Properties

Label 338.4.c.l.191.3
Level $338$
Weight $4$
Character 338.191
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,12,-12,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.3
Root \(0.222521 - 0.385418i\) of defining polynomial
Character \(\chi\) \(=\) 338.191
Dual form 338.4.c.l.315.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(4.37047 - 7.56988i) q^{3} +(-2.00000 - 3.46410i) q^{4} +14.1685 q^{5} +(-8.74094 - 15.1398i) q^{6} +(14.3252 + 24.8120i) q^{7} -8.00000 q^{8} +(-24.7020 - 42.7851i) q^{9} +(14.1685 - 24.5406i) q^{10} +(4.74674 - 8.22160i) q^{11} -34.9638 q^{12} +57.3008 q^{14} +(61.9231 - 107.254i) q^{15} +(-8.00000 + 13.8564i) q^{16} +(-15.3052 - 26.5094i) q^{17} -98.8080 q^{18} +(-76.9300 - 133.247i) q^{19} +(-28.3370 - 49.0812i) q^{20} +250.431 q^{21} +(-9.49349 - 16.4432i) q^{22} +(18.0015 - 31.1795i) q^{23} +(-34.9638 + 60.5590i) q^{24} +75.7470 q^{25} -195.832 q^{27} +(57.3008 - 99.2479i) q^{28} +(24.6283 - 42.6575i) q^{29} +(-123.846 - 214.508i) q^{30} +166.984 q^{31} +(16.0000 + 27.7128i) q^{32} +(-41.4910 - 71.8645i) q^{33} -61.2209 q^{34} +(202.967 + 351.549i) q^{35} +(-98.8080 + 171.141i) q^{36} +(11.9404 - 20.6814i) q^{37} -307.720 q^{38} -113.348 q^{40} +(-62.7371 + 108.664i) q^{41} +(250.431 - 433.760i) q^{42} +(217.387 + 376.526i) q^{43} -37.9739 q^{44} +(-349.991 - 606.202i) q^{45} +(-36.0030 - 62.3591i) q^{46} -186.017 q^{47} +(69.9275 + 121.118i) q^{48} +(-238.923 + 413.826i) q^{49} +(75.7470 - 131.198i) q^{50} -267.564 q^{51} -400.631 q^{53} +(-195.832 + 339.191i) q^{54} +(67.2543 - 116.488i) q^{55} +(-114.602 - 198.496i) q^{56} -1344.88 q^{57} +(-49.2567 - 85.3151i) q^{58} +(204.104 + 353.518i) q^{59} -495.385 q^{60} +(301.881 + 522.873i) q^{61} +(166.984 - 289.225i) q^{62} +(707.722 - 1225.81i) q^{63} +64.0000 q^{64} -165.964 q^{66} +(143.774 - 249.024i) q^{67} +(-61.2209 + 106.038i) q^{68} +(-157.350 - 272.538i) q^{69} +811.868 q^{70} +(480.901 + 832.946i) q^{71} +(197.616 + 342.281i) q^{72} +963.198 q^{73} +(-23.8808 - 41.3627i) q^{74} +(331.050 - 573.396i) q^{75} +(-307.720 + 532.986i) q^{76} +271.992 q^{77} -1043.18 q^{79} +(-113.348 + 196.325i) q^{80} +(-188.924 + 327.226i) q^{81} +(125.474 + 217.328i) q^{82} +313.304 q^{83} +(-500.863 - 867.520i) q^{84} +(-216.852 - 375.599i) q^{85} +869.549 q^{86} +(-215.275 - 372.867i) q^{87} +(-37.9739 + 65.7728i) q^{88} +(-337.877 + 585.220i) q^{89} -1399.96 q^{90} -144.012 q^{92} +(729.799 - 1264.05i) q^{93} +(-186.017 + 322.191i) q^{94} +(-1089.98 - 1887.91i) q^{95} +279.710 q^{96} +(136.217 + 235.935i) q^{97} +(477.845 + 827.653i) q^{98} -469.016 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 12 q^{3} - 12 q^{4} + 24 q^{5} - 24 q^{6} + 27 q^{7} - 48 q^{8} - 9 q^{9} + 24 q^{10} - 82 q^{11} - 96 q^{12} + 108 q^{14} + 90 q^{15} - 48 q^{16} + 90 q^{17} - 36 q^{18} - 130 q^{19} - 48 q^{20}+ \cdots - 4114 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 4.37047 7.56988i 0.841097 1.45682i −0.0478706 0.998854i \(-0.515244\pi\)
0.888968 0.457970i \(-0.151423\pi\)
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 14.1685 1.26727 0.633636 0.773632i \(-0.281562\pi\)
0.633636 + 0.773632i \(0.281562\pi\)
\(6\) −8.74094 15.1398i −0.594746 1.03013i
\(7\) 14.3252 + 24.8120i 0.773488 + 1.33972i 0.935640 + 0.352955i \(0.114823\pi\)
−0.162152 + 0.986766i \(0.551844\pi\)
\(8\) −8.00000 −0.353553
\(9\) −24.7020 42.7851i −0.914889 1.58463i
\(10\) 14.1685 24.5406i 0.448048 0.776042i
\(11\) 4.74674 8.22160i 0.130109 0.225355i −0.793610 0.608427i \(-0.791801\pi\)
0.923718 + 0.383072i \(0.125134\pi\)
\(12\) −34.9638 −0.841097
\(13\) 0 0
\(14\) 57.3008 1.09388
\(15\) 61.9231 107.254i 1.06590 1.84619i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −15.3052 26.5094i −0.218356 0.378205i 0.735949 0.677037i \(-0.236736\pi\)
−0.954306 + 0.298832i \(0.903403\pi\)
\(18\) −98.8080 −1.29385
\(19\) −76.9300 133.247i −0.928892 1.60889i −0.785180 0.619268i \(-0.787429\pi\)
−0.143712 0.989620i \(-0.545904\pi\)
\(20\) −28.3370 49.0812i −0.316818 0.548745i
\(21\) 250.431 2.60231
\(22\) −9.49349 16.4432i −0.0920008 0.159350i
\(23\) 18.0015 31.1795i 0.163199 0.282669i −0.772815 0.634631i \(-0.781152\pi\)
0.936014 + 0.351962i \(0.114485\pi\)
\(24\) −34.9638 + 60.5590i −0.297373 + 0.515065i
\(25\) 75.7470 0.605976
\(26\) 0 0
\(27\) −195.832 −1.39585
\(28\) 57.3008 99.2479i 0.386744 0.669860i
\(29\) 24.6283 42.6575i 0.157702 0.273148i −0.776337 0.630318i \(-0.782925\pi\)
0.934040 + 0.357169i \(0.116258\pi\)
\(30\) −123.846 214.508i −0.753704 1.30545i
\(31\) 166.984 0.967459 0.483730 0.875217i \(-0.339282\pi\)
0.483730 + 0.875217i \(0.339282\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) −41.4910 71.8645i −0.218868 0.379091i
\(34\) −61.2209 −0.308803
\(35\) 202.967 + 351.549i 0.980219 + 1.69779i
\(36\) −98.8080 + 171.141i −0.457445 + 0.792317i
\(37\) 11.9404 20.6814i 0.0530537 0.0918917i −0.838279 0.545242i \(-0.816438\pi\)
0.891333 + 0.453350i \(0.149771\pi\)
\(38\) −307.720 −1.31365
\(39\) 0 0
\(40\) −113.348 −0.448048
\(41\) −62.7371 + 108.664i −0.238973 + 0.413913i −0.960420 0.278557i \(-0.910144\pi\)
0.721447 + 0.692470i \(0.243477\pi\)
\(42\) 250.431 433.760i 0.920057 1.59359i
\(43\) 217.387 + 376.526i 0.770959 + 1.33534i 0.937038 + 0.349227i \(0.113556\pi\)
−0.166079 + 0.986112i \(0.553111\pi\)
\(44\) −37.9739 −0.130109
\(45\) −349.991 606.202i −1.15941 2.00816i
\(46\) −36.0030 62.3591i −0.115399 0.199877i
\(47\) −186.017 −0.577306 −0.288653 0.957434i \(-0.593207\pi\)
−0.288653 + 0.957434i \(0.593207\pi\)
\(48\) 69.9275 + 121.118i 0.210274 + 0.364206i
\(49\) −238.923 + 413.826i −0.696568 + 1.20649i
\(50\) 75.7470 131.198i 0.214245 0.371083i
\(51\) −267.564 −0.734636
\(52\) 0 0
\(53\) −400.631 −1.03832 −0.519159 0.854678i \(-0.673755\pi\)
−0.519159 + 0.854678i \(0.673755\pi\)
\(54\) −195.832 + 339.191i −0.493507 + 0.854779i
\(55\) 67.2543 116.488i 0.164883 0.285586i
\(56\) −114.602 198.496i −0.273469 0.473663i
\(57\) −1344.88 −3.12515
\(58\) −49.2567 85.3151i −0.111512 0.193145i
\(59\) 204.104 + 353.518i 0.450374 + 0.780070i 0.998409 0.0563849i \(-0.0179574\pi\)
−0.548035 + 0.836455i \(0.684624\pi\)
\(60\) −495.385 −1.06590
\(61\) 301.881 + 522.873i 0.633638 + 1.09749i 0.986802 + 0.161931i \(0.0517722\pi\)
−0.353165 + 0.935561i \(0.614894\pi\)
\(62\) 166.984 289.225i 0.342048 0.592445i
\(63\) 707.722 1225.81i 1.41531 2.45139i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −165.964 −0.309527
\(67\) 143.774 249.024i 0.262161 0.454076i −0.704655 0.709550i \(-0.748898\pi\)
0.966816 + 0.255474i \(0.0822316\pi\)
\(68\) −61.2209 + 106.038i −0.109178 + 0.189102i
\(69\) −157.350 272.538i −0.274532 0.475504i
\(70\) 811.868 1.38624
\(71\) 480.901 + 832.946i 0.803838 + 1.39229i 0.917073 + 0.398720i \(0.130545\pi\)
