28725e9 −0.105421
\(997\) 3.54238e10 1.13204 0.566021 0.824391i \(-0.308482\pi\)
0.566021 + 0.824391i \(0.308482\pi\)
\(998\) 2.75681e10 0.877911
\(999\) −1.70265e10 −0.540313
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.8.a.j.1.4 4
13.4 even 6 26.8.c.b.3.1 8
13.5 odd 4 338.8.b.h.337.4 8
13.8 odd 4 338.8.b.h.337.8 8
13.10 even 6 26.8.c.b.9.1 yes 8
13.12 even 2 338.8.a.i.1.4 4
39.17 odd 6 234.8.h.b.55.2 8
39.23 odd 6 234.8.h.b.217.2 8
52.23 odd 6 208.8.i.b.113.4 8
52.43 odd 6 208.8.i.b.81.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.c.b.3.1 8 13.4 even 6
26.8.c.b.9.1 yes 8 13.10 even 6
208.8.i.b.81.4 8 52.43 odd 6
208.8.i.b.113.4 8 52.23 odd 6
234.8.h.b.55.2 8 39.17 odd 6
234.8.h.b.217.2 8 39.23 odd 6
338.8.a.i.1.4 4 13.12 even 2
338.8.a.j.1.4 4 1.1 even 1 trivial
338.8.b.h.337.4 8 13.5 odd 4
338.8.b.h.337.8 8 13.8 odd 4