gp: [N,k,chi] = [208,8,Mod(81,208)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("208.81");
S:= CuspForms(chi, 8);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(208, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 8, names="a")
Newform invariants
sage: traces = [8,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 4654 x 6 + 7012369 x 4 + 3763719168 x 2 + 637953638400 x^{8} + 4654x^{6} + 7012369x^{4} + 3763719168x^{2} + 637953638400 x 8 + 4 6 5 4 x 6 + 7 0 1 2 3 6 9 x 4 + 3 7 6 3 7 1 9 1 6 8 x 2 + 6 3 7 9 5 3 6 3 8 4 0 0
x^8 + 4654*x^6 + 7012369*x^4 + 3763719168*x^2 + 637953638400
:
β 1 \beta_{1} β 1 = = =
( ν 7 + 4654 ν 5 + 6213649 ν 3 + 1905097728 ν − 3143761920 ) / 6287523840 ( \nu^{7} + 4654\nu^{5} + 6213649\nu^{3} + 1905097728\nu - 3143761920 ) / 6287523840 ( ν 7 + 4 6 5 4 ν 5 + 6 2 1 3 6 4 9 ν 3 + 1 9 0 5 0 9 7 7 2 8 ν − 3 1 4 3 7 6 1 9 2 0 ) / 6 2 8 7 5 2 3 8 4 0
(v^7 + 4654*v^5 + 6213649*v^3 + 1905097728*v - 3143761920) / 6287523840
β 2 \beta_{2} β 2 = = =
( ν 4 + 2327 ν 2 + 11808 ν + 798720 ) / 7872 ( \nu^{4} + 2327\nu^{2} + 11808\nu + 798720 ) / 7872 ( ν 4 + 2 3 2 7 ν 2 + 1 1 8 0 8 ν + 7 9 8 7 2 0 ) / 7 8 7 2
(v^4 + 2327*v^2 + 11808*v + 798720) / 7872
β 3 \beta_{3} β 3 = = =
( − ν 4 − 2327 ν 2 + 11808 ν − 798720 ) / 7872 ( -\nu^{4} - 2327\nu^{2} + 11808\nu - 798720 ) / 7872 ( − ν 4 − 2 3 2 7 ν 2 + 1 1 8 0 8 ν − 7 9 8 7 2 0 ) / 7 8 7 2
(-v^4 - 2327*v^2 + 11808*v - 798720) / 7872
β 4 \beta_{4} β 4 = = =
( − ν 6 − 3766 ν 4 − 3863881 ν 2 − 854819328 ) / 661248 ( -\nu^{6} - 3766\nu^{4} - 3863881\nu^{2} - 854819328 ) / 661248 ( − ν 6 − 3 7 6 6 ν 4 − 3 8 6 3 8 8 1 ν 2 − 8 5 4 8 1 9 3 2 8 ) / 6 6 1 2 4 8
(-v^6 - 3766*v^4 - 3863881*v^2 - 854819328) / 661248
β 5 \beta_{5} β 5 = = =
( ν 6 + 4018 ν 4 + 4780909 ν 2 + 1440612480 ) / 330624 ( \nu^{6} + 4018\nu^{4} + 4780909\nu^{2} + 1440612480 ) / 330624 ( ν 6 + 4 0 1 8 ν 4 + 4 7 8 0 9 0 9 ν 2 + 1 4 4 0 6 1 2 4 8 0 ) / 3 3 0 6 2 4
(v^6 + 4018*v^4 + 4780909*v^2 + 1440612480) / 330624
β 6 \beta_{6} β 6 = = =
( − 381 ν 7 − 13312 ν 6 − 1613430 ν 5 − 53487616 ν 4 − 2152864077 ν 3 + ⋯ − 19177433333760 ) / 8802533376 ( - 381 \nu^{7} - 13312 \nu^{6} - 1613430 \nu^{5} - 53487616 \nu^{4} - 2152864077 \nu^{3} + \cdots - 19177433333760 ) / 8802533376 ( − 3 8 1 ν 7 − 1 3 3 1 2 ν 6 − 1 6 1 3 4 3 0 ν 5 − 5 3 4 8 7 6 1 6 ν 4 − 2 1 5 2 8 6 4 0 7 7 ν 3 + ⋯ − 1 9 1 7 7 4 3 3 3 3 3 7 6 0 ) / 8 8 0 2 5 3 3 3 7 6
(-381*v^7 - 13312*v^6 - 1613430*v^5 - 53487616*v^4 - 2152864077*v^3 - 63643460608*v^2 - 864056577024*v - 19177433333760) / 8802533376
β 7 \beta_{7} β 7 = = =