−0.113235 + 0.993568i \(0.536121\pi\)
\(72\) 197.616 + 342.281i 0.323462 + 0.560253i
\(73\) 963.198 1.54430 0.772149 0.635441i \(-0.219182\pi\)
0.772149 + 0.635441i \(0.219182\pi\)
\(74\) −23.8808 41.3627i −0.0375146 0.0649773i
\(75\) 331.050 573.396i 0.509685 0.882800i
\(76\) −307.720 + 532.986i −0.464446 + 0.804444i
\(77\) 271.992 0.402550
\(78\) 0 0
\(79\) −1043.18 −1.48566 −0.742828 0.669482i \(-0.766516\pi\)
−0.742828 + 0.669482i \(0.766516\pi\)
\(80\) −113.348 + 196.325i −0.158409 + 0.274372i
\(81\) −188.924 + 327.226i −0.259155 + 0.448870i
\(82\) 125.474 + 217.328i 0.168979 + 0.292681i
\(83\) 313.304 0.414332 0.207166 0.978306i \(-0.433576\pi\)
0.207166 + 0.978306i \(0.433576\pi\)
\(84\) −500.863 867.520i −0.650579 1.12684i
\(85\) −216.852 375.599i −0.276717 0.479288i
\(86\) 869.549 1.09030
\(87\) −215.275 372.867i −0.265286 0.459489i
\(88\) −37.9739 + 65.7728i −0.0460004 + 0.0796750i
\(89\) −337.877 + 585.220i −0.402414 + 0.697002i −0.994017 0.109228i \(-0.965162\pi\)
0.591602 + 0.806230i \(0.298496\pi\)
\(90\) −1399.96 −1.63966
\(91\) 0 0
\(92\) −144.012 −0.163199
\(93\) 729.799 1264.05i 0.813727 1.40942i
\(94\) −186.017 + 322.191i −0.204108 + 0.353526i
\(95\) −1089.98 1887.91i −1.17716 2.03890i
\(96\) 279.710 0.297373
\(97\) 136.217 + 235.935i 0.142585 + 0.246965i 0.928469 0.371409i \(-0.121125\pi\)
−0.785884 + 0.618374i \(0.787792\pi\)
\(98\) 477.845 + 827.653i 0.492548 + 0.853118i
\(99\) −469.016 −0.476140
\(100\) −151.494 262.395i −0.151494 0.262395i
\(101\) 330.780 572.928i 0.325880 0.564441i −0.655810 0.754926i \(-0.727673\pi\)
0.981690 + 0.190485i \(0.0610061\pi\)
\(102\) −267.564 + 463.434i −0.259733 + 0.449871i
\(103\) −315.353 −0.301676 −0.150838 0.988558i \(-0.548197\pi\)
−0.150838 + 0.988558i \(0.548197\pi\)
\(104\) 0 0
\(105\) 3548.24 3.29784
\(106\) −400.631 + 693.913i −0.367101 + 0.635838i
\(107\) −1060.66 + 1837.12i −0.958299 + 1.65982i −0.231666 + 0.972795i \(0.574418\pi\)
−0.726632 + 0.687026i \(0.758916\pi\)
\(108\) 391.664 + 678.382i 0.348962 + 0.604420i
\(109\) 884.432 0.777185 0.388593 0.921410i \(-0.372961\pi\)
0.388593 + 0.921410i \(0.372961\pi\)
\(110\) −134.509 232.976i −0.116590 0.201940i
\(111\) −104.370 180.774i −0.0892467 0.154580i
\(112\) −458.406 −0.386744
\(113\) 66.1023 + 114.493i 0.0550299 + 0.0953146i 0.892228 0.451585i \(-0.149141\pi\)
−0.837198 + 0.546900i \(0.815808\pi\)
\(114\) −1344.88 + 2329.40i −1.10491 + 1.91376i
\(115\) 255.055 441.768i 0.206817 0.358218i
\(116\) −197.027 −0.157702
\(117\) 0 0
\(118\) 816.415 0.636925
\(119\) 438.501 759.505i 0.337792 0.585073i
\(120\) −495.385 + 858.032i −0.376852 + 0.652727i
\(121\) 620.437 + 1074.63i 0.466143 + 0.807384i
\(122\) 1207.52 0.896099
\(123\) 548.381 + 949.824i 0.401999 + 0.696282i
\(124\) −333.968 578.450i −0.241865 0.418922i
\(125\) −697.842 −0.499335
\(126\) −1415.44 2451.62i −1.00078 1.73340i
\(127\) 936.404 1621.90i 0.654271 1.13323i −0.327805 0.944745i \(-0.606309\pi\)
0.982076 0.188485i \(-0.0603577\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 3800.34 2.59381
\(130\) 0 0
\(131\) −1850.21 −1.23400 −0.617000 0.786963i \(-0.711652\pi\)
−0.617000 + 0.786963i \(0.711652\pi\)
\(132\) −165.964 + 287.458i −0.109434 + 0.189546i
\(133\) 2204.07 3817.57i 1.43697 2.48891i
\(134\) −287.548 498.047i −0.185376 0.321080i
\(135\) −2774.65 −1.76892
\(136\) 122.442 + 212.075i 0.0772007 + 0.133715i
\(137\) −483.687 837.771i −0.301637 0.522450i 0.674870 0.737936i \(-0.264200\pi\)
−0.976507 + 0.215487i \(0.930866\pi\)
\(138\) −629.401 −0.388247
\(139\) 51.7985 + 89.7176i 0.0316078 + 0.0547464i 0.881397 0.472377i \(-0.156604\pi\)
−0.849789 + 0.527123i \(0.823271\pi\)
\(140\) 811.868 1406.20i 0.490110 0.848895i
\(141\) −812.981 + 1408.13i −0.485570 + 0.841032i
\(142\) 1923.61 1.13680
\(143\) 0 0
\(144\) 790.464 0.457445
\(145\) 348.947 604.394i 0.199852 0.346153i
\(146\) 963.198 1668.31i 0.545992 0.945686i
\(147\) 2088.41 + 3617.23i 1.17176 + 2.02955i
\(148\) −95.5231 −0.0530537
\(149\) 958.718 + 1660.55i 0.527122 + 0.913002i 0.999500 + 0.0316065i \(0.0100623\pi\)
−0.472378 + 0.881396i \(0.656604\pi\)
\(150\) −662.100 1146.79i −0.360402 0.624234i
\(151\) −2035.28 −1.09688 −0.548439 0.836191i \(-0.684778\pi\)
−0.548439 + 0.836191i \(0.684778\pi\)
\(152\) 615.440 + 1065.97i 0.328413 + 0.568828i
\(153\) −756.139 + 1309.67i −0.399544 + 0.692030i
\(154\) 271.992 471.104i 0.142323 0.246511i
\(155\) 2365.92 1.22603
\(156\) 0 0
\(157\) −615.393 −0.312826 −0.156413 0.987692i \(-0.549993\pi\)
−0.156413 + 0.987692i \(0.549993\pi\)
\(158\) −1043.18 + 1806.84i −0.525259 + 0.909775i
\(159\) −1750.94 + 3032.73i −0.873327 + 1.51265i
\(160\) 226.696 + 392.650i 0.112012 + 0.194010i
\(161\) 1031.50 0.504930
\(162\) 377.848 + 654.452i 0.183250 + 0.317399i
\(163\) 580.046 + 1004.67i 0.278728 + 0.482771i 0.971069 0.238799i \(-0.0767538\pi\)
−0.692341 + 0.721571i \(0.743421\pi\)
\(164\) 501.897 0.238973
\(165\) −587.866 1018.21i −0.277365 0.480411i
\(166\) 313.304 542.658i 0.146489 0.253726i
\(167\) −1014.63 + 1757.39i −0.470147 + 0.814319i −0.999417 0.0341344i \(-0.989133\pi\)
0.529270 + 0.848454i \(0.322466\pi\)
\(168\) −2003.45 −0.920057
\(169\) 0 0
\(170\) −867.409 −0.391337
\(171\) −3800.65 + 6582.92i −1.69967 + 2.94391i
\(172\) 869.549 1506.10i 0.385479 0.667670i
\(173\) 1536.80 + 2661.82i 0.675380 + 1.16979i 0.976358 + 0.216162i \(0.0693539\pi\)
−0.300977 + 0.953631i \(0.597313\pi\)
\(174\) −861.099 −0.375171
\(175\) 1085.09 + 1879.43i 0.468715 + 0.811839i
\(176\) 75.9479 + 131.546i 0.0325272 + 0.0563388i
\(177\) 3568.12 1.51523
\(178\) 675.754 + 1170.44i 0.284550 + 0.492855i
\(179\) −1156.94 + 2003.88i −0.483095 + 0.836745i −0.999812 0.0194115i \(-0.993821\pi\)
0.516717 + 0.856156i \(0.327154\pi\)
\(180\) −1399.96 + 2424.81i −0.579706 + 1.00408i
\(181\) −1670.01 −0.685805 −0.342903 0.939371i \(-0.611410\pi\)
−0.342903 + 0.939371i \(0.611410\pi\)
\(182\) 0 0
\(183\) 5277.44 2.13180
\(184\) −144.012 + 249.436i −0.0576995 + 0.0999385i
\(185\) 169.178 293.024i 0.0672334 0.116452i
\(186\) −1459.60 2528.10i −0.575392 0.996608i
\(187\) −290.600 −0.113640
\(188\) 372.034 + 644.382i 0.144326 + 0.249981i
\(189\) −2805.33 4858.98i −1.07967 1.87005i
\(190\) −4359.94 −1.66475
\(191\) −1912.60 3312.73i −0.724561 1.25498i −0.959154 0.282883i \(-0.908709\pi\)
0.234594 0.972094i \(-0.424624\pi\)
\(192\) 279.710 484.472i 0.105137 0.182103i
\(193\) 454.416 787.071i 0.169480 0.293547i −0.768757 0.639540i \(-0.779125\pi\)
0.938237 + 0.345993i \(0.112458\pi\)
\(194\) 544.869 0.201646
\(195\) 0 0
\(196\) 1911.38 0.696568
\(197\) 668.833 1158.45i 0.241890 0.418966i −0.719362 0.694635i \(-0.755566\pi\)
0.961253 + 0.275669i \(0.0888992\pi\)
\(198\) −469.016 + 812.360i −0.168341 + 0.291575i
