Properties

Label 338.4.a.j.1.1
Level $338$
Weight $4$
Character 338.1
Self dual yes
Analytic conductor $19.943$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -8.74094 q^{3} +4.00000 q^{4} +14.1685 q^{5} +17.4819 q^{6} -28.6504 q^{7} -8.00000 q^{8} +49.4040 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} -8.74094 q^{3} +4.00000 q^{4} +14.1685 q^{5} +17.4819 q^{6} -28.6504 q^{7} -8.00000 q^{8} +49.4040 q^{9} -28.3370 q^{10} -9.49349 q^{11} -34.9638 q^{12} +57.3008 q^{14} -123.846 q^{15} +16.0000 q^{16} +30.6104 q^{17} -98.8080 q^{18} +153.860 q^{19} +56.6741 q^{20} +250.431 q^{21} +18.9870 q^{22} -36.0030 q^{23} +69.9275 q^{24} +75.7470 q^{25} -195.832 q^{27} -114.602 q^{28} -49.2567 q^{29} +247.692 q^{30} +166.984 q^{31} -32.0000 q^{32} +82.9820 q^{33} -61.2209 q^{34} -405.934 q^{35} +197.616 q^{36} -23.8808 q^{37} -307.720 q^{38} -113.348 q^{40} +125.474 q^{41} -500.863 q^{42} -434.774 q^{43} -37.9739 q^{44} +699.982 q^{45} +72.0061 q^{46} -186.017 q^{47} -139.855 q^{48} +477.845 q^{49} -151.494 q^{50} -267.564 q^{51} -400.631 q^{53} +391.664 q^{54} -134.509 q^{55} +229.203 q^{56} -1344.88 q^{57} +98.5134 q^{58} -408.208 q^{59} -495.385 q^{60} -603.762 q^{61} -333.968 q^{62} -1415.44 q^{63} +64.0000 q^{64} -165.964 q^{66} -287.548 q^{67} +122.442 q^{68} +314.700 q^{69} +811.868 q^{70} -961.803 q^{71} -395.232 q^{72} +963.198 q^{73} +47.7616 q^{74} -662.100 q^{75} +615.440 q^{76} +271.992 q^{77} -1043.18 q^{79} +226.696 q^{80} +377.848 q^{81} -250.948 q^{82} +313.304 q^{83} +1001.73 q^{84} +433.705 q^{85} +869.549 q^{86} +430.550 q^{87} +75.9479 q^{88} +675.754 q^{89} -1399.96 q^{90} -144.012 q^{92} -1459.60 q^{93} +372.034 q^{94} +2179.97 q^{95} +279.710 q^{96} -272.435 q^{97} -955.691 q^{98} -469.016 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - 12 q^{3} + 12 q^{4} + 12 q^{5} + 24 q^{6} - 27 q^{7} - 24 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 6 q^{2} - 12 q^{3} + 12 q^{4} + 12 q^{5} + 24 q^{6} - 27 q^{7} - 24 q^{8} + 9 q^{9} - 24 q^{10} + 82 q^{11} - 48 q^{12} + 54 q^{14} - 90 q^{15} + 48 q^{16} - 90 q^{17} - 18 q^{18} + 130 q^{19} + 48 q^{20} + 234 q^{21} - 164 q^{22} + 19 q^{23} + 96 q^{24} - 61 q^{25} - 69 q^{27} - 108 q^{28} - 101 q^{29} + 180 q^{30} + 519 q^{31} - 96 q^{32} - 146 q^{33} + 180 q^{34} - 458 q^{35} + 36 q^{36} + 84 q^{37} - 260 q^{38} - 96 q^{40} + 187 q^{41} - 468 q^{42} - 1205 q^{43} + 328 q^{44} + 645 q^{45} - 38 q^{46} - 536 q^{47} - 192 q^{48} - 184 q^{49} + 122 q^{50} - 207 q^{51} - 1095 q^{53} + 138 q^{54} - 526 q^{55} + 216 q^{56} - 1409 q^{57} + 202 q^{58} - 1413 q^{59} - 360 