( − 625 ν 7 − 6656 ν 6 − 2429518 ν 5 − 25066496 ν 4 − 2689763713 ν 3 + ⋯ − 5685276180480 ) / 8802533376 ( - 625 \nu^{7} - 6656 \nu^{6} - 2429518 \nu^{5} - 25066496 \nu^{4} - 2689763713 \nu^{3} + \cdots - 5685276180480 ) / 8802533376 ( − 6 2 5 ν 7 − 6 6 5 6 ν 6 − 2 4 2 9 5 1 8 ν 5 − 2 5 0 6 6 4 9 6 ν 4 − 2 6 8 9 7 6 3 7 1 3 ν 3 + ⋯ − 5 6 8 5 2 7 6 1 8 0 4 8 0 ) / 8 8 0 2 5 3 3 3 7 6
(-625*v^7 - 6656*v^6 - 2429518*v^5 - 25066496*v^4 - 2689763713*v^3 - 25717991936*v^2 - 694817061888*v - 5685276180480) / 8802533376
ν \nu ν = = =
( β 3 + β 2 ) / 3 ( \beta_{3} + \beta_{2} ) / 3 ( β 3 + β 2 ) / 3
(b3 + b2) / 3
ν 2 \nu^{2} ν 2 = = =
β 5 + 2 β 4 + 3 β 3 − 3 β 2 − 1163 \beta_{5} + 2\beta_{4} + 3\beta_{3} - 3\beta_{2} - 1163 β 5 + 2 β 4 + 3 β 3 − 3 β 2 − 1 1 6 3
b5 + 2*b4 + 3*b3 - 3*b2 - 1163
ν 3 \nu^{3} ν 3 = = =
( 48 β 7 − 144 β 6 − 72 β 5 − 24 β 4 − 1655 β 3 − 1655 β 2 − 17760 β 1 − 8904 ) / 3 ( 48\beta_{7} - 144\beta_{6} - 72\beta_{5} - 24\beta_{4} - 1655\beta_{3} - 1655\beta_{2} - 17760\beta _1 - 8904 ) / 3 ( 4 8 β 7 − 1 4 4 β 6 − 7 2 β 5 − 2 4 β 4 − 1 6 5 5 β 3 − 1 6 5 5 β 2 − 1 7 7 6 0 β 1 − 8 9 0 4 ) / 3
(48*b7 - 144*b6 - 72*b5 - 24*b4 - 1655*b3 - 1655*b2 - 17760*b1 - 8904) / 3
ν 4 \nu^{4} ν 4 = = =
− 2327 β 5 − 4654 β 4 − 10917 β 3 + 10917 β 2 + 1907581 -2327\beta_{5} - 4654\beta_{4} - 10917\beta_{3} + 10917\beta_{2} + 1907581 − 2 3 2 7 β 5 − 4 6 5 4 β 4 − 1 0 9 1 7 β 3 + 1 0 9 1 7 β 2 + 1 9 0 7 5 8 1
-2327*b5 - 4654*b4 - 10917*b3 + 10917*b2 + 1907581
ν 5 \nu^{5} ν 5 = = =
( − 64464 β 7 + 358704 β 6 + 179352 β 5 + 32232 β 4 + 3087889 β 3 + ⋯ + 34452312 ) / 3 ( - 64464 \beta_{7} + 358704 \beta_{6} + 179352 \beta_{5} + 32232 \beta_{4} + 3087889 \beta_{3} + \cdots + 34452312 ) / 3 ( − 6 4 4 6 4 β 7 + 3 5 8 7 0 4 β 6 + 1 7 9 3 5 2 β 5 + 3 2 2 3 2 β 4 + 3 0 8 7 8 8 9 β 3 + ⋯ + 3 4 4 5 2 3 1 2 ) / 3
(-64464*b7 + 358704*b6 + 179352*b5 + 32232*b4 + 3087889*b3 + 3087889*b2 + 68840160*b1 + 34452312) / 3
ν 6 \nu^{6} ν 6 = = =
4899601 β 5 + 9137954 β 4 + 29521779 β 3 − 29521779 β 2 − 3545075771 4899601\beta_{5} + 9137954\beta_{4} + 29521779\beta_{3} - 29521779\beta_{2} - 3545075771 4 8 9 9 6 0 1 β 5 + 9 1 3 7 9 5 4 β 4 + 2 9 5 2 1 7 7 9 β 3 − 2 9 5 2 1 7 7 9 β 2 − 3 5 4 5 0 7 5 7 7 1
4899601*b5 + 9137954*b4 + 29521779*b3 - 29521779*b2 - 3545075771
ν 7 \nu^{7} ν 7 = = =
( 1760304 β 7 − 774642960 β 6 − 387321480 β 5 − 880152 β 4 − 5992544039 β 3 + ⋯ − 95583443592 ) / 3 ( 1760304 \beta_{7} - 774642960 \beta_{6} - 387321480 \beta_{5} - 880152 \beta_{4} - 5992544039 \beta_{3} + \cdots - 95583443592 ) / 3 ( 1 7 6 0 3 0 4 β 7 − 7 7 4 6 4 2 9 6 0 β 6 − 3 8 7 3 2 1 4 8 0 β 5 − 8 8 0 1 5 2 β 4 − 5 9 9 2 5 4 4 0 3 9 β 3 + ⋯ − 9 5 5 8 3 4 4 3 5 9 2 ) / 3