\(199\) −572.290 991.236i −0.203862 0.353100i 0.745907 0.666050i \(-0.232016\pi\)
−0.949770 + 0.312950i \(0.898683\pi\)
\(200\) −605.976 −0.214245
\(201\) −1256.72 2176.70i −0.441005 0.763844i
\(202\) −661.561 1145.86i −0.230432 0.399120i
\(203\) 1411.22 0.487924
\(204\) 535.128 + 926.869i 0.183659 + 0.318107i
\(205\) −888.892 + 1539.61i −0.302843 + 0.524540i
\(206\) −315.353 + 546.207i −0.106659 + 0.184738i
\(207\) −1778.69 −0.597236
\(208\) 0 0
\(209\) −1460.67 −0.483428
\(210\) 3548.24 6145.74i 1.16596 2.01951i
\(211\) 5.61262 9.72134i 0.00183123 0.00317178i −0.865108 0.501585i \(-0.832750\pi\)
0.866940 + 0.498413i \(0.166084\pi\)
\(212\) 801.262 + 1387.83i 0.259580 + 0.449605i
\(213\) 8407.06 2.70442
\(214\) 2121.32 + 3674.24i 0.677619 + 1.17367i
\(215\) 3080.05 + 5334.81i 0.977014 + 1.69224i
\(216\) 1566.66 0.493507
\(217\) 2392.08 + 4143.21i 0.748318 + 1.29613i
\(218\) 884.432 1531.88i 0.274777 0.475927i
\(219\) 4209.63 7291.29i 1.29891 2.24977i
\(220\) −538.035 −0.164883
\(221\) 0 0
\(222\) −417.481 −0.126214
\(223\) 1369.87 2372.68i 0.411360 0.712497i −0.583679 0.811985i \(-0.698387\pi\)
0.995039 + 0.0994882i \(0.0317205\pi\)
\(224\) −458.406 + 793.983i −0.136735 + 0.236831i
\(225\) −1871.10 3240.85i −0.554401 0.960251i
\(226\) 264.409 0.0778241
\(227\) −2264.87 3922.88i −0.662225 1.14701i −0.980030 0.198851i \(-0.936279\pi\)
0.317805 0.948156i \(-0.397054\pi\)
\(228\) 2689.76 + 4658.80i 0.781288 + 1.35323i
\(229\) −867.892 −0.250445 −0.125222 0.992129i \(-0.539964\pi\)
−0.125222 + 0.992129i \(0.539964\pi\)
\(230\) −510.110 883.536i −0.146242 0.253298i
\(231\) 1188.73 2058.95i 0.338584 0.586445i
\(232\) −197.027 + 341.260i −0.0557562 + 0.0965726i
\(233\) 535.138 0.150464 0.0752319 0.997166i \(-0.476030\pi\)
0.0752319 + 0.997166i \(0.476030\pi\)
\(234\) 0 0
\(235\) −2635.59 −0.731603
\(236\) 816.415 1414.07i 0.225187 0.390035i
\(237\) −4559.18 + 7896.73i −1.24958 + 2.16434i
\(238\) −877.001 1519.01i −0.238855 0.413709i
\(239\) −1146.73 −0.310359 −0.155180 0.987886i \(-0.549596\pi\)
−0.155180 + 0.987886i \(0.549596\pi\)
\(240\) 990.769 + 1716.06i 0.266475 + 0.461547i
\(241\) 1676.52 + 2903.81i 0.448107 + 0.776145i 0.998263 0.0589175i \(-0.0187649\pi\)
−0.550155 + 0.835062i \(0.685432\pi\)
\(242\) 2481.75 0.659226
\(243\) −992.360 1718.82i −0.261975 0.453754i
\(244\) 1207.52 2091.49i 0.316819 0.548746i
\(245\) −3385.18 + 5863.31i −0.882740 + 1.52895i
\(246\) 2193.52 0.568512
\(247\) 0 0
\(248\) −1335.87 −0.342048
\(249\) 1369.29 2371.67i 0.348494 0.603609i
\(250\) −697.842 + 1208.70i −0.176542 + 0.305779i
\(251\) −2678.98 4640.13i −0.673688 1.16686i −0.976851 0.213923i \(-0.931376\pi\)
0.303163 0.952939i \(-0.401957\pi\)
\(252\) −5661.78 −1.41531
\(253\) −170.897 296.003i −0.0424672 0.0735554i
\(254\) −1872.81 3243.80i −0.462639 0.801315i
\(255\) −3790.99 −0.930983
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 3146.05 5449.12i 0.763601 1.32260i −0.177383 0.984142i \(-0.556763\pi\)
0.940983 0.338453i \(-0.109904\pi\)
\(258\) 3800.34 6582.37i 0.917049 1.58837i
\(259\) 684.194 0.164146
\(260\) 0 0
\(261\) −2433.48 −0.577121
\(262\) −1850.21 + 3204.66i −0.436285 + 0.755667i
\(263\) 2398.88 4154.98i 0.562438 0.974171i −0.434845 0.900505i \(-0.643197\pi\)
0.997283 0.0736656i \(-0.0234697\pi\)
\(264\) 331.928 + 574.916i 0.0773816 + 0.134029i
\(265\) −5676.35 −1.31583
\(266\) −4408.15 7635.14i −1.01609 1.75993i
\(267\) 2953.36 + 5115.37i 0.676939 + 1.17249i
\(268\) −1150.19 −0.262161
\(269\) −3123.22 5409.57i −0.707903 1.22612i −0.965634 0.259907i \(-0.916308\pi\)
0.257731 0.966217i \(-0.417025\pi\)
\(270\) −2774.65 + 4805.84i −0.625407 + 1.08324i
\(271\) −915.576 + 1585.82i −0.205230 + 0.355468i −0.950206 0.311623i \(-0.899128\pi\)
0.744976 + 0.667091i \(0.232461\pi\)
\(272\) 489.767 0.109178
\(273\) 0 0
\(274\) −1934.75 −0.426578
\(275\) 359.552 622.762i 0.0788428 0.136560i
\(276\) −629.401 + 1090.15i −0.137266 + 0.237752i
\(277\) 800.712 + 1386.87i 0.173683 + 0.300827i 0.939705 0.341987i \(-0.111100\pi\)
−0.766022 + 0.642814i \(0.777767\pi\)
\(278\) 207.194 0.0447002
\(279\) −4124.84 7144.44i −0.885118 1.53307i
\(280\) −1623.74 2812.39i −0.346560 0.600259i
\(281\) 4516.64 0.958861 0.479431 0.877580i \(-0.340843\pi\)
0.479431 + 0.877580i \(0.340843\pi\)
\(282\) 1625.96 + 2816.25i 0.343350 + 0.594699i
\(283\) −3541.51 + 6134.08i −0.743890 + 1.28846i 0.206821 + 0.978379i \(0.433688\pi\)
−0.950711 + 0.310077i \(0.899645\pi\)
\(284\) 1923.61 3331.78i 0.401919 0.696144i
\(285\) −19055.0 −3.96042
\(286\) 0 0
\(287\) −3594.89 −0.739371
\(288\) 790.464 1369.12i 0.161731 0.280126i
\(289\) 1988.00 3443.32i 0.404641 0.700859i
\(290\) −697.894 1208.79i −0.141316 0.244767i
\(291\) 2381.34 0.479713
\(292\) −1926.40 3336.62i −0.386075 0.668701i
\(293\) −3461.76 5995.94i −0.690233 1.19552i −0.971762 0.235965i \(-0.924175\pi\)
0.281529 0.959553i \(-0.409158\pi\)
\(294\) 8353.64 1.65712
\(295\) 2891.85 + 5008.83i 0.570746 + 0.988561i
\(296\) −95.5231 + 165.451i −0.0187573 + 0.0324886i
\(297\) −929.565 + 1610.05i −0.181612 + 0.314561i
\(298\) 3834.87 0.745463
\(299\) 0 0
\(300\) −2648.40 −0.509685
\(301\) −6228.23 + 10787.6i −1.19265 + 2.06574i
\(302\) −2035.28 + 3525.20i −0.387805 + 0.671698i
\(303\) −2891.33 5007.93i −0.548194 0.949499i
\(304\) 2461.76 0.464446
\(305\) 4277.21 + 7408.34i 0.802991 + 1.39082i
\(306\) 1512.28 + 2619.34i 0.282520 + 0.489339i
\(307\) −8778.50 −1.63197 −0.815986 0.578071i \(-0.803805\pi\)
−0.815986 + 0.578071i \(0.803805\pi\)
\(308\) −543.984 942.208i −0.100638 0.174309i
\(309\) −1378.24 + 2387.18i −0.253739 + 0.439489i
\(310\) 2365.92 4097.89i 0.433468 0.750789i
\(311\) −2197.35 −0.400644 −0.200322 0.979730i \(-0.564199\pi\)
−0.200322 + 0.979730i \(0.564199\pi\)
\(312\) 0 0
\(313\) −5052.55 −0.912419 −0.456209 0.889873i \(-0.650793\pi\)
−0.456209 + 0.889873i \(0.650793\pi\)
\(314\) −615.393 + 1065.89i −0.110601 + 0.191566i
\(315\) 10027.4 17367.9i 1.79358 3.10658i
\(316\) 2086.36 + 3613.68i 0.371414 + 0.643308i
\(317\) −1889.91 −0.334852 −0.167426 0.985885i \(-0.553545\pi\)
−0.167426 + 0.985885i \(0.553545\pi\)
\(318\) 3501.89 + 6065.45i 0.617535 + 1.06960i
\(319\) −233.809 404.969i −0.0410369 0.0710780i
\(320\) 906.785 0.158409
\(321\) 9271.17 + 16058.1i 1.61204 + 2.79214i
\(322\) 1031.50 1786.61i 0.178520 0.309205i
\(323\) −2354.86 + 4078.74i −0.405659 + 0.702622i
\(324\) 1511.39 0.259155
\(325\) 0 0
\(326\) 2320.18 0.394181
\(327\) 3865.38 6695.04i 0.653688 1.13222i
\(328\) 501.897 869.311i 0.0844897 0.146340i
\(329\) −2664.73 4615.45i −0.446539 0.773428i
\(330\) −2351.46 −0.392254
\(331\) −1274.69 2207.83i −0.211672 0.366627i 0.740566 0.671984i \(-0.234558\pi\)
−0.952238 + 0.305357i \(0.901224\pi\)
\(332\) −626.608 1085.32i −0.103583 0.179411i
\(333\) −1179.81 −0.194153