q^{60} - 1108 q^{61} - 1038 q^{62} - 1404 q^{63} + 192 q^{64} + 292 q^{66} - 1605 q^{67} - 360 q^{68} - 314 q^{69} + 916 q^{70} - 909 q^{71} - 72 q^{72} + 287 q^{73} - 168 q^{74} - 505 q^{75} + 520 q^{76} + 480 q^{77} - 1961 q^{79} + 192 q^{80} + 915 q^{81} - 374 q^{82} + 191 q^{83} + 936 q^{84} + 67 q^{85} + 2410 q^{86} + 1636 q^{87} - 656 q^{88} + 1091 q^{89} - 1290 q^{90} + 76 q^{92} - 1614 q^{93} + 1072 q^{94} + 1829 q^{95} + 384 q^{96} - 947 q^{97} + 368 q^{98} - 2057 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −8.74094 −1.68219 −0.841097 0.540884i \(-0.818090\pi\)
−0.841097 + 0.540884i \(0.818090\pi\)
\(4\) 4.00000 0.500000
\(5\) 14.1685 1.26727 0.633636 0.773632i \(-0.281562\pi\)
0.633636 + 0.773632i \(0.281562\pi\)
\(6\) 17.4819 1.18949
\(7\) −28.6504 −1.54698 −0.773488 0.633811i \(-0.781490\pi\)
−0.773488 + 0.633811i \(0.781490\pi\)
\(8\) −8.00000 −0.353553
\(9\) 49.4040 1.82978
\(10\) −28.3370 −0.896096
\(11\) −9.49349 −0.260218 −0.130109 0.991500i \(-0.541533\pi\)
−0.130109 + 0.991500i \(0.541533\pi\)
\(12\) −34.9638 −0.841097
\(13\) 0 0
\(14\) 57.3008 1.09388
\(15\) −123.846 −2.13180
\(16\) 16.0000 0.250000
\(17\) 30.6104 0.436713 0.218356 0.975869i \(-0.429930\pi\)
0.218356 + 0.975869i \(0.429930\pi\)
\(18\) −98.8080 −1.29385
\(19\) 153.860 1.85778 0.928892 0.370351i \(-0.120763\pi\)
0.928892 + 0.370351i \(0.120763\pi\)
\(20\) 56.6741 0.633636
\(21\) 250.431 2.60231
\(22\) 18.9870 0.184002
\(23\) −36.0030 −0.326398 −0.163199 0.986593i \(-0.552181\pi\)
−0.163199 + 0.986593i \(0.552181\pi\)
\(24\) 69.9275 0.594746
\(25\) 75.7470 0.605976
\(26\) 0 0
\(27\) −195.832 −1.39585
\(28\) −114.602 −0.773488
\(29\) −49.2567 −0.315405 −0.157702 0.987487i \(-0.550409\pi\)
−0.157702 + 0.987487i \(0.550409\pi\)
\(30\) 247.692 1.50741
\(31\) 166.984 0.967459 0.483730 0.875217i \(-0.339282\pi\)
0.483730 + 0.875217i \(0.339282\pi\)
\(32\) −32.0000 −0.176777
\(33\) 82.9820 0.437737
\(34\) −61.2209 −0.308803
\(35\) −405.934 −1.96044
\(36\) 197.616 0.914889
\(37\) −23.8808 −0.106107 −0.0530537 0.998592i \(-0.516895\pi\)
−0.0530537 + 0.998592i \(0.516895\pi\)
\(38\) −307.720 −1.31365
\(39\) 0 0
\(40\) −113.348 −0.448048
\(41\) 125.474 0.477946 0.238973 0.971026i \(-0.423189\pi\)
0.238973 + 0.971026i \(0.423189\pi\)
\(42\) −500.863 −1.84011
\(43\) −434.774 −1.54192 −0.770959 0.636885i \(-0.780223\pi\)
−0.770959 + 0.636885i \(0.780223\pi\)
\(44\) −37.9739 −0.130109
\(45\) 699.982 2.31883
\(46\) 72.0061 0.230798
\(47\) −186.017 −0.577306 −0.288653 0.957434i \(-0.593207\pi\)
−0.288653 + 0.957434i \(0.593207\pi\)
\(48\) −139.855 −0.420549
\(49\) 477.845 1.39314
