Properties

Label 208.8.i.b.113.4
Level $208$
Weight $8$
Character 208.113
Analytic conductor $64.976$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,8,Mod(81,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.81"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 208.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9760853007\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4654x^{6} + 7012369x^{4} + 3763719168x^{2} + 637953638400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 113.4
Root \(45.7672i\) of defining polynomial
Character \(\chi\) \(=\) 208.113
Dual form 208.8.i.b.81.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(39.6356 - 68.6509i) q^{3} +132.638 q^{5} +(754.459 + 1306.76i) q^{7} +(-2048.46 - 3548.04i) q^{9} +(-1463.11 + 2534.19i) q^{11} +(-7917.74 - 240.503i) q^{13} +(5257.18 - 9105.70i) q^{15} +(10869.5 + 18826.5i) q^{17} +(26739.1 + 46313.4i) q^{19} +119614. q^{21} +(-14224.0 + 24636.6i) q^{23} -60532.2 q^{25} -151402. q^{27} +(-76324.1 + 132197. i) q^{29} -83326.6 q^{31} +(115983. + 200888. i) q^{33} +(100070. + 173326. i) q^{35} +(-56229.4 + 97392.2i) q^{37} +(-330335. + 534028. i) q^{39} +(-55065.1 + 95375.6i) q^{41} +(52967.4 + 91742.2i) q^{43} +(-271703. - 470604. i) q^{45} -413100. q^{47} +(-726645. + 1.25859e6i) q^{49} +1.72327e6 q^{51} -889607. q^{53} +(-194064. + 336129. i) q^{55} +4.23928e6 q^{57} +(1.20535e6 + 2.08773e6i) q^{59} +(-1.19229e6 - 2.06512e6i) q^{61} +(3.09096e6 - 5.35370e6i) q^{63} +(-1.05019e6 - 31899.8i) q^{65} +(-184882. + 320224. i) q^{67} +(1.12755e6 + 1.95298e6i) q^{69} +(-1.59359e6 - 2.76018e6i) q^{71} +5.84239e6 q^{73} +(-2.39923e6 + 4.15559e6i) q^{75} -4.41544e6 q^{77} -1.07694e6 q^{79} +(-1.52092e6 + 2.63431e6i) q^{81} -647944. q^{83} +(1.44170e6 + 2.49710e6i) q^{85} +(6.05031e6 + 1.04794e7i) q^{87} +(5.81291e6 - 1.00682e7i) q^{89} +(-5.65933e6 - 1.05280e7i) q^{91} +(-3.30270e6 + 5.72045e6i) q^{93} +(3.54661e6 + 6.14291e6i) q^{95} +(-31183.4 - 54011.2i) q^{97} +1.19885e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 556 q^{5} + 548 q^{7} - 5214 q^{9} + 7392 q^{11} - 25818 q^{13} - 15528 q^{15} + 28316 q^{17} + 99888 q^{19} + 182148 q^{21} + 33388 q^{23} + 173756 q^{25} - 212544 q^{27} + 93140 q^{29} - 622320 q^{31}+ \cdots + 20715312 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 39.6356 68.6509i 0.847542 1.46799i −0.0358539 0.999357i \(-0.511415\pi\)
0.883396 0.468628i \(-0.155252\pi\)
\(4\) 0 0
\(5\) 132.638 0.474539 0.237270 0.971444i \(-0.423748\pi\)
0.237270 + 0.971444i \(0.423748\pi\)
\(6\) 0 0
\(7\) 754.459 + 1306.76i 0.831366 + 1.43997i 0.896955 + 0.442122i \(0.145774\pi\)
−0.0655888 + 0.997847i \(0.520893\pi\)
\(8\) 0 0
\(9\) −2048.46 3548.04i −0.936654 1.62233i
\(10\) 0 0
\(11\) −1463.11 + 2534.19i −0.331439 + 0.574070i −0.982794 0.184703i \(-0.940868\pi\)
0.651355 + 0.758773i \(0.274201\pi\)
\(12\) 0 0
\(13\) −7917.74 240.503i −0.999539 0.0303612i
\(14\) 0 0
\(15\) 5257.18 9105.70i 0.402192 0.696617i
\(16\) 0 0
\(17\) 10869.5 + 18826.5i 0.536583 + 0.929389i 0.999085 + 0.0427706i \(0.0136185\pi\)
−0.462502 + 0.886618i \(0.653048\pi\)
\(18\) 0 0
\(19\) 26739.1 + 46313.4i 0.894352 + 1.54906i 0.834604 + 0.550850i \(0.185697\pi\)
0.0597485 + 0.998213i \(0.480970\pi\)
\(20\) 0 0
\(21\) 119614. 2.81847
\(22\) 0 0
\(23\) −14224.0 + 24636.6i −0.243766 + 0.422215i −0.961784 0.273809i \(-0.911716\pi\)
0.718018 + 0.696025i \(0.245050\pi\)
\(24\) 0 0
\(25\) −60532.2 −0.774813
\(26\) 0 0
\(27\) −151402. −1.48033
\(28\) 0 0
\(29\) −76324.1 + 132197.i −0.581124 + 1.00654i 0.414222 + 0.910176i \(0.364054\pi\)
−0.995346 + 0.0963608i \(0.969280\pi\)
\(30\) 0 0
\(31\) −83326.6 −0.502363 −0.251182 0.967940i \(-0.580819\pi\)
−0.251182 + 0.967940i \(0.580819\pi\)
\(32\) 0 0
\(33\) 115983. + 200888.i 0.561817 + 0.973096i
\(34\) 0 0
\(35\) 100070. + 173326.i 0.394516 + 0.683322i
\(36\) 0 0
\(37\) −56229.4 + 97392.2i −0.182498 + 0.316095i −0.942730 0.333555i \(-0.891752\pi\)
0.760233 + 0.649651i \(0.225085\pi\)
\(38\) 0 0
\(39\) −330335. + 534028.i −0.891721 + 1.44158i
\(40\) 0 0
\(41\) −55065.1 + 95375.6i −0.124777 + 0.216119i −0.921646 0.388033i \(-0.873155\pi\)
0.796869 + 0.604152i \(0.206488\pi\)
\(42\) 0 0
\(43\) 52967.4 + 91742.2i 0.101594 + 0.175966i 0.912342 0.409430i \(-0.134272\pi\)
−0.810747 + 0.585396i \(0.800939\pi\)
\(44\) 0 0
\(45\) −271703. 470604.i −0.444479 0.769860i
\(46\) 0 0
\(47\) −413100. −0.580381 −0.290190 0.956969i \(-0.593719\pi\)
−0.290190 + 0.956969i \(0.593719\pi\)
\(48\) 0 0
\(49\) −726645. + 1.25859e6i −0.882340 + 1.52826i
\(50\) 0 0
\(51\) 1.72327e6 1.81911
\(52\) 0 0
\(53\) −889607. −0.820791 −0.410395 0.911908i \(-0.634609\pi\)
−0.410395 + 0.911908i \(0.634609\pi\)
\(54\) 0 0
\(55\) −194064. + 336129.i −0.157281 + 0.272419i
\(56\) 0 0
\(57\) 4.23928e6 3.03200
\(58\) 0 0
\(59\) 1.20535e6 + 2.08773e6i 0.764066 + 1.32340i 0.940739 + 0.339132i \(0.110133\pi\)
−0.176673 + 0.984270i \(0.556533\pi\)
\(60\) 0 0
\(61\) −1.19229e6 2.06512e6i −0.672557 1.16490i −0.977176 0.212429i \(-0.931863\pi\)
0.304619 0.952474i \(-0.401471\pi\)
\(62\) 0 0
\(63\) 3.09096e6 5.35370e6i 1.55740 2.69750i
\(64\) 0 0
\(65\) −1.05019e6 31899.8i −0.474320 0.0144076i
\(66\) 0 0
\(67\) −184882. + 320224.i −0.0750986 + 0.130075i −0.901129 0.433551i \(-0.857260\pi\)
0.826031 + 0.563625i \(0.190594\pi\)
\(68\) 0 0
\(69\) 1.12755e6 + 1.95298e6i 0.413204 + 0.715690i
\(70\) 0 0