\(334\) 2029.26 + 3514.79i 0.332444 + 0.575811i
\(335\) 2037.06 3528.30i 0.332229 0.575437i
\(336\) −2003.45 + 3470.08i −0.325289 + 0.563418i
\(337\) 140.649 0.0227349 0.0113674 0.999935i \(-0.496382\pi\)
0.0113674 + 0.999935i \(0.496382\pi\)
\(338\) 0 0
\(339\) 1155.59 0.185142
\(340\) −867.409 + 1502.40i −0.138358 + 0.239644i
\(341\) 792.631 1372.88i 0.125875 0.218022i
\(342\) 7601.30 + 13165.8i 1.20185 + 2.08166i
\(343\) −3863.38 −0.608171
\(344\) −1739.10 3012.20i −0.272575 0.472114i
\(345\) −2229.42 3861.47i −0.347907 0.602593i
\(346\) 6147.20 0.955132
\(347\) −70.2566 121.688i −0.0108691 0.0188258i 0.860540 0.509383i \(-0.170126\pi\)
−0.871409 + 0.490558i \(0.836793\pi\)
\(348\) −861.099 + 1491.47i −0.132643 + 0.229744i
\(349\) 6136.62 10628.9i 0.941220 1.63024i 0.178072 0.984018i \(-0.443014\pi\)
0.763148 0.646223i \(-0.223653\pi\)
\(350\) 4340.37 0.662864
\(351\) 0 0
\(352\) 303.792 0.0460004
\(353\) 2943.98 5099.13i 0.443888 0.768837i −0.554086 0.832459i \(-0.686932\pi\)
0.997974 + 0.0636228i \(0.0202654\pi\)
\(354\) 3568.12 6180.16i 0.535716 0.927887i
\(355\) 6813.66 + 11801.6i 1.01868 + 1.76441i
\(356\) 2703.02 0.402414
\(357\) −3832.91 6638.79i −0.568232 0.984207i
\(358\) 2313.89 + 4007.77i 0.341600 + 0.591668i
\(359\) 5902.88 0.867806 0.433903 0.900960i \(-0.357136\pi\)
0.433903 + 0.900960i \(0.357136\pi\)
\(360\) 2799.93 + 4849.62i 0.409914 + 0.709992i
\(361\) −8406.94 + 14561.2i −1.22568 + 2.12294i
\(362\) −1670.01 + 2892.54i −0.242469 + 0.419968i
\(363\) 10846.4 1.56829
\(364\) 0 0
\(365\) 13647.1 1.95704
\(366\) 5277.44 9140.80i 0.753706 1.30546i
\(367\) 1659.47 2874.28i 0.236031 0.408818i −0.723541 0.690282i \(-0.757487\pi\)
0.959572 + 0.281464i \(0.0908200\pi\)
\(368\) 288.024 + 498.873i 0.0407997 + 0.0706672i
\(369\) 6198.93 0.874535
\(370\) −338.355 586.049i −0.0475412 0.0823438i
\(371\) −5739.12 9940.44i −0.803127 1.39106i
\(372\) −5838.39 −0.813727
\(373\) −121.108 209.765i −0.0168116 0.0291185i 0.857497 0.514489i \(-0.172018\pi\)
−0.874309 + 0.485370i \(0.838685\pi\)
\(374\) −290.600 + 503.333i −0.0401779 + 0.0695902i
\(375\) −3049.90 + 5282.58i −0.419989 + 0.727443i
\(376\) 1488.14 0.204108
\(377\) 0 0
\(378\) −11221.3 −1.52689
\(379\) −6452.13 + 11175.4i −0.874469 + 1.51462i −0.0171418 + 0.999853i \(0.505457\pi\)
−0.857327 + 0.514772i \(0.827877\pi\)
\(380\) −4359.94 + 7551.63i −0.588579 + 1.01945i
\(381\) −8185.05 14176.9i −1.10061 1.90631i
\(382\) −7650.41 −1.02468
\(383\) −2295.51 3975.94i −0.306253 0.530446i 0.671286 0.741198i \(-0.265742\pi\)
−0.977540 + 0.210752i \(0.932409\pi\)
\(384\) −559.420 968.944i −0.0743432 0.128766i
\(385\) 3853.73 0.510141
\(386\) −908.832 1574.14i −0.119840 0.207569i
\(387\) 10739.8 18601.9i 1.41068 2.44338i
\(388\) 544.869 943.742i 0.0712927 0.123483i
\(389\) −13973.1 −1.82125 −0.910623 0.413239i \(-0.864397\pi\)
−0.910623 + 0.413239i \(0.864397\pi\)
\(390\) 0 0
\(391\) −1102.07 −0.142542
\(392\) 1911.38 3310.61i 0.246274 0.426559i
\(393\) −8086.30 + 14005.9i −1.03791 + 1.79772i
\(394\) −1337.67 2316.91i −0.171042 0.296254i
\(395\) −14780.3 −1.88273
\(396\) 938.033 + 1624.72i 0.119035 + 0.206175i
\(397\) 1308.87 + 2267.02i 0.165466 + 0.286596i 0.936821 0.349810i \(-0.113754\pi\)
−0.771355 + 0.636406i \(0.780420\pi\)
\(398\) −2289.16 −0.288305
\(399\) −19265.7 33369.1i −2.41727 4.18683i
\(400\) −605.976 + 1049.58i −0.0757470 + 0.131198i
\(401\) 3944.60 6832.24i 0.491231 0.850838i −0.508718 0.860933i \(-0.669880\pi\)
0.999949 + 0.0100957i \(0.00321361\pi\)
\(402\) −5026.87 −0.623676
\(403\) 0 0
\(404\) −2646.24 −0.325880
\(405\) −2676.77 + 4636.31i −0.328420 + 0.568840i
\(406\) 1411.22 2444.31i 0.172507 0.298791i
\(407\) −113.356 196.338i −0.0138055 0.0239118i
\(408\) 2140.51 0.259733
\(409\) 3865.77 + 6695.71i 0.467359 + 0.809490i 0.999305 0.0372886i \(-0.0118721\pi\)
−0.531945 + 0.846779i \(0.678539\pi\)
\(410\) 1777.78 + 3079.21i 0.214143 + 0.370906i
\(411\) −8455.76 −1.01482
\(412\) 630.706 + 1092.41i 0.0754191 + 0.130630i
\(413\) −5847.66 + 10128.4i −0.696718 + 1.20675i
\(414\) −1778.69 + 3080.79i −0.211155 + 0.365731i
\(415\) 4439.05 0.525071
\(416\) 0 0
\(417\) 905.535 0.106341
\(418\) −1460.67 + 2529.95i −0.170918 + 0.296038i
\(419\) −1378.20 + 2387.12i −0.160691 + 0.278326i −0.935117 0.354340i \(-0.884706\pi\)
0.774425 + 0.632665i \(0.218039\pi\)
\(420\) −7096.49 12291.5i −0.824460 1.42801i
\(421\) 11815.2 1.36778 0.683890 0.729585i \(-0.260287\pi\)
0.683890 + 0.729585i \(0.260287\pi\)
\(422\) −11.2252 19.4427i −0.00129487 0.00224278i
\(423\) 4594.99 + 7958.76i 0.528171 + 0.914818i
\(424\) 3205.05 0.367101
\(425\) −1159.32 2008.01i −0.132319 0.229183i
\(426\) 8407.06 14561.5i 0.956158 1.65611i
\(427\) −8649.01 + 14980.5i −0.980222 + 1.69779i
\(428\) 8485.29 0.958299
\(429\) 0 0
\(430\) 12320.2 1.38171
\(431\) 5300.61 9180.93i 0.592393 1.02605i −0.401516 0.915852i \(-0.631517\pi\)
0.993909 0.110203i \(-0.0351501\pi\)
\(432\) 1566.66 2713.53i 0.174481 0.302210i
\(433\) 4614.86 + 7993.17i 0.512185 + 0.887130i 0.999900 + 0.0141273i \(0.00449701\pi\)
−0.487716 + 0.873003i \(0.662170\pi\)
\(434\) 9568.32 1.05828
\(435\) −3050.13 5282.97i −0.336189 0.582297i
\(436\) −1768.86 3063.76i −0.194296 0.336531i
\(437\) −5539.42 −0.606377
\(438\) −8419.25 14582.6i −0.918465 1.59083i
\(439\) −3600.83 + 6236.82i −0.391476 + 0.678057i −0.992645 0.121066i \(-0.961369\pi\)
0.601168 + 0.799123i \(0.294702\pi\)
\(440\) −538.035 + 931.903i −0.0582950 + 0.100970i
\(441\) 23607.5 2.54913
\(442\) 0 0
\(443\) −3544.70 −0.380167 −0.190083 0.981768i \(-0.560876\pi\)
−0.190083 + 0.981768i \(0.560876\pi\)
\(444\) −417.481 + 723.098i −0.0446233 + 0.0772899i
\(445\) −4787.22 + 8291.70i −0.509968 + 0.883291i
\(446\) −2739.74 4745.37i −0.290876 0.503811i
\(447\) 16760.2 1.77344
\(448\) 916.813 + 1587.97i 0.0966860 + 0.167465i
\(449\) 9162.68 + 15870.2i 0.963059 + 1.66807i 0.714741 + 0.699389i \(0.246545\pi\)
0.248319 + 0.968678i \(0.420122\pi\)
\(450\) −7484.41 −0.784041
\(451\) 595.594 + 1031.60i 0.0621849 + 0.107707i
\(452\) 264.409 457.970i 0.0275150 0.0476573i
\(453\) −8895.12 + 15406.8i −0.922581 + 1.59796i
\(454\) −9059.50 −0.936527
\(455\) 0 0
\(456\) 10759.0 1.10491
\(457\) 2691.92 4662.54i 0.275542 0.477252i −0.694730 0.719271i \(-0.744476\pi\)
0.970272 + 0.242018i \(0.0778094\pi\)
\(458\) −867.892 + 1503.23i −0.0885457 + 0.153366i
\(459\) 2997.25 + 5191.39i 0.304793 + 0.527916i
\(460\) −2040.44 −0.206817
\(461\) 5310.57 + 9198.17i 0.536525 + 0.929288i 0.999088 + 0.0427015i \(0.0135965\pi\)
−0.462563 + 0.886586i \(0.653070\pi\)
\(462\) −2377.47 4117.89i −0.239415 0.414679i
\(463\) 10407.3 1.04464 0.522318 0.852751i \(-0.325067\pi\)
0.522318 + 0.852751i \(0.325067\pi\)
\(464\) 394.053 + 682.521i 0.0394256 + 0.0682871i
\(465\) 10340.2 17909.7i 1.03121 1.78611i