\(50\) −151.494 −0.428490
\(51\) −267.564 −0.734636
\(52\) 0 0
\(53\) −400.631 −1.03832 −0.519159 0.854678i \(-0.673755\pi\)
−0.519159 + 0.854678i \(0.673755\pi\)
\(54\) 391.664 0.987014
\(55\) −134.509 −0.329766
\(56\) 229.203 0.546939
\(57\) −1344.88 −3.12515
\(58\) 98.5134 0.223025
\(59\) −408.208 −0.900748 −0.450374 0.892840i \(-0.648709\pi\)
−0.450374 + 0.892840i \(0.648709\pi\)
\(60\) −495.385 −1.06590
\(61\) −603.762 −1.26728 −0.633638 0.773630i \(-0.718439\pi\)
−0.633638 + 0.773630i \(0.718439\pi\)
\(62\) −333.968 −0.684097
\(63\) −1415.44 −2.83062
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −165.964 −0.309527
\(67\) −287.548 −0.524322 −0.262161 0.965024i \(-0.584435\pi\)
−0.262161 + 0.965024i \(0.584435\pi\)
\(68\) 122.442 0.218356
\(69\) 314.700 0.549065
\(70\) 811.868 1.38624
\(71\) −961.803 −1.60768 −0.803838 0.594848i \(-0.797212\pi\)
−0.803838 + 0.594848i \(0.797212\pi\)
\(72\) −395.232 −0.646924
\(73\) 963.198 1.54430 0.772149 0.635441i \(-0.219182\pi\)
0.772149 + 0.635441i \(0.219182\pi\)
\(74\) 47.7616 0.0750293
\(75\) −662.100 −1.01937
\(76\) 615.440 0.928892
\(77\) 271.992 0.402550
\(78\) 0 0
\(79\) −1043.18 −1.48566 −0.742828 0.669482i \(-0.766516\pi\)
−0.742828 + 0.669482i \(0.766516\pi\)
\(80\) 226.696 0.316818
\(81\) 377.848 0.518310
\(82\) −250.948 −0.337959
\(83\) 313.304 0.414332 0.207166 0.978306i \(-0.433576\pi\)
0.207166 + 0.978306i \(0.433576\pi\)
\(84\) 1001.73 1.30116
\(85\) 433.705 0.553434
\(86\) 869.549 1.09030
\(87\) 430.550 0.530572
\(88\) 75.9479 0.0920008
\(89\) 675.754 0.804829 0.402414 0.915458i \(-0.368171\pi\)
0.402414 + 0.915458i \(0.368171\pi\)
\(90\) −1399.96 −1.63966
\(91\) 0 0
\(92\) −144.012 −0.163199
\(93\) −1459.60 −1.62745
\(94\) 372.034 0.408217
\(95\) 2179.97 2.35432
\(96\) 279.710 0.297373
\(97\) −272.435 −0.285171 −0.142585 0.989783i \(-0.545542\pi\)
−0.142585 + 0.989783i \(0.545542\pi\)
\(98\) −955.691 −0.985095
\(99\) −469.016 −0.476140
\(100\) 302.988 0.302988
\(101\) −661.561 −0.651760 −0.325880 0.945411i \(-0.605661\pi\)
−0.325880 + 0.945411i \(0.605661\pi\)
\(102\) 535.128 0.519466
\(103\) −315.353 −0.301676 −0.150838 0.988558i \(-0.548197\pi\)
−0.150838 + 0.988558i \(0.548197\pi\)
\(104\) 0 0
\(105\) 3548.24 3.29784
\(106\) 801.262 0.734202
\(107\) 2121.32 1.91660 0.958299 0.285769i \(-0.0922490\pi\)
0.958299 + 0.285769i \(0.0922490\pi\)
\(108\) −783.328 −0.697924
\(109\) 884.432 0.777185 0.388593 0.921410i \(-0.372961\pi\)
0.388593 + 0.921410i \(0.372961\pi\)
\(110\) 269.017 0.233180
\(111\) 208.740 0.178493
\(112\) −458.406 −0.386744
