Properties

Label 338.8.a.j
Level $338$
Weight $8$
Character orbit 338.a
Self dual yes
Analytic conductor $105.586$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6981x^{2} - 35424x + 7188480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + \beta_1 q^{3} + 64 q^{4} + ( - \beta_{3} + \beta_1 - 70) q^{5} + 8 \beta_1 q^{6} + ( - 2 \beta_{2} - 7 \beta_1 - 136) q^{7} + 512 q^{8} + (6 \beta_{3} + 3 \beta_{2} + \cdots + 1305) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 8 q^{2} + \beta_1 q^{3} + 64 q^{4} + ( - \beta_{3} + \beta_1 - 70) q^{5} + 8 \beta_1 q^{6} + ( - 2 \beta_{2} - 7 \beta_1 - 136) q^{7} + 512 q^{8} + (6 \beta_{3} + 3 \beta_{2} + \cdots + 1305) q^{9}+ \cdots + ( - 7152 \beta_{3} - 1020 \beta_{2} + \cdots + 2586348) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} + 256 q^{4} - 278 q^{5} - 548 q^{7} + 2048 q^{8} + 5214 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 32 q^{2} + 256 q^{4} - 278 q^{5} - 548 q^{7} + 2048 q^{8} + 5214 q^{9} - 2224 q^{10} - 7392 q^{11} - 4384 q^{14} + 15528 q^{15} + 16384 q^{16} - 28316 q^{17} + 41712 q^{18} - 99888 q^{19} - 17792 q^{20} - 91074 q^{21} - 59136 q^{22} + 33388 q^{23} + 86878 q^{25} + 106272 q^{27} - 35072 q^{28} - 93140 q^{29} + 124224 q^{30} - 311160 q^{31} + 131072 q^{32} + 238638 q^{33} - 226528 q^{34} - 141544 q^{35} + 333696 q^{36} - 9636 q^{37} - 799104 q^{38} - 142336 q^{40} + 82892 q^{41} - 728592 q^{42} + 569264 q^{43} - 473088 q^{44} - 2303394 q^{45} + 267104 q^{46} + 574200 q^{47} + 717798 q^{49} + 695024 q^{50} - 2729928 q^{51} + 1235350 q^{53} + 850176 q^{54} + 1092512 q^{55} - 280576 q^{56} - 3528462 q^{57} - 745120 q^{58} + 231504 q^{59} + 993792 q^{60} - 685684 q^{61} - 2489280 q^{62} - 5951712 q^{63} + 1048576 q^{64} + 1909104 q^{66} + 3271056 q^{67} - 1812224 q^{68} - 5600034 q^{69} - 1132352 q^{70} - 175012 q^{71} + 2669568 q^{72} - 7137890 q^{73} - 77088 q^{74} - 22200960 q^{75} - 6392832 q^{76} - 13915206 q^{77} - 7053952 q^{79} - 1138688 q^{80} - 3758004 q^{81} + 663136 q^{82} - 657288 q^{83} - 5828736 q^{84} + 11814998 q^{85} + 4554112 q^{86} + 7182900 q^{87} - 3784704 q^{88} - 11452234 q^{89} - 18427152 q^{90} + 2136832 q^{92} + 2984688 q^{93} + 4593600 q^{94} + 23334088 q^{95} - 428002 q^{97} + 5742384 q^{98} + 10357656 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6981x^{2} - 35424x + 7188480 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 12\nu^{2} - 5073\nu - 68328 ) / 252 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 72\nu^{2} + 4317\nu - 225000 ) / 504 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 6\beta_{3} + 3\beta_{2} + 9\beta _1 + 3492 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -72\beta_{3} + 216\beta_{2} + 4965\beta _1 + 26424 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−71.1584
−39.9844
31.8716
79.2712
8.00000 −71.1584 64.0000 −523.489 −569.267 416.801 512.000 2876.52 −4187.91
1.2 8.00000 −39.9844 64.0000 323.700 −319.875 −568.591 512.000 −588.246 2589.60
1.3 8.00000 31.8716 64.0000 54.4265 254.973 1112.71 512.000 −1171.20 435.412
1.4 8.00000 79.2712 64.0000 −132.638 634.170 −1508.92 512.000 4096.92 −1061.10
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.j 4
13.b even 2 1 338.8.a.i 4
13.d odd 4 2 338.8.b.h 8
13.e even 6 2 26.8.c.b 8
39.h odd 6 2 234.8.h.b 8
52.i odd 6 2 208.8.i.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.8.c.b 8 13.e even 6 2
208.8.i.b 8 52.i odd 6 2
234.8.h.b 8 39.h odd 6 2
338.8.a.i 4 13.b even 2 1
338.8.a.j 4 1.a even 1 1 trivial
338.8.b.h 8 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{4} - 6981T_{3}^{2} - 35424T_{3} + 7188480 \) Copy content Toggle raw display
\( T_{5}^{4} + 278T_{5}^{3} - 161047T_{5}^{2} - 14695460T_{5} + 1223288100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 6981 T^{2} + \cdots + 7188480 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 1223288100 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 397901702960 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 17021121355056 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 59\!\cdots\!71 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 40\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 80\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 25\!\cdots\!13 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 10\!\cdots\!28 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 16\!\cdots\!79 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 27\!\cdots\!15 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 44\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 87\!\cdots\!28 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 10\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 93\!\cdots\!08 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 60\!\cdots\!45 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 12\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 24\!\cdots\!88 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 21\!\cdots\!40 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 46\!\cdots\!08 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 67\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 52\!\cdots\!56 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 48\!\cdots\!28 \) Copy content Toggle raw display
show more
show less