\(466\) 535.138 926.886i 0.0531970 0.0921399i
\(467\) −15784.0 −1.56402 −0.782010 0.623266i \(-0.785805\pi\)
−0.782010 + 0.623266i \(0.785805\pi\)
\(468\) 0 0
\(469\) 8238.36 0.811113
\(470\) −2635.59 + 4564.97i −0.258661 + 0.448013i
\(471\) −2689.56 + 4658.45i −0.263117 + 0.455732i
\(472\) −1632.83 2828.15i −0.159231 0.275796i
\(473\) 4127.52 0.401234
\(474\) 9118.36 + 15793.5i 0.883587 + 1.53042i
\(475\) −5827.22 10093.0i −0.562886 0.974948i
\(476\) −3508.00 −0.337792
\(477\) 9896.38 + 17141.0i 0.949946 + 1.64536i
\(478\) −1146.73 + 1986.20i −0.109729 + 0.190055i
\(479\) 9131.86 15816.8i 0.871075 1.50875i 0.0101899 0.999948i \(-0.496756\pi\)
0.860885 0.508799i \(-0.169910\pi\)
\(480\) 3963.08 0.376852
\(481\) 0 0
\(482\) 6706.06 0.633720
\(483\) 4508.15 7808.34i 0.424695 0.735593i
\(484\) 2481.75 4298.51i 0.233072 0.403692i
\(485\) 1930.00 + 3342.86i 0.180694 + 0.312972i
\(486\) −3969.44 −0.370489
\(487\) 2684.50 + 4649.70i 0.249788 + 0.432645i 0.963467 0.267828i \(-0.0863059\pi\)
−0.713679 + 0.700473i \(0.752973\pi\)
\(488\) −2415.05 4182.98i −0.224025 0.388022i
\(489\) 10140.3 0.937750
\(490\) 6770.36 + 11726.6i 0.624192 + 1.08113i
\(491\) 745.667 1291.53i 0.0685366 0.118709i −0.829721 0.558179i \(-0.811500\pi\)
0.898257 + 0.439470i \(0.144834\pi\)
\(492\) 2193.52 3799.30i 0.200999 0.348141i
\(493\) −1507.77 −0.137741
\(494\) 0 0
\(495\) −6645.27 −0.603399
\(496\) −1335.87 + 2313.80i −0.120932 + 0.209461i
\(497\) −13778.0 + 23864.2i −1.24352 + 2.15384i
\(498\) −2738.57 4743.34i −0.246422 0.426816i
\(499\) −10067.4 −0.903163 −0.451582 0.892230i \(-0.649140\pi\)
−0.451582 + 0.892230i \(0.649140\pi\)
\(500\) 1395.68 + 2417.40i 0.124834 + 0.216218i
\(501\) 8868.84 + 15361.3i 0.790879 + 1.36984i
\(502\) −10715.9 −0.952738
\(503\) −2341.53 4055.65i −0.207562 0.359508i 0.743384 0.668865i \(-0.233220\pi\)
−0.950946 + 0.309357i \(0.899886\pi\)
\(504\) −5661.78 + 9806.49i −0.500388 + 0.866698i
\(505\) 4686.67 8117.55i 0.412978 0.715299i
\(506\) −683.589 −0.0600577
\(507\) 0 0
\(508\) −7491.23 −0.654271
\(509\) −5772.48 + 9998.23i −0.502673 + 0.870656i 0.497322 + 0.867566i \(0.334317\pi\)
−0.999995 + 0.00308978i \(0.999016\pi\)
\(510\) −3790.99 + 6566.18i −0.329152 + 0.570108i
\(511\) 13798.0 + 23898.8i 1.19450 + 2.06893i
\(512\) −512.000 −0.0441942
\(513\) 15065.4 + 26094.0i 1.29659 + 2.24576i
\(514\) −6292.11 10898.2i −0.539947 0.935216i
\(515\) −4468.09 −0.382306
\(516\) −7600.67 13164.7i −0.648451 1.12315i
\(517\) −882.975 + 1529.36i −0.0751125 + 0.130099i
\(518\) 684.194 1185.06i 0.0580343 0.100518i
\(519\) 26866.2 2.27224
\(520\) 0 0
\(521\) 19889.6 1.67252 0.836258 0.548336i \(-0.184739\pi\)
0.836258 + 0.548336i \(0.184739\pi\)
\(522\) −2433.48 + 4214.91i −0.204043 + 0.353413i
\(523\) 2545.03 4408.13i 0.212785 0.368555i −0.739800 0.672827i \(-0.765080\pi\)
0.952585 + 0.304272i \(0.0984133\pi\)
\(524\) 3700.43 + 6409.33i 0.308500 + 0.534337i
\(525\) 18969.4 1.57694
\(526\) −4797.76 8309.96i −0.397704 0.688843i
\(527\) −2555.73 4426.65i −0.211251 0.365897i
\(528\) 1327.71 0.109434
\(529\) 5435.39 + 9414.37i 0.446732 + 0.773763i
\(530\) −5676.35 + 9831.72i −0.465216 + 0.805779i
\(531\) 10083.5 17465.2i 0.824084 1.42736i
\(532\) −17632.6 −1.43697
\(533\) 0 0
\(534\) 11813.4 0.957337
\(535\) −15028.0 + 26029.3i −1.21442 + 2.10344i
\(536\) −1150.19 + 1992.19i −0.0926879 + 0.160540i
\(537\) 10112.8 + 17515.8i 0.812660 + 1.40757i
\(538\) −12492.9 −1.00113
\(539\) 2268.21 + 3928.65i 0.181259 + 0.313950i
\(540\) 5549.30 + 9611.67i 0.442230 + 0.765964i
\(541\) −5958.49 −0.473523 −0.236761 0.971568i \(-0.576086\pi\)
−0.236761 + 0.971568i \(0.576086\pi\)
\(542\) 1831.15 + 3171.65i 0.145119 + 0.251354i
\(543\) −7298.72 + 12641.8i −0.576829 + 0.999097i
\(544\) 489.767 848.301i 0.0386003 0.0668577i
\(545\) 12531.1 0.984905
\(546\) 0 0
\(547\) 2475.52 0.193502 0.0967509 0.995309i \(-0.469155\pi\)
0.0967509 + 0.995309i \(0.469155\pi\)
\(548\) −1934.75 + 3351.08i −0.150818 + 0.261225i
\(549\) 14914.1 25832.0i 1.15942 2.00817i
\(550\) −719.103 1245.52i −0.0557503 0.0965624i
\(551\) −7578.63 −0.585954
\(552\) 1258.80 + 2180.31i 0.0970619 + 0.168116i
\(553\) −14943.7 25883.3i −1.14914 1.99036i
\(554\) 3202.85 0.245624
\(555\) −1478.77 2561.31i −0.113100 0.195894i
\(556\) 207.194 358.870i 0.0158039 0.0273732i
\(557\) −11655.8 + 20188.4i −0.886662 + 1.53574i −0.0428662 + 0.999081i \(0.513649\pi\)
−0.843796 + 0.536664i \(0.819684\pi\)
\(558\) −16499.4 −1.25175
\(559\) 0 0
\(560\) −6494.94 −0.490110
\(561\) −1270.06 + 2199.80i −0.0955826 + 0.165554i
\(562\) 4516.64 7823.04i 0.339009 0.587180i
\(563\) −12313.1 21326.9i −0.921733 1.59649i −0.796733 0.604332i \(-0.793440\pi\)
−0.125000 0.992157i \(-0.539893\pi\)
\(564\) 6503.85 0.485570
\(565\) 936.572 + 1622.19i 0.0697378 + 0.120789i
\(566\) 7083.02 + 12268.2i 0.526010 + 0.911076i
\(567\) −10825.5 −0.801813
\(568\) −3847.21 6663.57i −0.284200 0.492248i
\(569\) 6599.29 11430.3i 0.486215 0.842150i −0.513659 0.857994i \(-0.671710\pi\)
0.999874 + 0.0158447i \(0.00504372\pi\)
\(570\) −19055.0 + 33004.2i −1.40022 + 2.42525i
\(571\) 20934.2 1.53427 0.767137 0.641483i \(-0.221681\pi\)
0.767137 + 0.641483i \(0.221681\pi\)
\(572\) 0 0
\(573\) −33435.9 −2.43770
\(574\) −3594.89 + 6226.52i −0.261407 + 0.452770i
\(575\) 1363.56 2361.76i 0.0988947 0.171291i
\(576\) −1580.93 2738.25i −0.114361 0.198079i
\(577\) −17083.2 −1.23255 −0.616275 0.787531i \(-0.711359\pi\)
−0.616275 + 0.787531i \(0.711359\pi\)
\(578\) −3976.00 6886.64i −0.286124 0.495582i
\(579\) −3972.02 6879.74i −0.285098 0.493804i
\(580\) −2791.58 −0.199852
\(581\) 4488.14 + 7773.69i 0.320481 + 0.555089i
\(582\) 2381.34 4124.59i 0.169604 0.293763i
\(583\) −1901.69 + 3293.83i −0.135094 + 0.233990i
\(584\) −7705.58 −0.545992
\(585\) 0 0
\(586\) −13847.0 −0.976136
\(587\) 2229.41 3861.45i 0.156759 0.271515i −0.776939 0.629576i \(-0.783229\pi\)
0.933698 + 0.358061i \(0.116562\pi\)
\(588\) 8353.64 14468.9i 0.585881 1.01478i
\(589\) −12846.1 22250.1i −0.898665 1.55653i
\(590\) 11567.4 0.807156
\(591\) −5846.23 10126.0i −0.406907 0.704783i
\(592\) 191.046 + 330.902i 0.0132634 + 0.0229729i
\(593\) 3217.47 0.222809 0.111404 0.993775i \(-0.464465\pi\)
0.111404 + 0.993775i \(0.464465\pi\)
\(594\) 1859.13 + 3220.11i 0.128419 + 0.222429i
\(595\) 6212.91 10761.1i 0.428074 0.741447i
\(596\) 3834.87 6642.19i 0.263561 0.456501i
\(597\) −10004.7 −0.685872
\(598\) 0 0
\(599\) −4495.37 −0.306637 −0.153319 0.988177i \(-0.548996\pi\)
−0.153319 + 0.988177i \(0.548996\pi\)
\(600\) −2648.40 + 4587.16i −0.180201 + 0.312117i
\(601\) 5459.23 9455.66i 0.370527 0.641771i −0.619120 0.785297i \(-0.712510\pi\)
0.989647 + 0.143525i \(0.0458438\pi\)
\(602\) 12456.5 + 21575.2i 0.843334 + 1.46070i
\(603\) −14206.0 −0.959392