\(113\) −132.205 −0.110060 −0.0550299 0.998485i \(-0.517525\pi\)
−0.0550299 + 0.998485i \(0.517525\pi\)
\(114\) 2689.76 2.20982
\(115\) −510.110 −0.413635
\(116\) −197.027 −0.157702
\(117\) 0 0
\(118\) 816.415 0.636925
\(119\) −877.001 −0.675585
\(120\) 990.769 0.753704
\(121\) −1240.87 −0.932287
\(122\) 1207.52 0.896099
\(123\) −1096.76 −0.803998
\(124\) 667.937 0.483730
\(125\) −697.842 −0.499335
\(126\) 2830.89 2.00155
\(127\) −1872.81 −1.30854 −0.654271 0.756260i \(-0.727024\pi\)
−0.654271 + 0.756260i \(0.727024\pi\)
\(128\) −128.000 −0.0883883
\(129\) 3800.34 2.59381
\(130\) 0 0
\(131\) −1850.21 −1.23400 −0.617000 0.786963i \(-0.711652\pi\)
−0.617000 + 0.786963i \(0.711652\pi\)
\(132\) 331.928 0.218868
\(133\) −4408.15 −2.87395
\(134\) 575.096 0.370751
\(135\) −2774.65 −1.76892
\(136\) −244.883 −0.154401
\(137\) 967.375 0.603273 0.301637 0.953423i \(-0.402467\pi\)
0.301637 + 0.953423i \(0.402467\pi\)
\(138\) −629.401 −0.388247
\(139\) −103.597 −0.0632157 −0.0316078 0.999500i \(-0.510063\pi\)
−0.0316078 + 0.999500i \(0.510063\pi\)
\(140\) −1623.74 −0.980219
\(141\) 1625.96 0.971140
\(142\) 1923.61 1.13680
\(143\) 0 0
\(144\) 790.464 0.457445
\(145\) −697.894 −0.399703
\(146\) −1926.40 −1.09198
\(147\) −4176.82 −2.34352
\(148\) −95.5231 −0.0530537
\(149\) −1917.44 −1.05424 −0.527122 0.849789i \(-0.676729\pi\)
−0.527122 + 0.849789i \(0.676729\pi\)
\(150\) 1324.20 0.720803
\(151\) −2035.28 −1.09688 −0.548439 0.836191i \(-0.684778\pi\)
−0.548439 + 0.836191i \(0.684778\pi\)
\(152\) −1230.88 −0.656826
\(153\) 1512.28 0.799088
\(154\) −543.984 −0.284646
\(155\) 2365.92 1.22603
\(156\) 0 0
\(157\) −615.393 −0.312826 −0.156413 0.987692i \(-0.549993\pi\)
−0.156413 + 0.987692i \(0.549993\pi\)
\(158\) 2086.36 1.05052
\(159\) 3501.89 1.74665
\(160\) −453.393 −0.224024
\(161\) 1031.50 0.504930
\(162\) −755.696 −0.366501
\(163\) −1160.09 −0.557456 −0.278728 0.960370i \(-0.589913\pi\)
−0.278728 + 0.960370i \(0.589913\pi\)
\(164\) 501.897 0.238973
\(165\) 1175.73 0.554731
\(166\) −626.608 −0.292977
\(167\) 2029.26 0.940295 0.470147 0.882588i \(-0.344201\pi\)
0.470147 + 0.882588i \(0.344201\pi\)
\(168\) −2003.45 −0.920057
\(169\) 0 0
\(170\) −867.409 −0.391337
\(171\) 7601.30 3.39933
\(172\) −1739.10 −0.770959
\(173\) −3073.60 −1.35076 −0.675380 0.737469i \(-0.736021\pi\)
−0.675380 + 0.737469i \(0.736021\pi\)
\(174\) −861.099 −0.375171
\(175\) −2170.18 −0.937431
\(176\) −151.896 −0.0650544
\(177\) 3568.12 1.51523
\(178\) −1351.51 −0.569100
\(179\) 2313.89 0.966190 0.483095 0.875568i \(-0.339513\pi\)
0.483095 + 0.875568i \(0.339513\pi\)
\(180\) 2799.93 1.15941