(1760304*b7 - 774642960*b6 - 387321480*b5 - 880152*b4 - 5992544039*b3 - 5992544039*b2 - 191165126880*b1 - 95583443592) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 208 Z ) × \left(\mathbb{Z}/208\mathbb{Z}\right)^\times ( Z / 2 0 8 Z ) × .
n n n
53 53 5 3
79 79 7 9
145 145 1 4 5
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 − β 1 -1 - \beta_{1} − 1 − β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 8 + 6981 T 3 6 + 70848 T 3 5 + 41545881 T 3 4 + 247294944 T 3 3 + ⋯ + 51674244710400 T_{3}^{8} + 6981 T_{3}^{6} + 70848 T_{3}^{5} + 41545881 T_{3}^{4} + 247294944 T_{3}^{3} + \cdots + 51674244710400 T 3 8 + 6 9 8 1 T 3 6 + 7 0 8 4 8 T 3 5 + 4 1 5 4 5 8 8 1 T 3 4 + 2 4 7 2 9 4 9 4 4 T 3 3 + ⋯ + 5 1 6 7 4 2 4 4 7 1 0 4 0 0
T3^8 + 6981*T3^6 + 70848*T3^5 + 41545881*T3^4 + 247294944*T3^3 + 51437638656*T3^2 - 254644715520*T3 + 51674244710400
acting on S 8 n e w ( 208 , [ χ ] ) S_{8}^{\mathrm{new}}(208, [\chi]) S 8 n e w ( 2 0 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 + ⋯ + 51674244710400 T^{8} + \cdots + 51674244710400 T 8 + ⋯ + 5 1 6 7 4 2 4 4 7 1 0 4 0 0
T^8 + 6981*T^6 + 70848*T^5 + 41545881*T^4 + 247294944*T^3 + 51437638656*T^2 - 254644715520*T + 51674244710400
5 5 5
( T 4 − 278 T 3 + ⋯ + 1223288100 ) 2 (T^{4} - 278 T^{3} + \cdots + 1223288100)^{2} ( T 4 − 2 7 8 T 3 + ⋯ + 1 2 2 3 2 8 8 1 0 0 ) 2
(T^4 - 278*T^3 - 161047*T^2 + 14695460*T + 1223288100)^2
7 7 7
T 8 + ⋯ + 15 ⋯ 00 T^{8} + \cdots + 15\!\cdots\!00 T 8 + ⋯ + 1 5 ⋯ 0 0
T^8 - 548*T^7 + 2156137*T^6 + 319494836*T^5 + 3237329872481*T^4 - 211123021512232*T^3 + 860066248350044656*T^2 + 138768546778303239040*T + 158325765218468072761600
11 11 1 1
T 8 + ⋯ + 28 ⋯ 36 T^{8} + \cdots + 28\!\cdots\!36 T 8 + ⋯ + 2 8 ⋯ 3 6
T^8 - 7392*T^7 + 62932989*T^6 - 78525632848*T^5 + 568481585289177*T^4 - 327985988938363896*T^3 + 5028193702711645222576*T^2 + 1189904953869188863522944*T + 289718572183543401616763136
13 13 1 3
T 8 + ⋯ + 15 ⋯ 21 T^{8} + \cdots + 15\!\cdots\!21 T 8 + ⋯ + 1 5 ⋯ 2 1
T^8 + 25818*T^7 + 185875157*T^6 - 1047340073598*T^5 - 22126099927900332*T^4 - 65719036412945354166*T^3 + 731860453859947897663373*T^2 + 6378712011618342238842534834*T + 15502932802662396215269535105521
17 17 1 7
T 8 + ⋯ + 35 ⋯ 41 T^{8} + \cdots + 35\!\cdots\!41 T 8 + ⋯ + 3 5 ⋯ 4 1
T^8 - 28316*T^7 + 1078243090*T^6 - 15895635746160*T^5 + 471949877835194859*T^4 - 6657207621240828792240*T^3 + 124211422567724610113670690*T^2 - 707545199659030399323269594892*T + 3558035464367798342122742985068241
19 19 1 9
T 8 + ⋯ + 16 ⋯ 00 T^{8} + \cdots + 16\!\cdots\!00 T 8 + ⋯ + 1 6 ⋯ 0 0