\(604\) 4070.56 + 7050.41i 0.274219 + 0.474962i
\(605\) 8790.67 + 15225.9i 0.590730 + 1.02317i
\(606\) −11565.3 −0.775263
\(607\) −6243.51 10814.1i −0.417490 0.723114i 0.578196 0.815898i \(-0.303757\pi\)
−0.995686 + 0.0927838i \(0.970423\pi\)
\(608\) 2461.76 4263.89i 0.164206 0.284414i
\(609\) 6167.71 10682.8i 0.410391 0.710818i
\(610\) 17108.8 1.13560
\(611\) 0 0
\(612\) 6049.11 0.399544
\(613\) 480.734 832.656i 0.0316748 0.0548624i −0.849753 0.527180i \(-0.823249\pi\)
0.881428 + 0.472318i \(0.156583\pi\)
\(614\) −8778.50 + 15204.8i −0.576989 + 0.999375i
\(615\) 7769.75 + 13457.6i 0.509442 + 0.882379i
\(616\) −2175.94 −0.142323
\(617\) −7716.73 13365.8i −0.503507 0.872100i −0.999992 0.00405455i \(-0.998709\pi\)
0.496485 0.868046i \(-0.334624\pi\)
\(618\) 2756.48 + 4774.37i 0.179421 + 0.310766i
\(619\) −24569.6 −1.59537 −0.797686 0.603073i \(-0.793943\pi\)
−0.797686 + 0.603073i \(0.793943\pi\)
\(620\) −4731.84 8195.78i −0.306508 0.530888i
\(621\) −3525.27 + 6105.96i −0.227801 + 0.394563i
\(622\) −2197.35 + 3805.92i −0.141649 + 0.245343i
\(623\) −19360.6 −1.24505
\(624\) 0 0
\(625\) −19355.8 −1.23877
\(626\) −5052.55 + 8751.27i −0.322589 + 0.558740i
\(627\) −6383.80 + 11057.1i −0.406610 + 0.704269i
\(628\) 1230.79 + 2131.78i 0.0782065 + 0.135458i
\(629\) −731.001 −0.0463385
\(630\) −20054.8 34735.9i −1.26826 2.19668i
\(631\) 6661.10 + 11537.4i 0.420245 + 0.727885i 0.995963 0.0897629i \(-0.0286109\pi\)
−0.575719 + 0.817648i \(0.695278\pi\)
\(632\) 8345.43 0.525259
\(633\) −49.0596 84.9736i −0.00308048 0.00533554i
\(634\) −1889.91 + 3273.42i −0.118388 + 0.205054i
\(635\) 13267.5 22979.9i 0.829139 1.43611i
\(636\) 14007.6 0.873327
\(637\) 0 0
\(638\) −935.235 −0.0580350
\(639\) 23758.5 41150.9i 1.47085 2.54758i
\(640\) 906.785 1570.60i 0.0560060 0.0970052i
\(641\) −7447.28 12899.1i −0.458892 0.794824i 0.540011 0.841658i \(-0.318420\pi\)
−0.998903 + 0.0468338i \(0.985087\pi\)
\(642\) 37084.7 2.27978
\(643\) 4623.78 + 8008.62i 0.283583 + 0.491181i 0.972265 0.233883i \(-0.0751434\pi\)
−0.688681 + 0.725064i \(0.741810\pi\)
\(644\) −2063.00 3573.23i −0.126232 0.218641i
\(645\) 53845.1 3.28705
\(646\) 4709.72 + 8157.47i 0.286844 + 0.496829i
\(647\) −1367.07 + 2367.84i −0.0830681 + 0.143878i −0.904566 0.426333i \(-0.859805\pi\)
0.821498 + 0.570211i \(0.193139\pi\)
\(648\) 1511.39 2617.81i 0.0916251 0.158699i
\(649\) 3875.31 0.234390
\(650\) 0 0
\(651\) 41818.1 2.51763
\(652\) 2320.18 4018.67i 0.139364 0.241386i
\(653\) 3281.39 5683.53i 0.196647 0.340603i −0.750792 0.660539i \(-0.770328\pi\)
0.947439 + 0.319936i \(0.103661\pi\)
\(654\) −7730.76 13390.1i −0.462228 0.800602i
\(655\) −26214.8 −1.56381
\(656\) −1003.79 1738.62i −0.0597432 0.103478i
\(657\) −23792.9 41210.5i −1.41286 2.44715i
\(658\) −10658.9 −0.631501
\(659\) 2476.92 + 4290.15i 0.146414 + 0.253597i 0.929900 0.367813i \(-0.119893\pi\)
−0.783485 + 0.621410i \(0.786560\pi\)
\(660\) −2351.46 + 4072.85i −0.138683 + 0.240206i
\(661\) −4673.64 + 8094.98i −0.275013 + 0.476336i −0.970138 0.242552i \(-0.922015\pi\)
0.695126 + 0.718888i \(0.255349\pi\)
\(662\) −5098.78 −0.299350
\(663\) 0 0
\(664\) −2506.43 −0.146489
\(665\) 31228.5 54089.3i 1.82104 3.15413i
\(666\) −1179.81 + 2043.48i −0.0686435 + 0.118894i
\(667\) −886.695 1535.80i −0.0514737 0.0891551i
\(668\) 8117.06 0.470147
\(669\) −11974.0 20739.5i −0.691988 1.19856i
\(670\) −4074.13 7056.59i −0.234921 0.406896i
\(671\) 5731.80 0.329767
\(672\) 4006.90 + 6940.16i 0.230014 + 0.398396i
\(673\) −7709.51 + 13353.3i −0.441575 + 0.764830i −0.997807 0.0661971i \(-0.978913\pi\)
0.556232 + 0.831027i \(0.312247\pi\)
\(674\) 140.649 243.611i 0.00803798 0.0139222i
\(675\) −14833.7 −0.845851
\(676\) 0 0
\(677\) 26079.0 1.48050 0.740248 0.672334i \(-0.234708\pi\)
0.740248 + 0.672334i \(0.234708\pi\)
\(678\) 1155.59 2001.54i 0.0654576 0.113376i
\(679\) −3902.68 + 6759.64i −0.220576 + 0.382049i
\(680\) 1734.82 + 3004.79i 0.0978342 + 0.169454i
\(681\) −39594.3 −2.22798
\(682\) −1585.26 2745.75i −0.0890070 0.154165i
\(683\) 7445.02 + 12895.2i 0.417095 + 0.722429i 0.995646 0.0932168i \(-0.0297150\pi\)
−0.578551 + 0.815646i \(0.696382\pi\)
\(684\) 30405.2 1.69967
\(685\) −6853.14 11870.0i −0.382255 0.662086i
\(686\) −3863.38 + 6691.56i −0.215021 + 0.372427i
\(687\) −3793.09 + 6569.83i −0.210649 + 0.364854i
\(688\) −6956.39 −0.385479
\(689\) 0 0
\(690\) −8917.68 −0.492015
\(691\) 2035.51 3525.61i 0.112062 0.194096i −0.804540 0.593899i \(-0.797588\pi\)
0.916601 + 0.399802i \(0.130921\pi\)
\(692\) 6147.20 10647.3i 0.337690 0.584897i
\(693\) −6718.75 11637.2i −0.368289 0.637895i
\(694\) −281.026 −0.0153712
\(695\) 733.908 + 1271.17i 0.0400557 + 0.0693785i
\(696\) 1722.20 + 2982.94i 0.0937928 + 0.162454i
\(697\) 3840.82 0.208725
\(698\) −12273.2 21257.9i −0.665543 1.15275i
\(699\) 2338.80 4050.93i 0.126555 0.219199i
\(700\) 4340.37 7517.73i 0.234358 0.405919i
\(701\) 18378.1 0.990200 0.495100 0.868836i \(-0.335131\pi\)
0.495100 + 0.868836i \(0.335131\pi\)
\(702\) 0 0
\(703\) −3674.29 −0.197125
\(704\) 303.792 526.182i 0.0162636 0.0281694i
\(705\) −11518.7 + 19951.1i −0.615349 + 1.06582i
\(706\) −5887.97 10198.3i −0.313876 0.543650i
\(707\) 18954.0 1.00826
\(708\) −7136.24 12360.3i −0.378808 0.656115i
\(709\) −7473.18 12943.9i −0.395855 0.685641i 0.597355 0.801977i \(-0.296218\pi\)
−0.993210 + 0.116336i \(0.962885\pi\)
\(710\) 27254.7 1.44063
\(711\) 25768.6 + 44632.5i 1.35921 + 2.35422i
\(712\) 2703.02 4681.76i 0.142275 0.246428i
\(713\) 3005.97 5206.49i 0.157888 0.273471i
\(714\) −15331.6 −0.803602
\(715\) 0 0
\(716\) 9255.55 0.483095
\(717\) −5011.75 + 8680.61i −0.261042 + 0.452138i
\(718\) 5902.88 10224.1i 0.306816 0.531420i
\(719\) −7502.92 12995.4i −0.389168 0.674058i 0.603170 0.797613i \(-0.293904\pi\)
−0.992338 + 0.123554i \(0.960571\pi\)
\(720\) 11199.7 0.579706
\(721\) −4517.49 7824.53i −0.233343 0.404162i
\(722\) 16813.9 + 29122.5i 0.866687 + 1.50115i
\(723\) 29308.6 1.50761
\(724\) 3340.02 + 5785.08i 0.171451 + 0.296962i
\(725\) 1865.52 3231.18i 0.0955639 0.165521i
\(726\) 10846.4 18786.5i 0.554473 0.960376i
\(727\) −30390.1 −1.55035 −0.775177 0.631744i \(-0.782339\pi\)
−0.775177 + 0.631744i \(0.782339\pi\)
\(728\) 0 0
\(729\) −27550.2 −1.39970
\(730\) 13647.1 23637.5i 0.691920 1.19844i
\(731\) 6654.32 11525.6i 0.336688 0.583160i
\(732\) −10554.9 18281.6i −0.532951 0.923098i
\(733\) 31143.3 1.56931 0.784655 0.619932i \(-0.212840\pi\)
0.784655 + 0.619932i \(0.212840\pi\)
\(734\) −3318.93 5748.56i −0.166899 0.289078i
\(735\) 29589.7 + 51250.8i 1.48494 + 2.57199i
\(736\) 1152.10 0.0576995
\(737\) −1364.92 2364.10i −0.0682189 0.118159i
\(738\) 6198.93 10736.9i 0.309195 0.535541i
\(739\) −1942.40 + 3364.34i −0.0966881 + 0.167469i −0.910312 0.413923i \(-0.864158\pi\)
0.813624 + 0.581392i \(0.197492\pi\)