\(181\) −1670.01 −0.685805 −0.342903 0.939371i \(-0.611410\pi\)
−0.342903 + 0.939371i \(0.611410\pi\)
\(182\) 0 0
\(183\) 5277.44 2.13180
\(184\) 288.024 0.115399
\(185\) −338.355 −0.134467
\(186\) 2919.20 1.15078
\(187\) −290.600 −0.113640
\(188\) −744.068 −0.288653
\(189\) 5610.67 2.15934
\(190\) −4359.94 −1.66475
\(191\) 3825.21 1.44912 0.724561 0.689211i \(-0.242043\pi\)
0.724561 + 0.689211i \(0.242043\pi\)
\(192\) −559.420 −0.210274
\(193\) −908.832 −0.338959 −0.169480 0.985534i \(-0.554209\pi\)
−0.169480 + 0.985534i \(0.554209\pi\)
\(194\) 544.869 0.201646
\(195\) 0 0
\(196\) 1911.38 0.696568
\(197\) −1337.67 −0.483781 −0.241890 0.970304i \(-0.577767\pi\)
−0.241890 + 0.970304i \(0.577767\pi\)
\(198\) 938.033 0.336682
\(199\) 1144.58 0.407725 0.203862 0.979000i \(-0.434651\pi\)
0.203862 + 0.979000i \(0.434651\pi\)
\(200\) −605.976 −0.214245
\(201\) 2513.44 0.882011
\(202\) 1323.12 0.460864
\(203\) 1411.22 0.487924
\(204\) −1070.26 −0.367318
\(205\) 1777.78 0.605687
\(206\) 630.706 0.213317
\(207\) −1778.69 −0.597236
\(208\) 0 0
\(209\) −1460.67 −0.483428
\(210\) −7096.49 −2.33192
\(211\) −11.2252 −0.00366245 −0.00183123 0.999998i \(-0.500583\pi\)
−0.00183123 + 0.999998i \(0.500583\pi\)
\(212\) −1602.52 −0.519159
\(213\) 8407.06 2.70442
\(214\) −4242.64 −1.35524
\(215\) −6160.11 −1.95403
\(216\) 1566.66 0.493507
\(217\) −4784.16 −1.49664
\(218\) −1768.86 −0.549553
\(219\) −8419.25 −2.59781
\(220\) −538.035 −0.164883
\(221\) 0 0
\(222\) −417.481 −0.126214
\(223\) −2739.74 −0.822720 −0.411360 0.911473i \(-0.634946\pi\)
−0.411360 + 0.911473i \(0.634946\pi\)
\(224\) 916.813 0.273469
\(225\) 3742.21 1.10880
\(226\) 264.409 0.0778241
\(227\) 4529.75 1.32445 0.662225 0.749305i \(-0.269612\pi\)
0.662225 + 0.749305i \(0.269612\pi\)
\(228\) −5379.52 −1.56258
\(229\) −867.892 −0.250445 −0.125222 0.992129i \(-0.539964\pi\)
−0.125222 + 0.992129i \(0.539964\pi\)
\(230\) 1020.22 0.292484
\(231\) −2377.47 −0.677168
\(232\) 394.053 0.111512
\(233\) 535.138 0.150464 0.0752319 0.997166i \(-0.476030\pi\)
0.0752319 + 0.997166i \(0.476030\pi\)
\(234\) 0 0
\(235\) −2635.59 −0.731603
\(236\) −1632.83 −0.450374
\(237\) 9118.36 2.49916
\(238\) 1754.00 0.477710
\(239\) −1146.73 −0.310359 −0.155180 0.987886i \(-0.549596\pi\)
−0.155180 + 0.987886i \(0.549596\pi\)
\(240\) −1981.54 −0.532949
\(241\) −3353.03 −0.896215 −0.448107 0.893980i \(-0.647902\pi\)
−0.448107 + 0.893980i \(0.647902\pi\)
\(242\) 2481.75 0.659226
\(243\) 1984.72 0.523950
\(244\) −2415.05 −0.633638
\(245\) 6770.36 1.76548
\(246\) 2193.52 0.568512
\(247\) 0 0
\(248\) −1335.87 −0.342048
\(249\) −2738.57 −0.696987
\(250\) 1395.68 0.353083