\(71\) −1.59359e6 2.76018e6i −0.528412 0.915236i −0.999451 0.0331239i \(-0.989454\pi\)
0.471039 0.882112i \(-0.343879\pi\)
\(72\) 0 0
\(73\) 5.84239e6 1.75776 0.878882 0.477038i \(-0.158290\pi\)
0.878882 + 0.477038i \(0.158290\pi\)
\(74\) 0 0
\(75\) −2.39923e6 + 4.15559e6i −0.656686 + 1.13741i
\(76\) 0 0
\(77\) −4.41544e6 −1.10219
\(78\) 0 0
\(79\) −1.07694e6 −0.245751 −0.122876 0.992422i \(-0.539212\pi\)
−0.122876 + 0.992422i \(0.539212\pi\)
\(80\) 0 0
\(81\) −1.52092e6 + 2.63431e6i −0.317987 + 0.550769i
\(82\) 0 0
\(83\) −647944. −0.124384 −0.0621920 0.998064i \(-0.519809\pi\)
−0.0621920 + 0.998064i \(0.519809\pi\)
\(84\) 0 0
\(85\) 1.44170e6 + 2.49710e6i 0.254630 + 0.441031i
\(86\) 0 0
\(87\) 6.05031e6 + 1.04794e7i 0.985054 + 1.70616i
\(88\) 0 0
\(89\) 5.81291e6 1.00682e7i 0.874034 1.51387i 0.0162455 0.999868i \(-0.494829\pi\)
0.857788 0.514003i \(-0.171838\pi\)
\(90\) 0 0
\(91\) −5.65933e6 1.05280e7i −0.787264 1.46455i
\(92\) 0 0
\(93\) −3.30270e6 + 5.72045e6i −0.425774 + 0.737462i
\(94\) 0 0
\(95\) 3.54661e6 + 6.14291e6i 0.424405 + 0.735092i
\(96\) 0 0
\(97\) −31183.4 54011.2i −0.00346914 0.00600873i 0.864286 0.503001i \(-0.167771\pi\)
−0.867755 + 0.496993i \(0.834438\pi\)
\(98\) 0 0
\(99\) 1.19885e7 1.24178
\(100\) 0 0
\(101\) 7.40293e6 1.28222e7i 0.714955 1.23834i −0.248022 0.968754i \(-0.579781\pi\)
0.962977 0.269584i \(-0.0868862\pi\)
\(102\) 0 0
\(103\) 1.24059e7 1.11866 0.559332 0.828944i \(-0.311058\pi\)
0.559332 + 0.828944i \(0.311058\pi\)
\(104\) 0 0
\(105\) 1.58653e7 1.33747
\(106\) 0 0
\(107\) 284651. 493030.i 0.0224631 0.0389072i −0.854575 0.519327i \(-0.826183\pi\)
0.877038 + 0.480420i \(0.159516\pi\)
\(108\) 0 0
\(109\) −3.87174e6 −0.286361 −0.143181 0.989697i \(-0.545733\pi\)
−0.143181 + 0.989697i \(0.545733\pi\)
\(110\) 0 0
\(111\) 4.45737e6 + 7.72040e6i 0.309349 + 0.535808i
\(112\) 0 0
\(113\) 1.39031e7 + 2.40808e7i 0.906433 + 1.56999i 0.818981 + 0.573820i \(0.194539\pi\)
0.0874519 + 0.996169i \(0.472128\pi\)
\(114\) 0 0
\(115\) −1.88664e6 + 3.26775e6i −0.115677 + 0.200358i
\(116\) 0 0
\(117\) 1.53659e7 + 2.85851e7i 0.886966 + 1.65002i
\(118\) 0 0
\(119\) −1.64011e7 + 2.84076e7i −0.892194 + 1.54533i
\(120\) 0 0
\(121\) 5.46218e6 + 9.46077e6i 0.280296 + 0.485487i
\(122\) 0 0
\(123\) 4.36508e6 + 7.56054e6i 0.211507 + 0.366341i
\(124\) 0 0
\(125\) −1.83912e7 −0.842218
\(126\) 0 0
\(127\) 8.01861e6 1.38886e7i 0.347365 0.601654i −0.638415 0.769692i \(-0.720410\pi\)
0.985781 + 0.168038i \(0.0537431\pi\)
\(128\) 0 0
\(129\) 8.39757e6 0.344421
\(130\) 0 0
\(131\) −2.10431e7 −0.817824 −0.408912 0.912574i \(-0.634092\pi\)
−0.408912 + 0.912574i \(0.634092\pi\)
\(132\) 0 0
\(133\) −4.03471e7 + 6.98831e7i −1.48707 + 2.57568i
\(134\) 0 0
\(135\) −2.00816e7 −0.702474
\(136\) 0 0
\(137\) −2.19368e7 3.79957e7i −0.728873 1.26244i −0.957360 0.288897i \(-0.906711\pi\)
0.228488 0.973547i \(-0.426622\pi\)
\(138\) 0 0
\(139\) 6.95070e6 + 1.20390e7i 0.219521 + 0.380222i 0.954662 0.297693i \(-0.0962171\pi\)
−0.735140 + 0.677915i \(0.762884\pi\)
\(140\) 0 0
\(141\) −1.63735e7 + 2.83597e7i −0.491897 + 0.851991i
\(142\) 0 0
\(143\) 1.21940e7 1.97132e7i 0.348716 0.563742i
\(144\) 0 0
\(145\) −1.01235e7 + 1.75343e7i −0.275766 + 0.477641i
\(146\) 0 0
\(147\) 5.76020e7 + 9.97696e7i 1.49564 + 2.59052i
\(148\) 0 0
\(149\) −2.03877e7 3.53125e7i −0.504912 0.874533i −0.999984 0.00568086i \(-0.998192\pi\)
0.495072 0.868852i \(-0.335142\pi\)
\(150\) 0 0
\(151\) 6.68855e7 1.58093 0.790465 0.612507i \(-0.209839\pi\)
0.790465 + 0.612507i \(0.209839\pi\)
\(152\) 0 0
\(153\) 4.45314e7 7.71306e7i 1.00518 1.74103i
\(154\) 0 0
\(155\) −1.10523e7 −0.238391
\(156\) 0 0
\(157\) 7.74485e7 1.59722 0.798609 0.601850i \(-0.205569\pi\)
0.798609 + 0.601850i \(0.205569\pi\)
\(158\) 0 0
\(159\) −3.52601e7 + 6.10723e7i −0.695654 + 1.20491i
\(160\) 0 0
\(161\) −4.29256e7 −0.810636
\(162\) 0 0
\(163\) −1.53988e7 2.66715e7i −0.278503 0.482381i 0.692510 0.721408i \(-0.256505\pi\)
−0.971013 + 0.239027i \(0.923172\pi\)
\(164\) 0 0
\(165\) 1.53837e7 + 2.66454e7i 0.266604 + 0.461772i
\(166\) 0 0
\(167\) 2.03626e7 3.52691e7i 0.338318 0.585985i −0.645798 0.763508i \(-0.723475\pi\)
0.984117 + 0.177524i \(0.0568086\pi\)
\(168\) 0 0
\(169\) 6.26328e7 + 3.80849e6i 0.998156 + 0.0606945i
\(170\) 0 0
\(171\) 1.09548e8 1.89743e8i 1.67540 2.90187i
\(172\) 0 0
\(173\) −1.47009e7 2.54627e7i −0.215865 0.373889i 0.737675 0.675156i \(-0.235924\pi\)
−0.953540 + 0.301267i \(0.902590\pi\)
\(174\) 0 0
\(175\) −4.56691e7 7.91012e7i −0.644153 1.11571i
\(176\) 0 0
\(177\) 1.91099e8 2.59031
\(178\) 0 0
\(179\) 2.25181e7 3.90025e7i 0.293458 0.508285i −0.681167 0.732128i \(-0.738527\pi\)
0.974625 + 0.223844i \(0.0718605\pi\)
\(180\) 0 0
\(181\) −7.76931e7 −0.973885 −0.486942 0.873434i \(-0.661888\pi\)
−0.486942 + 0.873434i \(0.661888\pi\)
\(182\) 0 0
\(183\) −1.89029e8 −2.28008
\(184\) 0 0
\(185\) −7.45814e6 + 1.29179e7i −0.0866024 + 0.150000i
\(186\) 0 0
\(187\) −6.36131e7 −0.711379
\(188\) 0 0
\(189\) −1.14226e8 1.97846e8i −1.23070 2.13163i
\(190\) 0 0
\(191\) 8.27657e6 + 1.43354e7i 0.0859476 + 0.148866i 0.905795 0.423717i \(-0.139275\pi\)
−0.819847 + 0.572583i \(0.805942\pi\)
\(192\) 0 0
\(193\) 2.90207e7 5.02653e7i 0.290574 0.503290i −0.683371 0.730071i \(-0.739487\pi\)
0.973946 + 0.226781i \(0.0728203\pi\)
\(194\) 0 0
\(195\) −4.38149e7 + 7.08322e7i −0.423156 + 0.684084i
\(196\) 0 0
\(197\) −1.93955e7 + 3.35940e7i −0.180746 + 0.313062i −0.942135 0.335234i \(-0.891185\pi\)