\(740\) −1353.42 −0.0672334
\(741\) 0 0
\(742\) −22956.5 −1.13579
\(743\) −5807.42 + 10058.7i −0.286748 + 0.496661i −0.973031 0.230672i \(-0.925907\pi\)
0.686284 + 0.727334i \(0.259241\pi\)
\(744\) −5838.39 + 10112.4i −0.287696 + 0.498304i
\(745\) 13583.6 + 23527.5i 0.668007 + 1.15702i
\(746\) −484.431 −0.0237752
\(747\) −7739.23 13404.7i −0.379068 0.656565i
\(748\) 581.199 + 1006.67i 0.0284101 + 0.0492077i
\(749\) −60776.7 −2.96493
\(750\) 6099.79 + 10565.2i 0.296977 + 0.514380i
\(751\) 17205.1 29800.1i 0.835982 1.44796i −0.0572461 0.998360i \(-0.518232\pi\)
0.893228 0.449604i \(-0.148435\pi\)
\(752\) 1488.14 2577.53i 0.0721632 0.124990i
\(753\) −46833.6 −2.26655
\(754\) 0 0
\(755\) −28836.9 −1.39004
\(756\) −11221.3 + 19435.9i −0.539836 + 0.935023i
\(757\) 14728.4 25510.3i 0.707150 1.22482i −0.258760 0.965942i \(-0.583314\pi\)
0.965910 0.258879i \(-0.0833529\pi\)
\(758\) 12904.3 + 22350.8i 0.618343 + 1.07100i
\(759\) −2987.60 −0.142876
\(760\) 8719.87 + 15103.3i 0.416188 + 0.720859i
\(761\) −16475.1 28535.7i −0.784784 1.35929i −0.929128 0.369759i \(-0.879440\pi\)
0.144343 0.989528i \(-0.453893\pi\)
\(762\) −32740.2 −1.55650
\(763\) 12669.7 + 21944.5i 0.601144 + 1.04121i
\(764\) −7650.41 + 13250.9i −0.362280 + 0.627488i
\(765\) −10713.4 + 18556.1i −0.506331 + 0.876990i
\(766\) −9182.04 −0.433108
\(767\) 0 0
\(768\) −2237.68 −0.105137
\(769\) −5111.86 + 8854.00i −0.239712 + 0.415193i −0.960632 0.277826i \(-0.910386\pi\)
0.720920 + 0.693019i \(0.243720\pi\)
\(770\) 3853.73 6674.85i 0.180362 0.312396i
\(771\) −27499.5 47630.4i −1.28452 2.22486i
\(772\) −3635.33 −0.169480
\(773\) −5070.04 8781.56i −0.235908 0.408604i 0.723629 0.690190i \(-0.242473\pi\)
−0.959536 + 0.281586i \(0.909140\pi\)
\(774\) −21479.6 37203.8i −0.997504 1.72773i
\(775\) 12648.6 0.586257
\(776\) −1089.74 1887.48i −0.0504115 0.0873153i
\(777\) 2990.25 5179.26i 0.138062 0.239131i
\(778\) −13973.1 + 24202.1i −0.643907 + 1.11528i
\(779\) 19305.4 0.887920
\(780\) 0 0
\(781\) 9130.86 0.418346
\(782\) −1102.07 + 1908.84i −0.0503963 + 0.0872889i
\(783\) −4823.02 + 8353.71i −0.220129 + 0.381274i
\(784\) −3822.76 6621.22i −0.174142 0.301623i
\(785\) −8719.21 −0.396435
\(786\) 16172.6 + 28011.8i 0.733916 + 1.27118i
\(787\) 4544.27 + 7870.90i 0.205827 + 0.356502i 0.950396 0.311043i \(-0.100678\pi\)
−0.744569 + 0.667545i \(0.767345\pi\)
\(788\) −5350.67 −0.241890
\(789\) −20968.4 36318.4i −0.946130 1.63874i
\(790\) −14780.3 + 25600.2i −0.665645 + 1.15293i
\(791\) −1893.86 + 3280.26i −0.0851300 + 0.147449i
\(792\) 3752.13 0.168341
\(793\) 0 0
\(794\) 5235.46 0.234004
\(795\) −24808.3 + 42969.2i −1.10674 + 1.91693i
\(796\) −2289.16 + 3964.94i −0.101931 + 0.176550i
\(797\) 10516.2 + 18214.6i 0.467382 + 0.809530i 0.999305 0.0372629i \(-0.0118639\pi\)
−0.531923 + 0.846792i \(0.678531\pi\)
\(798\) −77062.7 −3.41853
\(799\) 2847.03 + 4931.20i 0.126058 + 0.218340i
\(800\) 1211.95 + 2099.16i 0.0535612 + 0.0927708i
\(801\) 33385.0 1.47266
\(802\) −7889.19 13664.5i −0.347353 0.601633i
\(803\) 4572.05 7919.03i 0.200927 0.348015i
\(804\) −5026.87 + 8706.80i −0.220503 + 0.381922i
\(805\) 14614.9 0.639883
\(806\) 0 0
\(807\) −54599.7 −2.38166
\(808\) −2646.24 + 4583.43i −0.115216 + 0.199560i
\(809\) 21822.5 37797.6i 0.948376 1.64264i 0.199531 0.979892i \(-0.436058\pi\)
0.748846 0.662745i \(-0.230608\pi\)
\(810\) 5353.55 + 9272.62i 0.232228 + 0.402230i
\(811\) 28688.1 1.24214 0.621069 0.783756i \(-0.286699\pi\)
0.621069 + 0.783756i \(0.286699\pi\)
\(812\) −2822.45 4888.62i −0.121981 0.211277i
\(813\) 8002.99 + 13861.6i 0.345236 + 0.597967i
\(814\) −453.424 −0.0195239
\(815\) 8218.39 + 14234.7i 0.353224 + 0.611802i
\(816\) 2140.51 3707.47i 0.0918295 0.159053i
\(817\) 33447.2 57932.2i 1.43227 2.48077i
\(818\) 15463.1 0.660946
\(819\) 0 0
\(820\) 7111.14 0.302843
\(821\) −8021.12 + 13893.0i −0.340973 + 0.590583i −0.984614 0.174745i \(-0.944090\pi\)
0.643640 + 0.765328i \(0.277423\pi\)
\(822\) −8455.76 + 14645.8i −0.358794 + 0.621449i
\(823\) 6069.43 + 10512.6i 0.257068 + 0.445255i 0.965455 0.260569i \(-0.0839101\pi\)
−0.708387 + 0.705824i \(0.750577\pi\)
\(824\) 2522.82 0.106659
\(825\) −3142.82 5443.52i −0.132629 0.229720i
\(826\) 11695.3 + 20256.9i 0.492654 + 0.853301i
\(827\) −17136.2 −0.720538 −0.360269 0.932848i \(-0.617315\pi\)
−0.360269 + 0.932848i \(0.617315\pi\)
\(828\) 3557.39 + 6161.58i 0.149309 + 0.258611i
\(829\) −5473.64 + 9480.61i −0.229321 + 0.397196i −0.957607 0.288077i \(-0.906984\pi\)
0.728286 + 0.685273i \(0.240317\pi\)
\(830\) 4439.05 7688.67i 0.185641 0.321539i
\(831\) 13997.9 0.584336
\(832\) 0 0
\(833\) 14627.1 0.608400
\(834\) 905.535 1568.43i 0.0375972 0.0651203i
\(835\) −14375.8 + 24899.7i −0.595804 + 1.03196i
\(836\) 2921.33 + 5059.90i 0.120857 + 0.209330i
\(837\) −32700.9 −1.35043
\(838\) 2756.41 + 4774.24i 0.113626 + 0.196806i
\(839\) −6814.35 11802.8i −0.280402 0.485671i 0.691081 0.722777i \(-0.257135\pi\)
−0.971484 + 0.237106i \(0.923801\pi\)
\(840\) −28385.9 −1.16596
\(841\) 10981.4 + 19020.3i 0.450260 + 0.779873i
\(842\) 11815.2 20464.5i 0.483584 0.837591i
\(843\) 19739.8 34190.4i 0.806495 1.39689i
\(844\) −44.9010 −0.00183123
\(845\) 0 0
\(846\) 18380.0 0.746946
\(847\) −17775.8 + 30788.5i −0.721113 + 1.24900i
\(848\) 3205.05 5551.30i 0.129790 0.224803i
\(849\) 30956.1 + 53617.6i 1.25137 + 2.16743i
\(850\) −4637.30 −0.187127
\(851\) −429.890 744.592i −0.0173166 0.0299933i
\(852\) −16814.1 29122.9i −0.676106 1.17105i
\(853\) −6645.59 −0.266753 −0.133377 0.991065i \(-0.542582\pi\)
−0.133377 + 0.991065i \(0.542582\pi\)
\(854\) 17298.0 + 29961.0i 0.693122 + 1.20052i
\(855\) −53849.6 + 93270.2i −2.15394 + 3.73073i
\(856\) 8485.29 14696.9i 0.338810 0.586836i
\(857\) 15552.6 0.619914 0.309957 0.950751i \(-0.399685\pi\)
0.309957 + 0.950751i \(0.399685\pi\)
\(858\) 0 0
\(859\) −48006.5 −1.90682 −0.953412 0.301672i \(-0.902455\pi\)
−0.953412 + 0.301672i \(0.902455\pi\)
\(860\) 12320.2 21339.2i 0.488507 0.846119i
\(861\) −15711.3 + 27212.8i −0.621883 + 1.07713i
\(862\) −10601.2 18361.9i −0.418885 0.725530i
\(863\) 3572.64 0.140920 0.0704601 0.997515i \(-0.477553\pi\)
0.0704601 + 0.997515i \(0.477553\pi\)
\(864\) −3133.31 5427.06i −0.123377 0.213695i
\(865\) 21774.2 + 37714.0i 0.855890 + 1.48245i
\(866\) 18459.4 0.724339
\(867\) −17377.0 30097.8i −0.680685 1.17898i
\(868\) 9568.32 16572.8i 0.374159 0.648063i
\(869\) −4951.70 + 8576.60i −0.193297 + 0.334800i
\(870\) −12200.5 −0.475443
\(871\) 0 0
\(872\) −7075.45 −0.274777
\(873\) 6729.68 11656.2i 0.260900 0.451891i
\(874\) −5539.42 + 9594.56i −0.214387 + 0.371328i
\(875\) −9996.72 17314.8i −0.386230 0.668969i
\(876\) −33677.0 −1.29891
\(877\) −1349.92 2338.13i −0.0519767 0.0900262i 0.838866 0.544337i \(-0.183219\pi\)
−0.890843 + 0.454311i \(0.849885\pi\)