\(251\) 5357.96 1.34738 0.673688 0.739016i \(-0.264709\pi\)
0.673688 + 0.739016i \(0.264709\pi\)
\(252\) −5661.78 −1.41531
\(253\) 341.794 0.0849345
\(254\) 3745.62 0.925279
\(255\) −3790.99 −0.930983
\(256\) 256.000 0.0625000
\(257\) −6292.11 −1.52720 −0.763601 0.645689i \(-0.776570\pi\)
−0.763601 + 0.645689i \(0.776570\pi\)
\(258\) −7600.67 −1.83410
\(259\) 684.194 0.164146
\(260\) 0 0
\(261\) −2433.48 −0.577121
\(262\) 3700.43 0.872569
\(263\) −4797.76 −1.12488 −0.562438 0.826840i \(-0.690136\pi\)
−0.562438 + 0.826840i \(0.690136\pi\)
\(264\) −663.856 −0.154763
\(265\) −5676.35 −1.31583
\(266\) 8816.30 2.03219
\(267\) −5906.72 −1.35388
\(268\) −1150.19 −0.262161
\(269\) 6246.43 1.41581 0.707903 0.706310i \(-0.249642\pi\)
0.707903 + 0.706310i \(0.249642\pi\)
\(270\) 5549.30 1.25081
\(271\) 1831.15 0.410460 0.205230 0.978714i \(-0.434206\pi\)
0.205230 + 0.978714i \(0.434206\pi\)
\(272\) 489.767 0.109178
\(273\) 0 0
\(274\) −1934.75 −0.426578
\(275\) −719.103 −0.157686
\(276\) 1258.80 0.274532
\(277\) −1601.42 −0.347365 −0.173683 0.984802i \(-0.555567\pi\)
−0.173683 + 0.984802i \(0.555567\pi\)
\(278\) 207.194 0.0447002
\(279\) 8249.69 1.77024
\(280\) 3247.47 0.693120
\(281\) 4516.64 0.958861 0.479431 0.877580i \(-0.340843\pi\)
0.479431 + 0.877580i \(0.340843\pi\)
\(282\) −3251.93 −0.686700
\(283\) 7083.02 1.48778 0.743890 0.668302i \(-0.232978\pi\)
0.743890 + 0.668302i \(0.232978\pi\)
\(284\) −3847.21 −0.803838
\(285\) −19055.0 −3.96042
\(286\) 0 0
\(287\) −3594.89 −0.739371
\(288\) −1580.93 −0.323462
\(289\) −3976.00 −0.809282
\(290\) 1395.79 0.282633
\(291\) 2381.34 0.479713
\(292\) 3852.79 0.772149
\(293\) 6923.52 1.38047 0.690233 0.723588i \(-0.257508\pi\)
0.690233 + 0.723588i \(0.257508\pi\)
\(294\) 8353.64 1.65712
\(295\) −5783.70 −1.14149
\(296\) 191.046 0.0375146
\(297\) 1859.13 0.363224
\(298\) 3834.87 0.745463
\(299\) 0 0
\(300\) −2648.40 −0.509685
\(301\) 12456.5 2.38531
\(302\) 4070.56 0.775610
\(303\) 5782.66 1.09639
\(304\) 2461.76 0.464446
\(305\) −8554.41 −1.60598
\(306\) −3024.56 −0.565040
\(307\) −8778.50 −1.63197 −0.815986 0.578071i \(-0.803805\pi\)
−0.815986 + 0.578071i \(0.803805\pi\)
\(308\) 1087.97 0.201275
\(309\) 2756.48 0.507478
\(310\) −4731.84 −0.866936
\(311\) −2197.35 −0.400644 −0.200322 0.979730i \(-0.564199\pi\)
−0.200322 + 0.979730i \(0.564199\pi\)
\(312\) 0 0
\(313\) −5052.55 −0.912419 −0.456209 0.889873i \(-0.650793\pi\)
−0.456209 + 0.889873i \(0.650793\pi\)
\(314\) 1230.79 0.221201
\(315\) −20054.8 −3.58717
\(316\) −4172.72 −0.742828
\(317\) −1889.91 −0.334852 −0.167426 0.985885i \(-0.553545\pi\)