0.761389 + 0.648296i \(0.224518\pi\)
\(198\) 0 0
\(199\) 1.41836e7 + 2.45667e7i 0.127585 + 0.220984i 0.922740 0.385422i \(-0.125944\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(200\) 0 0
\(201\) 1.46558e7 + 2.53846e7i 0.127298 + 0.220487i
\(202\) 0 0
\(203\) −2.30334e8 −1.93251
\(204\) 0 0
\(205\) −7.30372e6 + 1.26504e7i −0.0592114 + 0.102557i
\(206\) 0 0
\(207\) 1.16549e8 0.913298
\(208\) 0 0
\(209\) −1.56489e8 −1.18569
\(210\) 0 0
\(211\) −3.26467e7 + 5.65457e7i −0.239249 + 0.414392i −0.960499 0.278283i \(-0.910235\pi\)
0.721250 + 0.692675i \(0.243568\pi\)
\(212\) 0 0
\(213\) −2.52652e8 −1.79140
\(214\) 0 0
\(215\) 7.02547e6 + 1.21685e7i 0.0482104 + 0.0835029i
\(216\) 0 0
\(217\) −6.28665e7 1.08888e8i −0.417648 0.723387i
\(218\) 0 0
\(219\) 2.31567e8 4.01085e8i 1.48978 2.58037i
\(220\) 0 0
\(221\) −8.15338e7 1.51677e8i −0.508118 0.945252i
\(222\) 0 0
\(223\) −5.24401e7 + 9.08290e7i −0.316663 + 0.548476i −0.979790 0.200031i \(-0.935896\pi\)
0.663127 + 0.748507i \(0.269229\pi\)
\(224\) 0 0
\(225\) 1.23998e8 + 2.14771e8i 0.725731 + 1.25700i
\(226\) 0 0
\(227\) 2.49235e7 + 4.31688e7i 0.141423 + 0.244951i 0.928033 0.372499i \(-0.121499\pi\)
−0.786610 + 0.617450i \(0.788166\pi\)
\(228\) 0 0
\(229\) 1.15632e8 0.636287 0.318144 0.948043i \(-0.396941\pi\)
0.318144 + 0.948043i \(0.396941\pi\)
\(230\) 0 0
\(231\) −1.75009e8 + 3.03124e8i −0.934152 + 1.61800i
\(232\) 0 0
\(233\) 7.04962e7 0.365107 0.182553 0.983196i \(-0.441564\pi\)
0.182553 + 0.983196i \(0.441564\pi\)
\(234\) 0 0
\(235\) −5.47927e7 −0.275413
\(236\) 0 0
\(237\) −4.26850e7 + 7.39327e7i −0.208284 + 0.360759i
\(238\) 0 0
\(239\) 3.08705e8 1.46269 0.731343 0.682010i \(-0.238894\pi\)
0.731343 + 0.682010i \(0.238894\pi\)
\(240\) 0 0
\(241\) −6.18820e7 1.07183e8i −0.284777 0.493248i 0.687778 0.725921i \(-0.258586\pi\)
−0.972555 + 0.232673i \(0.925253\pi\)
\(242\) 0 0
\(243\) −4.49928e7 7.79299e7i −0.201151 0.348403i
\(244\) 0 0
\(245\) −9.63805e7 + 1.66936e8i −0.418705 + 0.725218i
\(246\) 0 0
\(247\) −2.00575e8 3.73129e8i −0.846909 1.57550i
\(248\) 0 0
\(249\) −2.56817e7 + 4.44819e7i −0.105421 + 0.182594i
\(250\) 0 0
\(251\) 1.68238e8 + 2.91397e8i 0.671531 + 1.16313i 0.977470 + 0.211075i \(0.0676963\pi\)
−0.305939 + 0.952051i \(0.598970\pi\)
\(252\) 0 0
\(253\) −4.16226e7 7.20925e7i −0.161587 0.279878i
\(254\) 0 0
\(255\) 2.28571e8 0.863237
\(256\) 0 0
\(257\) −1.35250e8 + 2.34259e8i −0.497016 + 0.860857i −0.999994 0.00344215i \(-0.998904\pi\)
0.502978 + 0.864299i \(0.332238\pi\)
\(258\) 0 0
\(259\) −1.69691e8 −0.606890
\(260\) 0 0
\(261\) 6.25388e8 2.17725
\(262\) 0 0
\(263\) −2.01493e8 + 3.48997e8i −0.682992 + 1.18298i 0.291072 + 0.956701i \(0.405988\pi\)
−0.974063 + 0.226275i \(0.927345\pi\)
\(264\) 0 0
\(265\) −1.17995e8 −0.389497
\(266\) 0 0
\(267\) −4.60796e8 7.98122e8i −1.48156 2.56614i
\(268\) 0 0
\(269\) 7.27637e7 + 1.26030e8i 0.227920 + 0.394768i 0.957191 0.289456i \(-0.0934743\pi\)
−0.729272 + 0.684224i \(0.760141\pi\)
\(270\) 0 0
\(271\) −1.78039e8 + 3.08372e8i −0.543403 + 0.941202i 0.455302 + 0.890337i \(0.349531\pi\)
−0.998706 + 0.0508652i \(0.983802\pi\)
\(272\) 0 0
\(273\) −9.47071e8 2.87675e7i −2.81717 0.0855722i
\(274\) 0 0
\(275\) 8.85656e7 1.53400e8i 0.256803 0.444796i
\(276\) 0 0
\(277\) −2.43177e8 4.21195e8i −0.687454 1.19071i −0.972659 0.232239i \(-0.925395\pi\)
0.285205 0.958467i \(-0.407938\pi\)
\(278\) 0 0
\(279\) 1.70691e8 + 2.95646e8i 0.470540 + 0.815000i
\(280\) 0 0
\(281\) −4.89344e7 −0.131566 −0.0657828 0.997834i \(-0.520954\pi\)
−0.0657828 + 0.997834i \(0.520954\pi\)
\(282\) 0 0
\(283\) −1.37703e8 + 2.38509e8i −0.361153 + 0.625535i −0.988151 0.153486i \(-0.950950\pi\)
0.626998 + 0.779021i \(0.284283\pi\)
\(284\) 0 0
\(285\) 5.62288e8 1.43880
\(286\) 0 0
\(287\) −1.66178e8 −0.414940
\(288\) 0 0
\(289\) −3.11211e7 + 5.39033e7i −0.0758425 + 0.131363i
\(290\) 0 0
\(291\) −4.94389e6 −0.0117610
\(292\) 0 0
\(293\) 1.53439e8 + 2.65765e8i 0.356369 + 0.617249i 0.987351 0.158548i \(-0.0506813\pi\)
−0.630982 + 0.775797i \(0.717348\pi\)
\(294\) 0 0
\(295\) 1.59875e8 + 2.76911e8i 0.362579 + 0.628006i
\(296\) 0 0
\(297\) 2.21518e8 3.83681e8i 0.490639 0.849812i
\(298\) 0 0
\(299\) 1.18547e8 1.91646e8i 0.256473 0.414620i
\(300\) 0 0
\(301\) −7.99234e7 + 1.38431e8i −0.168924 + 0.292585i
\(302\) 0 0
\(303\) −5.86839e8 1.01643e9i −1.21191 2.09909i
\(304\) 0 0
\(305\) −1.58143e8 2.73912e8i −0.319155 0.552792i
\(306\) 0 0
\(307\) 1.55157e8 0.306046 0.153023 0.988223i \(-0.451099\pi\)
0.153023 + 0.988223i \(0.451099\pi\)
\(308\) 0 0
\(309\) 4.91717e8 8.51679e8i 0.948114 1.64218i
\(310\) 0 0
\(311\) 5.61165e8 1.05786 0.528931 0.848665i \(-0.322593\pi\)
0.528931 + 0.848665i \(0.322593\pi\)
\(312\) 0 0
\(313\) −3.88240e8 −0.715640 −0.357820 0.933791i \(-0.616480\pi\)
−0.357820 + 0.933791i \(0.616480\pi\)
\(314\) 0 0
\(315\) 4.09978e8 7.10103e8i 0.739050 1.28007i
\(316\) 0 0
\(317\) 6.56778e7 0.115801 0.0579003 0.998322i \(-0.481559\pi\)
0.0579003 + 0.998322i \(0.481559\pi\)
\(318\) 0 0
\(319\) −2.23342e8 3.86840e8i −0.385215 0.667212i
\(320\) 0 0
\(321\) −2.25646e7 3.90831e7i −0.0380768 0.0659509i
\(322\) 0 0
\(323\) −5.81279e8 + 1.00680e9i −0.959789 + 1.66240i
\(324\) 0 0
\(325\) 4.79279e8 + 1.45582e7i 0.774455 + 0.0235243i
\(326\) 0 0
\(327\) −1.53459e8 + 2.65799e8i −0.242703 + 0.420374i
\(328\) 0 0
\(329\) −3.11667e8 5.39823e8i −0.482509 0.835730i
\(330\) 0 0
\(331\) 3.41087e8 + 5.90779e8i 0.516971 + 0.895421i 0.999806 + 0.0197091i \(0.00627402\pi\)