\(878\) 7201.66 + 12473.6i 0.276816 + 0.479459i
\(879\) −60518.1 −2.32221
\(880\) 1076.07 + 1863.81i 0.0412208 + 0.0713965i
\(881\) −1991.23 + 3448.91i −0.0761477 + 0.131892i −0.901585 0.432602i \(-0.857595\pi\)
0.825437 + 0.564494i \(0.190929\pi\)
\(882\) 23607.5 40889.4i 0.901253 1.56102i
\(883\) 21896.7 0.834523 0.417261 0.908787i \(-0.362990\pi\)
0.417261 + 0.908787i \(0.362990\pi\)
\(884\) 0 0
\(885\) 50555.0 1.92021
\(886\) −3544.70 + 6139.61i −0.134409 + 0.232804i
\(887\) 10609.8 18376.8i 0.401627 0.695638i −0.592295 0.805721i \(-0.701778\pi\)
0.993922 + 0.110082i \(0.0351115\pi\)
\(888\) 834.962 + 1446.20i 0.0315535 + 0.0546522i
\(889\) 53656.7 2.02428
\(890\) 9574.43 + 16583.4i 0.360602 + 0.624581i
\(891\) 1793.55 + 3106.52i 0.0674367 + 0.116804i
\(892\) −10959.0 −0.411360
\(893\) 14310.3 + 24786.1i 0.536254 + 0.928820i
\(894\) 16760.2 29029.5i 0.627007 1.08601i
\(895\) −16392.2 + 28392.1i −0.612212 + 1.06038i
\(896\) 3667.25 0.136735
\(897\) 0 0
\(898\) 36650.7 1.36197
\(899\) 4112.54 7123.13i 0.152571 0.264260i
\(900\) −7484.41 + 12963.4i −0.277201 + 0.480125i
\(901\) 6131.74 + 10620.5i 0.226724 + 0.392697i
\(902\) 2382.37 0.0879428
\(903\) 54440.6 + 94293.8i 2.00628 + 3.47497i
\(904\) −528.818 915.940i −0.0194560 0.0336988i
\(905\) −23661.5 −0.869101
\(906\) 17790.2 + 30813.6i 0.652363 + 1.12993i
\(907\) 21436.8 37129.7i 0.784783 1.35928i −0.144346 0.989527i \(-0.546108\pi\)
0.929129 0.369756i \(-0.120559\pi\)
\(908\) −9059.50 + 15691.5i −0.331112 + 0.573503i
\(909\) −32683.8 −1.19258
\(910\) 0 0
\(911\) 28943.9 1.05264 0.526319 0.850287i \(-0.323572\pi\)
0.526319 + 0.850287i \(0.323572\pi\)
\(912\) 10759.0 18635.2i 0.390644 0.676616i
\(913\) 1487.17 2575.86i 0.0539083 0.0933718i
\(914\) −5383.84 9325.08i −0.194838 0.337468i
\(915\) 74773.6 2.70157
\(916\) 1735.78 + 3006.46i 0.0626112 + 0.108446i
\(917\) −26504.7 45907.5i −0.954484 1.65321i
\(918\) 11989.0 0.431042
\(919\) −1367.51 2368.60i −0.0490860 0.0850194i 0.840438 0.541907i \(-0.182298\pi\)
−0.889524 + 0.456888i \(0.848964\pi\)
\(920\) −2040.44 + 3534.14i −0.0731210 + 0.126649i
\(921\) −38366.2 + 66452.2i −1.37265 + 2.37749i
\(922\) 21242.3 0.758760
\(923\) 0 0
\(924\) −9509.87 −0.338584
\(925\) 904.449 1566.55i 0.0321493 0.0556842i
\(926\) 10407.3 18025.9i 0.369334 0.639706i
\(927\) 7789.85 + 13492.4i 0.276000 + 0.478047i
\(928\) 1576.21 0.0557562
\(929\) −7545.90 13069.9i −0.266494 0.461581i 0.701460 0.712709i \(-0.252532\pi\)
−0.967954 + 0.251128i \(0.919199\pi\)
\(930\) −20680.3 35819.4i −0.729178 1.26297i
\(931\) 73521.3 2.58814
\(932\) −1070.28 1853.77i −0.0376159 0.0651527i
\(933\) −9603.45 + 16633.7i −0.336980 + 0.583667i
\(934\) −15784.0 + 27338.7i −0.552965 + 0.957763i
\(935\) −4117.37 −0.144013
\(936\) 0 0
\(937\) −20974.5 −0.731278 −0.365639 0.930757i \(-0.619150\pi\)
−0.365639 + 0.930757i \(0.619150\pi\)
\(938\) 8238.36 14269.3i 0.286772 0.496703i
\(939\) −22082.0 + 38247.2i −0.767433 + 1.32923i
\(940\) 5271.17 + 9129.94i 0.182901 + 0.316793i
\(941\) −886.927 −0.0307258 −0.0153629 0.999882i \(-0.504890\pi\)
−0.0153629 + 0.999882i \(0.504890\pi\)
\(942\) 5379.11 + 9316.89i 0.186052 + 0.322251i
\(943\) 2258.73 + 3912.23i 0.0780002 + 0.135100i
\(944\) −6531.32 −0.225187
\(945\) −39747.4 68844.6i −1.36824 2.36986i
\(946\) 4127.52 7149.08i 0.141858 0.245705i
\(947\) −21670.7 + 37534.7i −0.743613 + 1.28798i 0.207226 + 0.978293i \(0.433556\pi\)
−0.950840 + 0.309683i \(0.899777\pi\)
\(948\) 36473.5 1.24958
\(949\) 0 0
\(950\) −23308.9 −0.796041
\(951\) −8259.80 + 14306.4i −0.281643 + 0.487820i
\(952\) −3508.00 + 6076.04i −0.119428 + 0.206855i
\(953\) −8007.43 13869.3i −0.272178 0.471427i 0.697241 0.716837i \(-0.254411\pi\)
−0.969419 + 0.245410i \(0.921077\pi\)
\(954\) 39585.5 1.34343
\(955\) −27098.8 46936.4i −0.918215 1.59040i
\(956\) 2293.46 + 3972.39i 0.0775898 + 0.134389i
\(957\) −4087.42 −0.138064
\(958\) −18263.7 31633.7i −0.615943 1.06685i
\(959\) 13857.8 24002.5i 0.466624 0.808217i
\(960\) 3963.08 6864.25i 0.133237 0.230774i
\(961\) −1907.30 −0.0640227
\(962\) 0 0
\(963\) 104802. 3.50695
\(964\) 6706.06 11615.2i 0.224054 0.388072i
\(965\) 6438.40 11151.6i 0.214777 0.372004i
\(966\) −9016.29 15616.7i −0.300305 0.520143i
\(967\) 7986.48 0.265592 0.132796 0.991143i \(-0.457604\pi\)
0.132796 + 0.991143i \(0.457604\pi\)
\(968\) −4963.49 8597.03i −0.164807 0.285453i
\(969\) 20583.7 + 35652.0i 0.682397 + 1.18195i
\(970\) 7720.00 0.255540
\(971\) −12622.7 21863.2i −0.417180 0.722578i 0.578474 0.815701i \(-0.303648\pi\)
−0.995655 + 0.0931229i \(0.970315\pi\)
\(972\) −3969.44 + 6875.27i −0.130987 + 0.226877i
\(973\) −1484.05 + 2570.45i −0.0488966 + 0.0846914i
\(974\) 10738.0 0.353253
\(975\) 0 0
\(976\) −9660.19 −0.316819
\(977\) 2615.88 4530.83i 0.0856595 0.148367i −0.820013 0.572346i \(-0.806034\pi\)
0.905672 + 0.423979i \(0.139367\pi\)
\(978\) 10140.3 17563.5i 0.331545 0.574252i
\(979\) 3207.63 + 5555.78i 0.104715 + 0.181372i
\(980\) 27081.5 0.882740
\(981\) −21847.2 37840.5i −0.711038 1.23155i
\(982\) −1491.33 2583.07i −0.0484627 0.0839399i
\(983\) 22720.8 0.737212 0.368606 0.929586i \(-0.379835\pi\)
0.368606 + 0.929586i \(0.379835\pi\)
\(984\) −4387.05 7598.59i −0.142128 0.246173i
\(985\) 9476.38 16413.6i 0.306541 0.530944i
\(986\) −1507.77 + 2611.53i −0.0486989 + 0.0843490i
\(987\) −46584.5 −1.50233
\(988\) 0 0
\(989\) 15653.2 0.503279
\(990\) −6645.27 + 11509.9i −0.213334 + 0.369505i
\(991\) −9502.55 + 16458.9i −0.304600 + 0.527582i −0.977172 0.212449i \(-0.931856\pi\)
0.672572 + 0.740031i \(0.265189\pi\)
\(992\) 2671.75 + 4627.60i 0.0855121 + 0.148111i
\(993\) −22284.0 −0.712148
\(994\) 27556.0 + 47728.5i 0.879300 + 1.52299i
\(995\) −8108.51 14044.4i −0.258349 0.447473i
\(996\) −10954.3 −0.348494
\(997\) −24621.6 42645.9i −0.782121 1.35467i −0.930704 0.365773i \(-0.880805\pi\)
0.148583 0.988900i \(-0.452529\pi\)
\(998\) −10067.4 + 17437.2i −0.319316 + 0.553072i
\(999\) −2338.31 + 4050.07i −0.0740549 + 0.128267i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.l.191.3 6
13.2 odd 12 338.4.e.h.23.6 12
13.3 even 3 inner 338.4.c.l.315.3 6
13.4 even 6 338.4.a.k.1.1 yes 3
13.5 odd 4 338.4.e.h.147.3 12
13.6 odd 12 338.4.b.f.337.4 6
13.7 odd 12 338.4.b.f.337.1 6
13.8 odd 4 338.4.e.h.147.6 12
13.9 even 3 338.4.a.j.1.1 3
13.10 even 6 338.4.c.k.315.3 6
13.11 odd 12 338.4.e.h.23.3 12
13.12 even 2 338.4.c.k.191.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.j.1.1 3 13.9 even 3
338.4.a.k.1.1 yes 3 13.4 even 6
338.4.b.f.337.1 6 13.7 odd 12
338.4.b.f.337.4 6 13.6 odd 12
338.4.c.k.191.3 6 13.12 even 2
338.4.c.k.315.3 6 13.10 even 6
338.4.c.l.191.3 6 1.1 even 1 trivial
338.4.c.l.315.3 6 13.3 even 3 inner
338.4.e.h.23.3 12 13.11 odd 12
338.4.e.h.23.6 12 13.2 odd 12
338.4.e.h.147.3 12 13.5 odd 4
338.4.e.h.147.6 12 13.8 odd 4