−0.167426 + 0.985885i \(0.553545\pi\)
\(318\) −7003.78 −1.23507
\(319\) 467.618 0.0820738
\(320\) 906.785 0.158409
\(321\) −18542.3 −3.22409
\(322\) −2063.00 −0.357039
\(323\) 4709.72 0.811318
\(324\) 1511.39 0.259155
\(325\) 0 0
\(326\) 2320.18 0.394181
\(327\) −7730.76 −1.30738
\(328\) −1003.79 −0.168979
\(329\) 5329.46 0.893078
\(330\) −2351.46 −0.392254
\(331\) 2549.39 0.423344 0.211672 0.977341i \(-0.432109\pi\)
0.211672 + 0.977341i \(0.432109\pi\)
\(332\) 1253.22 0.207166
\(333\) −1179.81 −0.194153
\(334\) −4058.53 −0.664889
\(335\) −4074.13 −0.664458
\(336\) 4006.90 0.650579
\(337\) 140.649 0.0227349 0.0113674 0.999935i \(-0.496382\pi\)
0.0113674 + 0.999935i \(0.496382\pi\)
\(338\) 0 0
\(339\) 1155.59 0.185142
\(340\) 1734.82 0.276717
\(341\) −1585.26 −0.251750
\(342\) −15202.6 −2.40369
\(343\) −3863.38 −0.608171
\(344\) 3478.19 0.545150
\(345\) 4458.84 0.695814
\(346\) 6147.20 0.955132
\(347\) 140.513 0.0217382 0.0108691 0.999941i \(-0.496540\pi\)
0.0108691 + 0.999941i \(0.496540\pi\)
\(348\) 1722.20 0.265286
\(349\) −12273.2 −1.88244 −0.941220 0.337794i \(-0.890319\pi\)
−0.941220 + 0.337794i \(0.890319\pi\)
\(350\) 4340.37 0.662864
\(351\) 0 0
\(352\) 303.792 0.0460004
\(353\) −5887.97 −0.887776 −0.443888 0.896082i \(-0.646401\pi\)
−0.443888 + 0.896082i \(0.646401\pi\)
\(354\) −7136.24 −1.07143
\(355\) −13627.3 −2.03736
\(356\) 2703.02 0.402414
\(357\) 7665.81 1.13646
\(358\) −4627.77 −0.683199
\(359\) 5902.88 0.867806 0.433903 0.900960i \(-0.357136\pi\)
0.433903 + 0.900960i \(0.357136\pi\)
\(360\) −5599.85 −0.819828
\(361\) 16813.9 2.45136
\(362\) 3340.02 0.484937
\(363\) 10846.4 1.56829
\(364\) 0 0
\(365\) 13647.1 1.95704
\(366\) −10554.9 −1.50741
\(367\) −3318.93 −0.472062 −0.236031 0.971746i \(-0.575847\pi\)
−0.236031 + 0.971746i \(0.575847\pi\)
\(368\) −576.049 −0.0815995
\(369\) 6198.93 0.874535
\(370\) 676.711 0.0950825
\(371\) 11478.2 1.60625
\(372\) −5838.39 −0.813727
\(373\) 242.215 0.0336232 0.0168116 0.999859i \(-0.494648\pi\)
0.0168116 + 0.999859i \(0.494648\pi\)
\(374\) 581.199 0.0803559
\(375\) 6099.79 0.839979
\(376\) 1488.14 0.204108
\(377\) 0 0
\(378\) −11221.3 −1.52689
\(379\) 12904.3 1.74894 0.874469 0.485081i \(-0.161210\pi\)
0.874469 + 0.485081i \(0.161210\pi\)
\(380\) 8719.87 1.17716
\(381\) 16370.1 2.20122
\(382\) −7650.41 −1.02468
\(383\) 4591.02 0.612507 0.306253 0.951950i \(-0.400925\pi\)
0.306253 + 0.951950i \(0.400925\pi\)
\(384\) 1118.84 0.148686
\(385\) 3853.73 0.510141
\(386\) 1817.66 0.239680
\(387\) −21479.6 −2.82137
\(388\) −1089.74 −0.142585
\(389\) −13973.1 −1.82125 −0.910623 0.413239i \(-0.864397\pi\)