−0.482834 + 0.875712i \(0.660393\pi\)
\(332\) 0 0
\(333\) 4.60735e8 0.683749
\(334\) 0 0
\(335\) −2.45223e7 + 4.24738e7i −0.0356372 + 0.0617255i
\(336\) 0 0
\(337\) 5.06834e8 0.721375 0.360687 0.932687i \(-0.382542\pi\)
0.360687 + 0.932687i \(0.382542\pi\)
\(338\) 0 0
\(339\) 2.20422e9 3.07296
\(340\) 0 0
\(341\) 1.21916e8 2.11165e8i 0.166503 0.288392i
\(342\) 0 0
\(343\) −9.50235e8 −1.27146
\(344\) 0 0
\(345\) 1.49556e8 + 2.59038e8i 0.196081 + 0.339623i
\(346\) 0 0
\(347\) −2.42354e8 4.19770e8i −0.311385 0.539334i 0.667278 0.744809i \(-0.267459\pi\)
−0.978662 + 0.205475i \(0.934126\pi\)
\(348\) 0 0
\(349\) −1.46232e8 + 2.53281e8i −0.184142 + 0.318943i −0.943287 0.331978i \(-0.892284\pi\)
0.759145 + 0.650921i \(0.225617\pi\)
\(350\) 0 0
\(351\) 1.19876e9 + 3.64127e7i 1.47965 + 0.0449446i
\(352\) 0 0
\(353\) −3.95188e8 + 6.84485e8i −0.478181 + 0.828233i −0.999687 0.0250141i \(-0.992037\pi\)
0.521506 + 0.853247i \(0.325370\pi\)
\(354\) 0 0
\(355\) −2.11370e8 3.66104e8i −0.250752 0.434315i
\(356\) 0 0
\(357\) 1.30014e9 + 2.25190e9i 1.51234 + 2.61945i
\(358\) 0 0
\(359\) 1.31770e8 0.150309 0.0751544 0.997172i \(-0.476055\pi\)
0.0751544 + 0.997172i \(0.476055\pi\)
\(360\) 0 0
\(361\) −9.83020e8 + 1.70264e9i −1.09973 + 1.90479i
\(362\) 0 0
\(363\) 8.65986e8 0.950250
\(364\) 0 0
\(365\) 7.74922e8 0.834128
\(366\) 0 0
\(367\) −4.36649e8 + 7.56299e8i −0.461107 + 0.798661i −0.999016 0.0443420i \(-0.985881\pi\)
0.537909 + 0.843003i \(0.319214\pi\)
\(368\) 0 0
\(369\) 4.51195e8 0.467490
\(370\) 0 0
\(371\) −6.71172e8 1.16250e9i −0.682378 1.18191i
\(372\) 0 0
\(373\) −6.30678e8 1.09237e9i −0.629255 1.08990i −0.987701 0.156352i \(-0.950027\pi\)
0.358446 0.933550i \(-0.383307\pi\)
\(374\) 0 0
\(375\) −7.28946e8 + 1.26257e9i −0.713815 + 1.23636i
\(376\) 0 0
\(377\) 6.36109e8 1.02835e9i 0.611416 0.988429i
\(378\) 0 0
\(379\) 2.35511e8 4.07916e8i 0.222215 0.384887i −0.733265 0.679943i \(-0.762005\pi\)
0.955480 + 0.295055i \(0.0953380\pi\)
\(380\) 0 0
\(381\) −6.35645e8 1.10097e9i −0.588813 1.01985i
\(382\) 0 0
\(383\) 4.16532e8 + 7.21454e8i 0.378837 + 0.656165i 0.990893 0.134649i \(-0.0429908\pi\)
−0.612056 + 0.790814i \(0.709657\pi\)
\(384\) 0 0
\(385\) −5.85654e8 −0.523032
\(386\) 0 0
\(387\) 2.17003e8 3.75861e8i 0.190317 0.329639i
\(388\) 0 0
\(389\) −1.21290e8 −0.104472 −0.0522362 0.998635i \(-0.516635\pi\)
−0.0522362 + 0.998635i \(0.516635\pi\)
\(390\) 0 0
\(391\) −6.18428e8 −0.523203
\(392\) 0 0
\(393\) −8.34055e8 + 1.44463e9i −0.693140 + 1.20055i
\(394\) 0 0
\(395\) −1.42842e8 −0.116619
\(396\) 0 0
\(397\) 3.95732e8 + 6.85429e8i 0.317420 + 0.549788i 0.979949 0.199248i \(-0.0638500\pi\)
−0.662529 + 0.749037i \(0.730517\pi\)
\(398\) 0 0
\(399\) 3.19836e9 + 5.53972e9i 2.52071 + 4.36599i
\(400\) 0 0
\(401\) 7.55394e8 1.30838e9i 0.585017 1.01328i −0.409857 0.912150i \(-0.634421\pi\)
0.994873 0.101129i \(-0.0322453\pi\)
\(402\) 0 0
\(403\) 6.59759e8 + 2.00403e7i 0.502132 + 0.0152524i
\(404\) 0 0
\(405\) −2.01731e8 + 3.49409e8i −0.150897 + 0.261361i
\(406\) 0 0
\(407\) −1.64540e8 2.84992e8i −0.120974 0.209533i
\(408\) 0 0
\(409\) 1.16664e9 + 2.02068e9i 0.843151 + 1.46038i 0.887217 + 0.461351i \(0.152635\pi\)
−0.0440666 + 0.999029i \(0.514031\pi\)
\(410\) 0 0
\(411\) −3.47792e9 −2.47100
\(412\) 0 0
\(413\) −1.81877e9 + 3.15021e9i −1.27044 + 2.20046i
\(414\) 0 0
\(415\) −8.59418e7 −0.0590250
\(416\) 0 0
\(417\) 1.10198e9 0.744214
\(418\) 0 0
\(419\) 5.09928e8 8.83220e8i 0.338656 0.586570i −0.645524 0.763740i \(-0.723361\pi\)
0.984180 + 0.177170i \(0.0566942\pi\)
\(420\) 0 0
\(421\) −1.73659e9 −1.13426 −0.567128 0.823630i \(-0.691945\pi\)
−0.567128 + 0.823630i \(0.691945\pi\)
\(422\) 0 0
\(423\) 8.46220e8 + 1.46570e9i 0.543616 + 0.941570i
\(424\) 0 0
\(425\) −6.57953e8 1.13961e9i −0.415751 0.720102i
\(426\) 0 0
\(427\) 1.79907e9 3.11609e9i 1.11828 1.93692i
\(428\) 0 0
\(429\) −8.70008e8 1.61848e9i −0.532014 0.989705i
\(430\) 0 0
\(431\) −1.20435e8 + 2.08599e8i −0.0724573 + 0.125500i −0.899978 0.435936i \(-0.856417\pi\)
0.827520 + 0.561436i \(0.189751\pi\)
\(432\) 0 0
\(433\) 1.10516e9 + 1.91420e9i 0.654212 + 1.13313i 0.982091 + 0.188409i \(0.0603330\pi\)
−0.327878 + 0.944720i \(0.606334\pi\)
\(434\) 0 0
\(435\) 8.02499e8 + 1.38997e9i 0.467447 + 0.809641i
\(436\) 0 0
\(437\) −1.52134e9 −0.872052
\(438\) 0 0
\(439\) −1.15306e9 + 1.99716e9i −0.650468 + 1.12664i 0.332542 + 0.943088i \(0.392094\pi\)
−0.983010 + 0.183554i \(0.941240\pi\)
\(440\) 0 0
\(441\) 5.95401e9 3.30579
\(442\) 0 0
\(443\) −1.10170e9 −0.602073 −0.301036 0.953613i \(-0.597333\pi\)
−0.301036 + 0.953613i \(0.597333\pi\)
\(444\) 0 0
\(445\) 7.71011e8 1.33543e9i 0.414763 0.718391i
\(446\) 0 0
\(447\) −3.23231e9 −1.71173
\(448\) 0 0
\(449\) −9.03527e8 1.56495e9i −0.471063 0.815905i 0.528389 0.849002i \(-0.322796\pi\)
−0.999452 + 0.0330974i \(0.989463\pi\)
\(450\) 0 0
\(451\) −1.61133e8 2.79091e8i −0.0827118 0.143261i
\(452\) 0 0
\(453\) 2.65105e9 4.59175e9i 1.33990 2.32078i
\(454\) 0 0
\(455\) −7.50641e8 1.39642e9i −0.373588 0.694985i
\(456\) 0 0
\(457\) −9.01035e8 + 1.56064e9i −0.441606 + 0.764884i −0.997809 0.0661624i \(-0.978924\pi\)
0.556203 + 0.831047i \(0.312258\pi\)
\(458\) 0 0
\(459\) −1.64566e9 2.85036e9i −0.794319 1.37580i
\(460\) 0 0
\(461\) 3.90785e8 + 6.76859e8i 0.185774 + 0.321770i 0.943837 0.330412i \(-0.107188\pi\)
−0.758063 + 0.652181i \(0.773854\pi\)
\(462\) 0 0
\(463\) 7.80510e8 0.365464 0.182732 0.983163i \(-0.441506\pi\)