T^8 - 99888*T^7 + 7250713021*T^6 - 261328995333264*T^5 + 7288847798040542089*T^4 - 95987931561779228317440*T^3 + 1135018443939417221780275200*T^2 + 2238885291021401206290382848000*T + 164045161547528157672364163727360000
23 23 2 3
T 8 + ⋯ + 64 ⋯ 36 T^{8} + \cdots + 64\!\cdots\!36 T 8 + ⋯ + 6 4 ⋯ 3 6
T^8 - 33388*T^7 + 10236952809*T^6 + 159710576592476*T^5 + 77613398281348763617*T^4 - 125226526030359404738136*T^3 + 78400204944968287492111605744*T^2 + 580846048198212062593122155607168*T + 64309871131446688207363756530370734336
29 29 2 9
T 8 + ⋯ + 65 ⋯ 69 T^{8} + \cdots + 65\!\cdots\!69 T 8 + ⋯ + 6 5 ⋯ 6 9
T^8 - 93140*T^7 + 43374042618*T^6 - 969579806575952*T^5 + 1144723374331555433251*T^4 - 25399464109529801521510608*T^3 + 13259788377638956954650862496730*T^2 + 535594192967444187048699404113630668*T + 65003200660687042770801404063272778588769
31 31 3 1
( T 4 + ⋯ + 10 ⋯ 28 ) 2 (T^{4} + \cdots + 10\!\cdots\!28)^{2} ( T 4 + ⋯ + 1 0 ⋯ 2 8 ) 2
(T^4 + 311160*T^3 + 30594196816*T^2 + 1097320177155840*T + 10826670521778761728)^2
37 37 3 7
T 8 + ⋯ + 27 ⋯ 41 T^{8} + \cdots + 27\!\cdots\!41 T 8 + ⋯ + 2 7 ⋯ 4 1
T^8 + 9636*T^7 + 19228073602*T^6 + 1548068841312144*T^5 + 376157108499825237595*T^4 + 16607327979063290582831568*T^3 + 718711680089182958408540315826*T^2 + 1432264137263755387936951314313620*T + 2733895335933976510046271689274569841
41 41 4 1
T 8 + ⋯ + 75 ⋯ 25 T^{8} + \cdots + 75\!\cdots\!25 T 8 + ⋯ + 7 5 ⋯ 2 5
T^8 - 82892*T^7 + 232961431666*T^6 + 113796669231252432*T^5 + 49927070317433470007211*T^4 + 10289686280641753115256851088*T^3 + 1637165639330274375321766728780546*T^2 + 130696622041941468773435561398782702660*T + 7561943203197074537489195988511840509606225
43 43 4 3
T 8 + ⋯ + 19 ⋯ 96 T^{8} + \cdots + 19\!\cdots\!96 T 8 + ⋯ + 1 9 ⋯ 9 6
T^8 - 569264*T^7 + 735698842285*T^6 + 52919195313466064*T^5 + 225519303521393777280809*T^4 - 42391257972164263207504526416*T^3 + 6400408590045697263188829843309760*T^2 - 402605015916881904039238050202142618624*T + 19701102333213644863231498946682342381162496
47 47 4 7
( T 4 + ⋯ + 87 ⋯ 28 ) 2 (T^{4} + \cdots + 87\!\cdots\!28)^{2} ( T 4 + ⋯ + 8 7 ⋯ 2 8 ) 2
(T^4 - 574200*T^3 - 844716634752*T^2 + 32382746130692608*T + 87928744118119307440128)^2
53 53 5 3
( T 4 + ⋯ + 10 ⋯ 32 ) 2 (T^{4} + \cdots + 10\!\cdots\!32)^{2} ( T 4 + ⋯ + 1 0 ⋯ 3 2 ) 2
(T^4 - 1235350*T^3 - 2014607986887*T^2 + 1044554447397292020*T + 1027560028805596539292932)^2
59 59 5 9
T 8 + ⋯ + 87 ⋯ 64 T^{8} + \cdots + 87\!\cdots\!64 T 8 + ⋯ + 8 7 ⋯ 6 4
