Properties

Label 208.8.i.b
Level 208208
Weight 88
Character orbit 208.i
Analytic conductor 64.97664.976
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,8,Mod(81,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.81"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 8, names="a")
 
Level: N N == 208=2413 208 = 2^{4} \cdot 13
Weight: k k == 8 8
Character orbit: [χ][\chi] == 208.i (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 64.976085300764.9760853007
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8+4654x6+7012369x4+3763719168x2+637953638400 x^{8} + 4654x^{6} + 7012369x^{4} + 3763719168x^{2} + 637953638400 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 263 2^{6}\cdot 3
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q3+(β4+β3β2+69)q5+(2β6+7β2++138)q7+(6β73β6+1302)q9+(8β6+8β5+1844β1)q11++(1020β5+7152β4++2592480)q99+O(q100) q - \beta_{3} q^{3} + ( - \beta_{4} + \beta_{3} - \beta_{2} + 69) q^{5} + (2 \beta_{6} + 7 \beta_{2} + \cdots + 138) q^{7} + ( - 6 \beta_{7} - 3 \beta_{6} + \cdots - 1302) q^{9} + (8 \beta_{6} + 8 \beta_{5} + \cdots - 1844 \beta_1) q^{11}+ \cdots + (1020 \beta_{5} + 7152 \beta_{4} + \cdots + 2592480) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+556q5+548q75214q9+7392q1125818q1315528q15+28316q17+99888q19+182148q21+33388q23+173756q25212544q27+93140q29622320q31++20715312q99+O(q100) 8 q + 556 q^{5} + 548 q^{7} - 5214 q^{9} + 7392 q^{11} - 25818 q^{13} - 15528 q^{15} + 28316 q^{17} + 99888 q^{19} + 182148 q^{21} + 33388 q^{23} + 173756 q^{25} - 212544 q^{27} + 93140 q^{29} - 622320 q^{31}+ \cdots + 20715312 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+4654x6+7012369x4+3763719168x2+637953638400 x^{8} + 4654x^{6} + 7012369x^{4} + 3763719168x^{2} + 637953638400 : Copy content Toggle raw display

β1\beta_{1}== (ν7+4654ν5+6213649ν3+1905097728ν3143761920)/6287523840 ( \nu^{7} + 4654\nu^{5} + 6213649\nu^{3} + 1905097728\nu - 3143761920 ) / 6287523840 Copy content Toggle raw display
β2\beta_{2}== (ν4+2327ν2+11808ν+798720)/7872 ( \nu^{4} + 2327\nu^{2} + 11808\nu + 798720 ) / 7872 Copy content Toggle raw display
β3\beta_{3}== (ν42327ν2+11808ν798720)/7872 ( -\nu^{4} - 2327\nu^{2} + 11808\nu - 798720 ) / 7872 Copy content Toggle raw display
β4\beta_{4}== (ν63766ν43863881ν2854819328)/661248 ( -\nu^{6} - 3766\nu^{4} - 3863881\nu^{2} - 854819328 ) / 661248 Copy content Toggle raw display
β5\beta_{5}== (ν6+4018ν4+4780909ν2+1440612480)/330624 ( \nu^{6} + 4018\nu^{4} + 4780909\nu^{2} + 1440612480 ) / 330624 Copy content Toggle raw display
β6\beta_{6}== (381ν713312ν61613430ν553487616ν42152864077ν3+19177433333760)/8802533376 ( - 381 \nu^{7} - 13312 \nu^{6} - 1613430 \nu^{5} - 53487616 \nu^{4} - 2152864077 \nu^{3} + \cdots - 19177433333760 ) / 8802533376 Copy content Toggle raw display
β7\beta_{7}== (625ν76656ν62429518ν525066496ν42689763713ν3+5685276180480)/8802533376 ( - 625 \nu^{7} - 6656 \nu^{6} - 2429518 \nu^{5} - 25066496 \nu^{4} - 2689763713 \nu^{3} + \cdots - 5685276180480 ) / 8802533376 Copy content Toggle raw display
ν\nu== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ν2\nu^{2}== β5+2β4+3β33β21163 \beta_{5} + 2\beta_{4} + 3\beta_{3} - 3\beta_{2} - 1163 Copy content Toggle raw display
ν3\nu^{3}== (48β7144β672β524β41655β31655β217760β18904)/3 ( 48\beta_{7} - 144\beta_{6} - 72\beta_{5} - 24\beta_{4} - 1655\beta_{3} - 1655\beta_{2} - 17760\beta _1 - 8904 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== 2327β54654β410917β3+10917β2+1907581 -2327\beta_{5} - 4654\beta_{4} - 10917\beta_{3} + 10917\beta_{2} + 1907581 Copy content Toggle raw display
ν5\nu^{5}== (64464β7+358704β6+179352β5+32232β4+3087889β3++34452312)/3 ( - 64464 \beta_{7} + 358704 \beta_{6} + 179352 \beta_{5} + 32232 \beta_{4} + 3087889 \beta_{3} + \cdots + 34452312 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== 4899601β5+9137954β4+29521779β329521779β23545075771 4899601\beta_{5} + 9137954\beta_{4} + 29521779\beta_{3} - 29521779\beta_{2} - 3545075771 Copy content Toggle raw display
ν7\nu^{7}== (1760304β7774642960β6387321480β5880152β45992544039β3+95583443592)/3 ( 1760304 \beta_{7} - 774642960 \beta_{6} - 387321480 \beta_{5} - 880152 \beta_{4} - 5992544039 \beta_{3} + \cdots - 95583443592 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/208Z)×\left(\mathbb{Z}/208\mathbb{Z}\right)^\times.