0.182732 + 0.983163i \(0.441506\pi\)
\(464\) 0 0
\(465\) −4.38063e8 + 7.58747e8i −0.202046 + 0.349955i
\(466\) 0 0
\(467\) 2.48897e9 1.13087 0.565433 0.824794i \(-0.308709\pi\)
0.565433 + 0.824794i \(0.308709\pi\)
\(468\) 0 0
\(469\) −5.57942e8 −0.249738
\(470\) 0 0
\(471\) 3.06972e9 5.31691e9i 1.35371 2.34469i
\(472\) 0 0
\(473\) −3.09989e8 −0.134689
\(474\) 0 0
\(475\) −1.61858e9 2.80346e9i −0.692956 1.20023i
\(476\) 0 0
\(477\) 1.82233e9 + 3.15636e9i 0.768797 + 1.33160i
\(478\) 0 0
\(479\) −1.73346e9 + 3.00243e9i −0.720673 + 1.24824i 0.240057 + 0.970759i \(0.422834\pi\)
−0.960730 + 0.277484i \(0.910499\pi\)
\(480\) 0 0
\(481\) 4.68633e8 7.57603e8i 0.192011 0.310409i
\(482\) 0 0
\(483\) −1.70138e9 + 2.94688e9i −0.687048 + 1.19000i
\(484\) 0 0
\(485\) −4.13609e6 7.16392e6i −0.00164624 0.00285138i
\(486\) 0 0
\(487\) −5.00506e8 8.66901e8i −0.196362 0.340109i 0.750984 0.660320i \(-0.229579\pi\)
−0.947346 + 0.320211i \(0.896246\pi\)
\(488\) 0 0
\(489\) −2.44136e9 −0.944172
\(490\) 0 0
\(491\) −7.39363e7 + 1.28061e8i −0.0281885 + 0.0488240i −0.879776 0.475389i \(-0.842307\pi\)
0.851587 + 0.524213i \(0.175641\pi\)
\(492\) 0 0
\(493\) −3.31841e9 −1.24729
\(494\) 0 0
\(495\) 1.59013e9 0.589271
\(496\) 0 0
\(497\) 2.40460e9 4.16488e9i 0.878607 1.52179i
\(498\) 0 0
\(499\) 3.44602e9 1.24155 0.620777 0.783988i \(-0.286817\pi\)
0.620777 + 0.783988i \(0.286817\pi\)
\(500\) 0 0
\(501\) −1.61417e9 2.79582e9i −0.573478 0.993293i
\(502\) 0 0
\(503\) −2.83908e9 4.91744e9i −0.994696 1.72286i −0.586428 0.810001i \(-0.699467\pi\)
−0.408267 0.912862i \(-0.633867\pi\)
\(504\) 0 0
\(505\) 9.81908e8 1.70071e9i 0.339274 0.587640i
\(506\) 0 0
\(507\) 2.74395e9 4.14885e9i 0.935078 1.41384i
\(508\) 0 0
\(509\) −1.82542e9 + 3.16171e9i −0.613549 + 1.06270i 0.377088 + 0.926177i \(0.376925\pi\)
−0.990637 + 0.136521i \(0.956408\pi\)
\(510\) 0 0
\(511\) 4.40785e9 + 7.63461e9i 1.46135 + 2.53113i
\(512\) 0 0
\(513\) −4.04835e9 7.01194e9i −1.32394 2.29312i
\(514\) 0 0
\(515\) 1.64550e9 0.530850
\(516\) 0 0
\(517\) 6.04413e8 1.04687e9i 0.192361 0.333179i
\(518\) 0 0
\(519\) −2.33071e9 −0.731819
\(520\) 0 0
\(521\) 3.14626e9 0.974680 0.487340 0.873212i \(-0.337967\pi\)
0.487340 + 0.873212i \(0.337967\pi\)
\(522\) 0 0
\(523\) −3.21632e9 + 5.57083e9i −0.983113 + 1.70280i −0.333074 + 0.942901i \(0.608086\pi\)
−0.650039 + 0.759901i \(0.725248\pi\)
\(524\) 0 0
\(525\) −7.24048e9 −2.18379
\(526\) 0 0
\(527\) −9.05716e8 1.56875e9i −0.269560 0.466891i
\(528\) 0 0
\(529\) 1.29777e9 + 2.24780e9i 0.381156 + 0.660182i
\(530\) 0 0
\(531\) 4.93822e9 8.55326e9i 1.43133 2.47914i
\(532\) 0 0
\(533\) 4.58930e8 7.41917e8i 0.131281 0.212231i
\(534\) 0 0
\(535\) 3.77555e7 6.53944e7i 0.0106596 0.0184630i
\(536\) 0 0
\(537\) −1.78504e9 3.09178e9i −0.497436 0.861585i
\(538\) 0 0
\(539\) −2.12633e9 3.68291e9i −0.584884 1.01305i
\(540\) 0 0
\(541\) 1.42344e9 0.386500 0.193250 0.981150i \(-0.438097\pi\)
0.193250 + 0.981150i \(0.438097\pi\)
\(542\) 0 0
\(543\) −3.07941e9 + 5.33370e9i −0.825408 + 1.42965i
\(544\) 0 0
\(545\) −5.13539e8 −0.135890
\(546\) 0 0
\(547\) 1.52035e9 0.397181 0.198591 0.980083i \(-0.436364\pi\)
0.198591 + 0.980083i \(0.436364\pi\)
\(548\) 0 0
\(549\) −4.88474e9 + 8.46062e9i −1.25991 + 2.18222i
\(550\) 0 0
\(551\) −8.16335e9 −2.07892
\(552\) 0 0
\(553\) −8.12505e8 1.40730e9i −0.204309 0.353874i
\(554\) 0 0
\(555\) 5.91216e8 + 1.02402e9i 0.146798 + 0.254262i
\(556\) 0 0
\(557\) 4.15106e8 7.18985e8i 0.101781 0.176290i −0.810638 0.585548i \(-0.800879\pi\)
0.912418 + 0.409259i \(0.134213\pi\)
\(558\) 0 0
\(559\) −3.97318e8 7.39130e8i −0.0962048 0.178970i
\(560\) 0 0
\(561\) −2.52134e9 + 4.36709e9i −0.602923 + 1.04429i
\(562\) 0 0
\(563\) −1.61860e9 2.80351e9i −0.382262 0.662098i 0.609123 0.793076i \(-0.291522\pi\)
−0.991385 + 0.130978i \(0.958188\pi\)
\(564\) 0 0
\(565\) 1.84407e9 + 3.19402e9i 0.430138 + 0.745021i
\(566\) 0 0
\(567\) −4.58989e9 −1.05745
\(568\) 0 0
\(569\) 2.35987e9 4.08742e9i 0.537026 0.930157i −0.462036 0.886861i \(-0.652881\pi\)
0.999062 0.0432957i \(-0.0137857\pi\)
\(570\) 0 0
\(571\) −3.95218e9 −0.888403 −0.444201 0.895927i \(-0.646513\pi\)
−0.444201 + 0.895927i \(0.646513\pi\)
\(572\) 0 0
\(573\) 1.31219e9 0.291377
\(574\) 0 0
\(575\) 8.61009e8 1.49131e9i 0.188873 0.327138i
\(576\) 0 0
\(577\) −2.12731e9 −0.461016 −0.230508 0.973070i \(-0.574039\pi\)
−0.230508 + 0.973070i \(0.574039\pi\)
\(578\) 0 0
\(579\) −2.30051e9 3.98459e9i −0.492548 0.853118i
\(580\) 0 0
\(581\) −4.88847e8 8.46708e8i −0.103409 0.179109i
\(582\) 0 0
\(583\) 1.30160e9 2.25443e9i 0.272042 0.471191i
\(584\) 0 0
\(585\) 2.03810e9 + 3.79147e9i 0.420900 + 0.783000i
\(586\) 0 0
\(587\) −2.65059e9 + 4.59096e9i −0.540890 + 0.936850i 0.457963 + 0.888971i \(0.348579\pi\)
−0.998853 + 0.0478782i \(0.984754\pi\)
\(588\) 0 0
\(589\) −2.22808e9 3.85914e9i −0.449290 0.778193i
\(590\) 0 0
\(591\) 1.53750e9 + 2.66304e9i 0.306380 + 0.530666i
\(592\) 0 0
\(593\) 7.20568e9 1.41900 0.709501 0.704704i \(-0.248920\pi\)
0.709501 + 0.704704i \(0.248920\pi\)
\(594\) 0 0
\(595\) −2.17541e9 + 3.76792e9i −0.423381 + 0.733317i
\(596\) 0 0
\(597\) 2.24870e9 0.432535
\(598\) 0 0
\(599\) 1.75875e9 0.334357 0.167179 0.985927i \(-0.446534\pi\)
0.167179 + 0.985927i \(0.446534\pi\)
\(600\) 0 0
\(601\) 3.50633e9 6.07314e9i 0.658858 1.14118i −0.322054 0.946721i \(-0.604373\pi\)
0.980912 0.194454i \(-0.0622936\pi\)
\(602\) 0 0
\(603\) 1.51489e9 0.281366