T^8 + 231504*T^7 + 7597791408645*T^6 + 359542756215697312*T^5 + 47793769676097195773088489*T^4 + 3608211321932185893108277203192*T^3 + 71759696081831917944482010513469406128*T^2 - 9861520003246435283107926711164459698960512*T + 87701789508868790849890781704611581002030482372864
61 61 6 1
T 8 + ⋯ + 36 ⋯ 25 T^{8} + \cdots + 36\!\cdots\!25 T 8 + ⋯ + 3 6 ⋯ 2 5
T^8 - 685684*T^7 + 16004686569946*T^6 - 663215582530386128*T^5 + 185007533930035418015046851*T^4 - 5339524497872409731708342680400*T^3 + 967079286407722895740824102323102027386*T^2 + 340542486604250733547282246558674783745983980*T + 3623216091429469756993710089825762360360738102037025
67 67 6 7
T 8 + ⋯ + 16 ⋯ 96 T^{8} + \cdots + 16\!\cdots\!96 T 8 + ⋯ + 1 6 ⋯ 9 6
T^8 + 3271056*T^7 + 9553010570525*T^6 + 4395372866213511168*T^5 + 2497853273225562255871641*T^4 + 475942201922976695644610785032*T^3 + 251902487463420538223238696946543280*T^2 + 41613576360052208791788750678393093032064*T + 16694539374784568280884947109698169235351152896
71 71 7 1
T 8 + ⋯ + 58 ⋯ 44 T^{8} + \cdots + 58\!\cdots\!44 T 8 + ⋯ + 5 8 ⋯ 4 4
T^8 - 175012*T^7 + 13973691446129*T^6 + 7875067743687289028*T^5 + 169812617491174461712132289*T^4 + 46332180563017313624021995519952*T^3 + 343702031533338486151493254738715586496*T^2 - 65546596876993426569462545159855567506455552*T + 581812223106410907691766688329197219788422663737344
73 73 7 3
( T 4 + ⋯ − 21 ⋯ 40 ) 2 (T^{4} + \cdots - 21\!\cdots\!40)^{2} ( T 4 + ⋯ − 2 1 ⋯ 4 0 ) 2
(T^4 - 7137890*T^3 + 4799979816117*T^2 + 19843813129426634812*T - 21425675574457987689091340)^2
79 79 7 9
( T 4 + ⋯ + 46 ⋯ 08 ) 2 (T^{4} + \cdots + 46\!\cdots\!08)^{2} ( T 4 + ⋯ + 4 6 ⋯ 0 8 ) 2
(T^4 - 7053952*T^3 - 13799242194096*T^2 + 37946078389247195264*T + 46714127885196996709854208)^2
83 83 8 3
( T 4 + ⋯ − 67 ⋯ 00 ) 2 (T^{4} + \cdots - 67\!\cdots\!00)^{2} ( T 4 + ⋯ − 6 7 ⋯ 0 0 ) 2
(T^4 + 657288*T^3 - 49816293137712*T^2 - 137212918633157971968*T - 67989302689771818477158400)^2
89 89 8 9
T 8 + ⋯ + 27 ⋯ 36 T^{8} + \cdots + 27\!\cdots\!36 T 8 + ⋯ + 2 7 ⋯ 3 6
T^8 + 11452234*T^7 + 222249857584831*T^6 + 2171721746555680989978*T^5 + 31970404566976634600903240157*T^4 + 266972101357429830920320530999000108*T^3 + 2104619989938381319903415088848018649615996*T^2 + 8459496441489961211601189016704534515624143585584*T + 27694489378061763203718104687863217999337817318695787536
97 97 9 7
T 8 + ⋯ + 23 ⋯ 84 T^{8} + \cdots + 23\!\cdots\!84 T 8 + ⋯ + 2 3 ⋯ 8 4
T^8 + 428002*T^7 + 60409957633639*T^6 - 173561362696051528798*T^5 + 3590795337732551647712597069*T^4 - 4454427585336664692993122205531652*T^3 + 5751704764977783854914776543543870056476*T^2 + 357841315230280593009078599905355196007927792*T + 23452278293784348272783849182345652164529282362384
show more
show less