nn 5353 7979 145145
χ(n)\chi(n) 11 11 1β1-1 - \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
81.1
41.0833i
23.0850i
18.4011i
45.7672i
41.0833i
23.0850i
18.4011i
45.7672i
0 −35.5792 61.6250i 0 523.489 0 −208.401 + 360.960i 0 −1438.26 + 2491.14i 0
81.2 0 −19.9922 34.6275i 0 −323.700 0 284.296 492.415i 0 294.123 509.436i 0
81.3 0 15.9358 + 27.6017i 0 −54.4265 0 −556.354 + 963.633i 0 585.599 1014.29i 0
81.4 0 39.6356 + 68.6509i 0 132.638 0 754.459 1306.76i 0 −2048.46 + 3548.04i 0
113.1 0 −35.5792 + 61.6250i 0 523.489 0 −208.401 360.960i 0 −1438.26 2491.14i 0
113.2 0 −19.9922 + 34.6275i 0 −323.700 0 284.296 + 492.415i 0 294.123 + 509.436i 0
113.3 0 15.9358 27.6017i 0 −54.4265 0 −556.354 963.633i 0 585.599 + 1014.29i 0
113.4 0 39.6356 68.6509i 0 132.638 0 754.459 + 1306.76i 0 −2048.46 3548.04i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 81.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.8.i.b 8
4.b odd 2 1 26.8.c.b 8
12.b even 2 1 234.8.h.b 8
13.c even 3 1 inner 208.8.i.b 8
52.i odd 6 1 338.8.a.j 4
52.j odd 6 1 26.8.c.b 8
52.j odd 6 1 338.8.a.i 4
52.l even 12 2 338.8.b.h 8
156.p even 6 1 234.8.h.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.8.c.b 8 4.b odd 2 1
26.8.c.b 8 52.j odd 6 1
208.8.i.b 8 1.a even 1 1 trivial
208.8.i.b 8 13.c even 3 1 inner
234.8.h.b 8 12.b even 2 1
234.8.h.b 8 156.p even 6 1
338.8.a.i 4 52.j odd 6 1
338.8.a.j 4 52.i odd 6 1
338.8.b.h 8 52.l even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38+6981T36+70848T35+41545881T34+247294944T33++51674244710400 T_{3}^{8} + 6981 T_{3}^{6} + 70848 T_{3}^{5} + 41545881 T_{3}^{4} + 247294944 T_{3}^{3} + \cdots + 51674244710400 acting on S8new(208,[χ])S_{8}^{\mathrm{new}}(208, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8++51674244710400 T^{8} + \cdots + 51674244710400 Copy content Toggle raw display
55 (T4278T3++1223288100)2 (T^{4} - 278 T^{3} + \cdots + 1223288100)^{2} Copy content Toggle raw display
77 T8++15 ⁣ ⁣00 T^{8} + \cdots + 15\!\cdots\!00 Copy content Toggle raw display
1111 T8++28 ⁣ ⁣36 T^{8} + \cdots + 28\!\cdots\!36 Copy content Toggle raw display
1313 T8++15 ⁣ ⁣21 T^{8} + \cdots + 15\!\cdots\!21 Copy content Toggle raw display
1717 T8++35 ⁣ ⁣41 T^{8} + \cdots + 35\!\cdots\!41 Copy content Toggle raw display
1919 T8++16 ⁣ ⁣00 T^{8} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
2323 T8++64 ⁣ ⁣36 T^{8} + \cdots + 64\!\cdots\!36 Copy content Toggle raw display
2929 T8++65 ⁣ ⁣69 T^{8} + \cdots + 65\!\cdots\!69 Copy content Toggle raw display
3131 (T4++10 ⁣ ⁣28)2 (T^{4} + \cdots + 10\!\cdots\!28)^{2} Copy content Toggle raw display
3737 T8++27 ⁣ ⁣41 T^{8} + \cdots + 27\!\cdots\!41 Copy content Toggle raw display
4141 T8++75 ⁣ ⁣25 T^{8} + \cdots + 75\!\cdots\!25 Copy content Toggle raw display
4343 T8++19 ⁣ ⁣96 T^{8} + \cdots + 19\!\cdots\!96 Copy content Toggle raw display
4747 (T4++87 ⁣ ⁣28)2 (T^{4} + \cdots + 87\!\cdots\!28)^{2} Copy content Toggle raw display
5353 (T4++10 ⁣ ⁣32)2 (T^{4} + \cdots + 10\!\cdots\!32)^{2} Copy content Toggle raw display
5959 T8++87 ⁣ ⁣64 T^{8} + \cdots + 87\!\cdots\!64 Copy content Toggle raw display
6161 T8++36 ⁣ ⁣25 T^{8} + \cdots + 36\!\cdots\!25 Copy content Toggle raw display
6767 T8++16 ⁣ ⁣96 T^{8} + \cdots + 16\!\cdots\!96 Copy content Toggle raw display
7171 T8++58 ⁣ ⁣44 T^{8} + \cdots + 58\!\cdots\!44 Copy content Toggle raw display
7373 (T4+21 ⁣ ⁣40)2 (T^{4} + \cdots - 21\!\cdots\!40)^{2} Copy content Toggle raw display
7979 (T4++46 ⁣ ⁣08)2 (T^{4} + \cdots + 46\!\cdots\!08)^{2} Copy content Toggle raw display
8383 (T4+67 ⁣ ⁣00)2 (T^{4} + \cdots - 67\!\cdots\!00)^{2} Copy content Toggle raw display
8989 T8++27 ⁣ ⁣36 T^{8} + \cdots + 27\!\cdots\!36 Copy content Toggle raw display
9797 T8++23 ⁣ ⁣84 T^{8} + \cdots + 23\!\cdots\!84 Copy content Toggle raw display
show more
show less