\(604\) 0 0
\(605\) 7.24491e8 + 1.25485e9i 0.133011 + 0.230383i
\(606\) 0 0
\(607\) 7.96698e8 + 1.37992e9i 0.144588 + 0.250435i 0.929219 0.369529i \(-0.120481\pi\)
−0.784631 + 0.619963i \(0.787148\pi\)
\(608\) 0 0
\(609\) −9.12941e9 + 1.58126e10i −1.63788 + 2.83689i
\(610\) 0 0
\(611\) 3.27082e9 + 9.93520e7i 0.580113 + 0.0176211i
\(612\) 0 0
\(613\) 5.40201e8 9.35656e8i 0.0947205 0.164061i −0.814771 0.579782i \(-0.803138\pi\)
0.909492 + 0.415722i \(0.136471\pi\)
\(614\) 0 0
\(615\) 5.78974e8 + 1.00281e9i 0.100368 + 0.173843i
\(616\) 0 0
\(617\) −3.25522e9 5.63820e9i −0.557933 0.966368i −0.997669 0.0682409i \(-0.978261\pi\)
0.439736 0.898127i \(-0.355072\pi\)
\(618\) 0 0
\(619\) 2.46380e9 0.417531 0.208766 0.977966i \(-0.433055\pi\)
0.208766 + 0.977966i \(0.433055\pi\)
\(620\) 0 0
\(621\) 2.15354e9 3.73003e9i 0.360854 0.625018i
\(622\) 0 0
\(623\) 1.75424e10 2.90657
\(624\) 0 0
\(625\) 2.28972e9 0.375147
\(626\) 0 0
\(627\) −6.20255e9 + 1.07431e10i −1.00493 + 1.74058i
\(628\) 0 0
\(629\) −2.44473e9 −0.391701
\(630\) 0 0
\(631\) −1.56214e9 2.70571e9i −0.247524 0.428725i 0.715314 0.698803i \(-0.246284\pi\)
−0.962838 + 0.270078i \(0.912950\pi\)
\(632\) 0 0
\(633\) 2.58794e9 + 4.48245e9i 0.405547 + 0.702429i
\(634\) 0 0
\(635\) 1.06357e9 1.84216e9i 0.164838 0.285509i
\(636\) 0 0
\(637\) 6.05608e9 9.79040e9i 0.928333 1.50076i
\(638\) 0 0
\(639\) −6.52882e9 + 1.13082e10i −0.989878 + 1.71452i
\(640\) 0 0
\(641\) 4.15064e9 + 7.18911e9i 0.622460 + 1.07813i 0.989026 + 0.147741i \(0.0472001\pi\)
−0.366566 + 0.930392i \(0.619467\pi\)
\(642\) 0 0
\(643\) 3.87700e9 + 6.71515e9i 0.575118 + 0.996133i 0.996029 + 0.0890314i \(0.0283771\pi\)
−0.420911 + 0.907102i \(0.638290\pi\)
\(644\) 0 0
\(645\) 1.11384e9 0.163441
\(646\) 0 0
\(647\) 4.87730e9 8.44773e9i 0.707969 1.22624i −0.257640 0.966241i \(-0.582945\pi\)
0.965609 0.259998i \(-0.0837218\pi\)
\(648\) 0 0
\(649\) −7.05426e9 −1.01297
\(650\) 0 0
\(651\) −9.96701e9 −1.41590
\(652\) 0 0
\(653\) 1.40039e9 2.42555e9i 0.196813 0.340890i −0.750680 0.660666i \(-0.770274\pi\)
0.947493 + 0.319775i \(0.103607\pi\)
\(654\) 0 0
\(655\) −2.79111e9 −0.388090
\(656\) 0 0
\(657\) −1.19679e10 2.07290e10i −1.64642 2.85168i
\(658\) 0 0
\(659\) −4.64679e9 8.04848e9i −0.632491 1.09551i −0.987041 0.160469i \(-0.948699\pi\)
0.354550 0.935037i \(-0.384634\pi\)
\(660\) 0 0
\(661\) −2.38956e9 + 4.13885e9i −0.321820 + 0.557409i −0.980864 0.194696i \(-0.937628\pi\)
0.659043 + 0.752105i \(0.270961\pi\)
\(662\) 0 0
\(663\) −1.36444e10 4.14452e8i −1.81827 0.0552303i
\(664\) 0 0
\(665\) −5.35154e9 + 9.26914e9i −0.705672 + 1.22226i
\(666\) 0 0
\(667\) −2.17126e9 3.76074e9i −0.283317 0.490719i
\(668\) 0 0
\(669\) 4.15699e9 + 7.20012e9i 0.536770 + 0.929712i
\(670\) 0 0
\(671\) 6.97786e9 0.891648
\(672\) 0 0
\(673\) −1.48349e9 + 2.56948e9i −0.187599 + 0.324932i −0.944449 0.328657i \(-0.893404\pi\)
0.756850 + 0.653589i \(0.226737\pi\)
\(674\) 0 0
\(675\) 9.16469e9 1.14698
\(676\) 0 0
\(677\) −7.59327e8 −0.0940521 −0.0470260 0.998894i \(-0.514974\pi\)
−0.0470260 + 0.998894i \(0.514974\pi\)
\(678\) 0 0
\(679\) 4.70531e7 8.14984e7i 0.00576825 0.00999091i
\(680\) 0 0
\(681\) 3.95143e9 0.479446
\(682\) 0 0
\(683\) −3.30422e9 5.72307e9i −0.396822 0.687316i 0.596510 0.802606i \(-0.296554\pi\)
−0.993332 + 0.115290i \(0.963220\pi\)
\(684\) 0 0
\(685\) −2.90965e9 5.03966e9i −0.345879 0.599079i
\(686\) 0 0
\(687\) 4.58314e9 7.93823e9i 0.539280 0.934060i
\(688\) 0 0
\(689\) 7.04368e9 + 2.13953e8i 0.820412 + 0.0249202i
\(690\) 0 0
\(691\) 4.34206e9 7.52066e9i 0.500636 0.867128i −0.499363 0.866393i \(-0.666433\pi\)
1.00000 0.000734904i \(-0.000233927\pi\)
\(692\) 0 0
\(693\) 9.04486e9 + 1.56662e10i 1.03237 + 1.78812i
\(694\) 0 0
\(695\) 9.21925e8 + 1.59682e9i 0.104171 + 0.180430i
\(696\) 0 0
\(697\) −2.39411e9 −0.267812
\(698\) 0 0
\(699\) 2.79416e9 4.83962e9i 0.309443 0.535971i
\(700\) 0 0
\(701\) 7.50161e9 0.822510 0.411255 0.911520i \(-0.365091\pi\)
0.411255 + 0.911520i \(0.365091\pi\)
\(702\) 0 0
\(703\) −6.01409e9 −0.652869
\(704\) 0 0
\(705\) −2.17174e9 + 3.76157e9i −0.233424 + 0.404303i
\(706\) 0 0
\(707\) 2.23408e10 2.37756
\(708\) 0 0
\(709\) −3.60933e9 6.25154e9i −0.380334 0.658757i 0.610776 0.791803i \(-0.290858\pi\)
−0.991110 + 0.133046i \(0.957524\pi\)
\(710\) 0 0
\(711\) 2.20606e9 + 3.82102e9i 0.230184 + 0.398690i
\(712\) 0 0
\(713\) 1.18524e9 2.05289e9i 0.122459 0.212106i
\(714\) 0 0
\(715\) 1.61739e9 2.61471e9i 0.165479 0.267518i
\(716\) 0 0
\(717\) 1.22357e10 2.11929e10i 1.23969 2.14720i
\(718\) 0 0
\(719\) 7.39310e9 + 1.28052e10i 0.741781 + 1.28480i 0.951684 + 0.307080i \(0.0993518\pi\)
−0.209903 + 0.977722i \(0.567315\pi\)
\(720\) 0 0
\(721\) 9.35978e9 + 1.62116e10i 0.930019 + 1.61084i
\(722\) 0 0
\(723\) −9.81092e9 −0.965441
\(724\) 0 0
\(725\) 4.62007e9 8.00220e9i 0.450262 0.779877i
\(726\) 0 0
\(727\) 5.23529e9 0.505325 0.252662 0.967554i \(-0.418694\pi\)
0.252662 + 0.967554i \(0.418694\pi\)
\(728\) 0 0
\(729\) −1.37858e10 −1.31791
\(730\) 0 0
\(731\) −1.15145e9 + 1.99438e9i −0.109027 + 0.188841i
\(732\) 0 0
\(733\) 2.06458e10 1.93628 0.968138 0.250417i \(-0.0805676\pi\)
0.968138 + 0.250417i \(0.0805676\pi\)
\(734\) 0 0
\(735\) 7.64020e9 + 1.32332e10i 0.709739 + 1.22930i
\(736\) 0 0
\(737\) −5.41006e8 9.37050e8i −0.0497813 0.0862237i
\(738\) 0 0
\(739\) −4.34202e9 + 7.52060e9i −0.395764 + 0.685483i −0.993198 0.116435i \(-0.962853\pi\)
0.597434 + 0.801918i \(0.296187\pi\)
\(740\) 0 0
\(741\) −3.35655e10 1.01956e9i −3.03061 0.0920554i
\(742\) 0 0
\(743\) 5.13915e9 8.90127e9i 0.459653 0.796143i −0.539289 0.842121i \(-0.681307\pi\)
0.998942 + 0.0459776i \(0.0146403\pi\)
\(744\) 0 0
\(745\) −2.70417e9 4.68377e9i −0.239600 0.415000i
\(746\) 0 0
\(747\) 1.32729e9 + 2.29893e9i 0.116505 + 0.201792i
\(748\) 0 0
\(749\) 8.59030e8 0.0747002
\(750\) 0 0
\(751\) 4.41272e9 7.64306e9i 0.380161 0.658457i −0.610924 0.791689i \(-0.709202\pi\)
0.991085 + 0.133232i \(0.0425354\pi\)
\(752\) 0 0
\(753\) 2.66729e10 2.27660
\(754\) 0 0
\(755\) 8.87154e9 0.750213
\(756\) 0 0
\(757\) −8.12765e9 + 1.40775e10i −0.680972 + 1.17948i 0.293712 + 0.955894i \(0.405109\pi\)
−0.974684 + 0.223585i \(0.928224\pi\)
\(758\) 0 0
\(759\) −6.59895e9 −0.547808
\(760\) 0 0
\(761\) 1.45722e8 + 2.52398e8i 0.0119862 + 0.0207606i 0.871956 0.489584i \(-0.162851\pi\)
−0.859970 + 0.510344i \(0.829518\pi\)
\(762\) 0 0
\(763\) −2.92107e9 5.05944e9i −0.238071 0.412351i
\(764\) 0 0
\(765\) 5.90654e9 1.02304e10i 0.477000 0.826188i
\(766\) 0 0
\(767\) −9.04154e9 1.68200e10i −0.723534 1.34599i
\(768\) 0 0
\(769\) −2.22330e9 + 3.85087e9i −0.176302 + 0.305363i −0.940611 0.339486i \(-0.889747\pi\)
0.764309 + 0.644850i \(0.223080\pi\)
\(770\) 0 0
\(771\) 1.07214e10 + 1.85700e10i 0.842484 + 1.45922i
\(772\) 0 0
\(773\) −2.56726e9 4.44663e9i −0.199913 0.346260i 0.748587 0.663037i \(-0.230733\pi\)
−0.948500 + 0.316777i \(0.897399\pi\)
\(774\) 0 0
\(775\) 5.04395e9 0.389237
\(776\) 0 0
\(777\) −6.72581e9 + 1.16494e10i −0.514365 + 0.890905i
\(778\) 0 0
\(779\) −5.88956e9 −0.446377
\(780\) 0 0
\(781\) 9.32642e9 0.700546
\(782\) 0 0
\(783\) 1.15556e10 2.00149e10i 0.860255 1.49000i
\(784\) 0 0
\(785\) 1.02726e10 0.757943
\(786\) 0 0
\(787\) 1.07057e10 + 1.85428e10i 0.782895 + 1.35601i 0.930248 + 0.366930i \(0.119591\pi\)
−0.147353 + 0.989084i \(0.547075\pi\)
\(788\) 0 0
\(789\) 1.59726e10 + 2.76654e10i 1.15773 + 2.00524i
\(790\) 0 0
\(791\) −2.09786e10 + 3.63360e10i −1.50716 + 2.61047i
\(792\) 0 0
\(793\) 8.94362e9 + 1.66378e10i 0.636879 + 1.18479i
\(794\) 0 0
\(795\) −4.67682e9 + 8.10049e9i −0.330115 + 0.571776i
\(796\) 0 0
\(797\) −2.24946e9 3.89618e9i −0.157389 0.272605i 0.776537 0.630071i \(-0.216974\pi\)
−0.933926 + 0.357466i \(0.883641\pi\)
\(798\) 0 0
\(799\) −4.49018e9 7.77722e9i −0.311422 0.539400i
\(800\) 0 0
\(801\) −4.76301e10 −3.27467
\(802\) 0 0
\(803\) −8.54809e9 + 1.48057e10i −0.582592 + 1.00908i
\(804\) 0 0
\(805\) −5.69356e9 −0.384679
\(806\) 0 0
\(807\) 1.15361e10 0.772685
\(808\) 0 0
\(809\) 1.23533e10 2.13966e10i 0.820282 1.42077i −0.0851894 0.996365i \(-0.527150\pi\)
0.905472 0.424406i \(-0.139517\pi\)
\(810\) 0 0
\(811\) −1.66270e9 −0.109456 −0.0547282 0.998501i \(-0.517429\pi\)
−0.0547282 + 0.998501i \(0.517429\pi\)
\(812\) 0 0
\(813\) 1.41134e10 + 2.44450e10i 0.921114 + 1.59542i
\(814\) 0 0
\(815\) −2.04246e9 3.53765e9i −0.132161 0.228909i
\(816\) 0 0
\(817\) −2.83260e9 + 4.90620e9i −0.181722 + 0.314752i
\(818\) 0 0
\(819\) −2.57610e10 + 4.16458e10i −1.63859 + 2.64898i
\(820\) 0 0
\(821\) 7.44317e9 1.28920e10i 0.469415 0.813051i −0.529974 0.848014i \(-0.677798\pi\)
0.999389 + 0.0349635i \(0.0111315\pi\)
\(822\) 0 0
\(823\) −4.69118e9 8.12536e9i −0.293347 0.508093i 0.681252 0.732049i \(-0.261436\pi\)
−0.974599 + 0.223957i \(0.928103\pi\)
\(824\) 0 0
\(825\) −7.02070e9 1.21602e10i −0.435303 0.753967i
\(826\) 0 0
\(827\) 5.95599e9 0.366172 0.183086 0.983097i \(-0.441391\pi\)
0.183086 + 0.983097i \(0.441391\pi\)
\(828\) 0 0
\(829\) −1.02687e10 + 1.77859e10i −0.626002 + 1.08427i 0.362345 + 0.932044i \(0.381976\pi\)
−0.988346 + 0.152223i \(0.951357\pi\)
\(830\) 0 0
\(831\) −3.85539e10 −2.33058
\(832\) 0 0
\(833\) −3.15929e10 −1.89379
\(834\) 0 0
\(835\) 2.70085e9 4.67801e9i 0.160545 0.278073i
\(836\) 0 0
\(837\) 1.26158e10 0.743663
\(838\) 0 0
\(839\) −6.87493e9 1.19077e10i −0.401884 0.696084i 0.592069 0.805887i \(-0.298311\pi\)
−0.993953 + 0.109803i \(0.964978\pi\)
\(840\) 0 0
\(841\) −3.02581e9 5.24086e9i −0.175411 0.303820i
\(842\) 0 0
\(843\) −1.93954e9 + 3.35939e9i −0.111507 + 0.193136i
\(844\) 0 0
\(845\) 8.30748e9 + 5.05149e8i 0.473664 + 0.0288019i
\(846\) 0 0
\(847\) −8.24197e9 + 1.42755e10i −0.466057 + 0.807235i
\(848\) 0 0
\(849\) 1.09159e10 + 1.89069e10i 0.612184 + 1.06033i
\(850\) 0 0
\(851\) −1.59961e9 2.77061e9i −0.0889736 0.154107i
\(852\) 0 0
\(853\) 9.49367e9 0.523736 0.261868 0.965104i \(-0.415661\pi\)
0.261868 + 0.965104i \(0.415661\pi\)
\(854\) 0 0
\(855\) 1.45302e10 2.51670e10i 0.795042 1.37705i
\(856\) 0 0
\(857\) −1.03739e9 −0.0562998 −0.0281499 0.999604i \(-0.508962\pi\)
−0.0281499 + 0.999604i \(0.508962\pi\)
\(858\) 0 0
\(859\) 3.21586e10 1.73110 0.865549 0.500824i \(-0.166970\pi\)
0.865549 + 0.500824i \(0.166970\pi\)
\(860\) 0 0
\(861\) −6.58655e9 + 1.14082e10i −0.351679 + 0.609126i
\(862\) 0 0
\(863\) 1.58573e10 0.839828 0.419914 0.907564i \(-0.362060\pi\)
0.419914 + 0.907564i \(0.362060\pi\)
\(864\) 0 0
\(865\) −1.94989e9 3.37731e9i −0.102436 0.177425i
\(866\) 0 0
\(867\) 2.46701e9 + 4.27298e9i 0.128559 + 0.222671i
\(868\) 0 0
\(869\) 1.57568e9 2.72916e9i 0.0814516 0.141078i
\(870\) 0 0
\(871\) 1.54086e9 2.49099e9i 0.0790132 0.127735i
\(872\) 0 0
\(873\) −1.27756e8 + 2.21280e8i −0.00649877 + 0.0112562i
\(874\) 0 0
\(875\) −1.38754e10 2.40329e10i −0.700192 1.21277i
\(876\) 0 0
\(877\) 1.44053e10 + 2.49507e10i 0.721145 + 1.24906i 0.960541 + 0.278138i \(0.0897174\pi\)
−0.239395 + 0.970922i \(0.576949\pi\)
\(878\) 0 0
\(879\) 2.43266e10 1.20815
\(880\) 0 0
\(881\) 1.65245e10 2.86213e10i 0.814167 1.41018i −0.0957580 0.995405i \(-0.530527\pi\)
0.909925 0.414773i \(-0.136139\pi\)
\(882\) 0 0
\(883\) 1.91851e9 0.0937783 0.0468891 0.998900i \(-0.485069\pi\)
0.0468891 + 0.998900i \(0.485069\pi\)
\(884\) 0 0
\(885\) 2.53469e10 1.22920
\(886\) 0 0
\(887\) 1.12577e10 1.94989e10i 0.541646 0.938159i −0.457163 0.889383i \(-0.651135\pi\)
0.998810 0.0487763i \(-0.0155321\pi\)
\(888\) 0 0
\(889\) 2.41989e10 1.15515
\(890\) 0 0
\(891\) −4.45056e9 7.70860e9i −0.210786 0.365093i
\(892\) 0 0
\(893\) −1.10459e10 1.91321e10i −0.519065 0.899047i
\(894\) 0 0
\(895\) 2.98675e9 5.17321e9i 0.139257 0.241201i
\(896\) 0 0
\(897\) −8.45797e9 1.57343e10i −0.391284 0.727906i
\(898\) 0 0
\(899\) 6.35983e9 1.10156e10i 0.291935 0.505647i
\(900\) 0 0
\(901\) −9.66955e9 1.67481e10i −0.440422 0.762834i
\(902\) 0 0
\(903\) 6.33562e9 + 1.09736e10i 0.286340 + 0.495956i
\(904\) 0 0
\(905\) −1.03050e10 −0.462146
\(906\) 0 0
\(907\) 1.77982e10 3.08274e10i 0.792047 1.37187i −0.132650 0.991163i \(-0.542349\pi\)
0.924697 0.380703i \(-0.124318\pi\)
\(908\) 0 0
\(909\) −6.06585e10 −2.67866
\(910\) 0 0
\(911\) 2.01254e10 0.881923 0.440962 0.897526i \(-0.354637\pi\)
0.440962 + 0.897526i \(0.354637\pi\)
\(912\) 0 0
\(913\) 9.48016e8 1.64201e9i 0.0412257 0.0714050i
\(914\) 0 0
\(915\) −2.50724e10 −1.08199
\(916\) 0 0
\(917\) −1.58761e10 2.74983e10i −0.679911 1.17764i
\(918\) 0 0
\(919\) 5.03019e9 + 8.71254e9i 0.213786 + 0.370289i 0.952896 0.303296i \(-0.0980870\pi\)
−0.739110 + 0.673585i \(0.764754\pi\)
\(920\) 0 0
\(921\) 6.14973e9 1.06517e10i 0.259387 0.449271i
\(922\) 0 0
\(923\) 1.19538e10 + 2.22377e10i 0.500381 + 0.930857i
\(924\) 0 0
\(925\) 3.40369e9 5.89537e9i 0.141402 0.244915i
\(926\) 0 0
\(927\) −2.54131e10 4.40168e10i −1.04780 1.81484i
\(928\) 0 0
\(929\) −1.24643e10 2.15889e10i −0.510052 0.883436i −0.999932 0.0116460i \(-0.996293\pi\)
0.489880 0.871790i \(-0.337040\pi\)
\(930\) 0 0
\(931\) −7.77192e10 −3.15649
\(932\) 0 0
\(933\) 2.22421e10 3.85245e10i 0.896582 1.55293i
\(934\) 0 0
\(935\) −8.43750e9 −0.337577
\(936\) 0 0
\(937\) 3.64214e9 0.144633 0.0723166 0.997382i \(-0.476961\pi\)
0.0723166 + 0.997382i \(0.476961\pi\)
\(938\) 0 0
\(939\) −1.53881e10 + 2.66530e10i −0.606535 + 1.05055i
\(940\) 0 0
\(941\) −3.92765e10 −1.53663 −0.768314 0.640073i \(-0.778904\pi\)
−0.768314 + 0.640073i \(0.778904\pi\)
\(942\) 0 0
\(943\) −1.56649e9 2.71324e9i −0.0608327 0.105365i
\(944\) 0 0
\(945\) −1.51507e10 2.62419e10i −0.584013 1.01154i
\(946\) 0 0
\(947\) 4.01982e9 6.96253e9i 0.153809 0.266405i −0.778816 0.627253i \(-0.784179\pi\)
0.932625 + 0.360848i \(0.117513\pi\)
\(948\) 0 0
\(949\) −4.62586e10 1.40512e9i −1.75695 0.0533679i
\(950\) 0 0
\(951\) 2.60318e9 4.50884e9i 0.0981459 0.169994i
\(952\) 0 0
\(953\) 7.75981e9 + 1.34404e10i 0.290420 + 0.503022i 0.973909 0.226939i \(-0.0728718\pi\)
−0.683489 + 0.729961i \(0.739538\pi\)
\(954\) 0 0
\(955\) 1.09779e9 + 1.90142e9i 0.0407855 + 0.0706425i
\(956\) 0 0
\(957\) −3.54092e10 −1.30594
\(958\) 0 0
\(959\) 3.31008e10 5.73323e10i 1.21192 2.09911i
\(960\) 0 0
\(961\) −2.05693e10 −0.747631
\(962\) 0 0
\(963\) −2.33239e9 −0.0841605
\(964\) 0 0
\(965\) 3.84924e9 6.66708e9i 0.137889 0.238831i
\(966\) 0 0
\(967\) 1.65901e10 0.590006 0.295003 0.955496i \(-0.404679\pi\)
0.295003 + 0.955496i \(0.404679\pi\)
\(968\) 0 0
\(969\) 4.60787e10 + 7.98106e10i 1.62692 + 2.81791i
\(970\) 0 0
\(971\) 2.75084e9 + 4.76459e9i 0.0964268 + 0.167016i 0.910203 0.414162i \(-0.135925\pi\)
−0.813776 + 0.581178i \(0.802592\pi\)
\(972\) 0 0
\(973\) −1.04880e10 + 1.81658e10i −0.365005 + 0.632208i
\(974\) 0 0
\(975\) 1.99959e10 3.23259e10i 0.690916 1.11695i
\(976\) 0 0
\(977\) 1.36203e10 2.35910e10i 0.467256 0.809312i −0.532044 0.846717i \(-0.678576\pi\)
0.999300 + 0.0374051i \(0.0119092\pi\)
\(978\) 0 0
\(979\) 1.70099e10 + 2.94620e10i 0.579378 + 1.00351i
\(980\) 0 0
\(981\) 7.93112e9 + 1.37371e10i 0.268221 + 0.464573i
\(982\) 0 0
\(983\) −3.12589e10 −1.04963 −0.524816 0.851216i \(-0.675866\pi\)
−0.524816 + 0.851216i \(0.675866\pi\)
\(984\) 0 0
\(985\) −2.57258e9 + 4.45583e9i −0.0857712 + 0.148560i
\(986\) 0 0
\(987\) −4.94125e10 −1.63579
\(988\) 0 0
\(989\) −3.01363e9 −0.0990609
\(990\) 0 0
\(991\) −2.70471e10 + 4.68470e10i −0.882802 + 1.52906i −0.0345889 + 0.999402i \(0.511012\pi\)
−0.848213 + 0.529656i \(0.822321\pi\)
\(992\) 0 0
\(993\) 5.40767e10 1.75262
\(994\) 0 0
\(995\) 1.88128e9 + 3.25847e9i 0.0605441 + 0.104866i
\(996\) 0 0
\(997\) −1.77119e10 3.06779e10i −0.566021 0.980377i −0.996954 0.0779930i \(-0.975149\pi\)
0.430933 0.902384i \(-0.358184\pi\)
\(998\) 0 0
\(999\) 8.51324e9 1.47454e10i 0.270157 0.467925i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.8.i.b.113.4 8
4.3 odd 2 26.8.c.b.9.1 yes 8
12.11 even 2 234.8.h.b.217.2 8
13.3 even 3 inner 208.8.i.b.81.4 8
52.3 odd 6 26.8.c.b.3.1 8
52.7 even 12 338.8.b.h.337.4 8
52.19 even 12 338.8.b.h.337.8 8
52.35 odd 6 338.8.a.i.1.4 4
52.43 odd 6 338.8.a.j.1.4 4
156.107 even 6 234.8.h.b.55.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.c.b.3.1 8 52.3 odd 6
26.8.c.b.9.1 yes 8 4.3 odd 2
208.8.i.b.81.4 8 13.3 even 3 inner
208.8.i.b.113.4 8 1.1 even 1 trivial
234.8.h.b.55.2 8 156.107 even 6
234.8.h.b.217.2 8 12.11 even 2
338.8.a.i.1.4 4 52.35 odd 6
338.8.a.j.1.4 4 52.43 odd 6
338.8.b.h.337.4 8 52.7 even 12
338.8.b.h.337.8 8 52.19 even 12