−0.910623 + 0.413239i \(0.864397\pi\)
\(390\) 0 0
\(391\) −1102.07 −0.142542
\(392\) −3822.76 −0.492548
\(393\) 16172.6 2.07583
\(394\) 2675.33 0.342085
\(395\) −14780.3 −1.88273
\(396\) −1876.07 −0.238070
\(397\) −2617.73 −0.330932 −0.165466 0.986215i \(-0.552913\pi\)
−0.165466 + 0.986215i \(0.552913\pi\)
\(398\) −2289.16 −0.288305
\(399\) 38531.4 4.83454
\(400\) 1211.95 0.151494
\(401\) −7889.19 −0.982463 −0.491231 0.871029i \(-0.663453\pi\)
−0.491231 + 0.871029i \(0.663453\pi\)
\(402\) −5026.87 −0.623676
\(403\) 0 0
\(404\) −2646.24 −0.325880
\(405\) 5353.55 0.656839
\(406\) −2822.45 −0.345014
\(407\) 226.712 0.0276110
\(408\) 2140.51 0.259733
\(409\) −7731.54 −0.934719 −0.467359 0.884067i \(-0.654795\pi\)
−0.467359 + 0.884067i \(0.654795\pi\)
\(410\) −3555.57 −0.428285
\(411\) −8455.76 −1.01482
\(412\) −1261.41 −0.150838
\(413\) 11695.3 1.39344
\(414\) 3557.39 0.422309
\(415\) 4439.05 0.525071
\(416\) 0 0
\(417\) 905.535 0.106341
\(418\) 2921.33 0.341835
\(419\) 2756.41 0.321383 0.160691 0.987005i \(-0.448628\pi\)
0.160691 + 0.987005i \(0.448628\pi\)
\(420\) 14193.0 1.64892
\(421\) 11815.2 1.36778 0.683890 0.729585i \(-0.260287\pi\)
0.683890 + 0.729585i \(0.260287\pi\)
\(422\) 22.4505 0.00258974
\(423\) −9189.98 −1.05634
\(424\) 3205.05 0.367101
\(425\) 2318.65 0.264638
\(426\) −16814.1 −1.91232
\(427\) 17298.0 1.96044
\(428\) 8485.29 0.958299
\(429\) 0 0
\(430\) 12320.2 1.38171
\(431\) −10601.2 −1.18479 −0.592393 0.805649i \(-0.701817\pi\)
−0.592393 + 0.805649i \(0.701817\pi\)
\(432\) −3133.31 −0.348962
\(433\) −9229.72 −1.02437 −0.512185 0.858875i \(-0.671164\pi\)
−0.512185 + 0.858875i \(0.671164\pi\)
\(434\) 9568.32 1.05828
\(435\) 6100.25 0.672379
\(436\) 3537.73 0.388593
\(437\) −5539.42 −0.606377
\(438\) 16838.5 1.83693
\(439\) 7201.66 0.782953 0.391476 0.920188i \(-0.371964\pi\)
0.391476 + 0.920188i \(0.371964\pi\)
\(440\) 1076.07 0.116590
\(441\) 23607.5 2.54913
\(442\) 0 0
\(443\) −3544.70 −0.380167 −0.190083 0.981768i \(-0.560876\pi\)
−0.190083 + 0.981768i \(0.560876\pi\)
\(444\) 834.962 0.0892467
\(445\) 9574.43 1.01994
\(446\) 5479.48 0.581751
\(447\) 16760.2 1.77344
\(448\) −1833.63 −0.193372
\(449\) −18325.4 −1.92612 −0.963059 0.269289i \(-0.913211\pi\)
−0.963059 + 0.269289i \(0.913211\pi\)
\(450\) −7484.41 −0.784041
\(451\) −1191.19 −0.124370
\(452\) −528.818 −0.0550299
\(453\) 17790.2 1.84516
\(454\) −9059.50 −0.936527
\(455\) 0 0
\(456\) 10759.0 1.10491
\(457\) −5383.84 −0.551084 −0.275542 0.961289i \(-0.588857\pi\)
−0.275542 + 0.961289i \(0.588857\pi\)
\(458\) 1735.78 0.177091
\(459\) −5994.51 −0.609585
\(460\) −2040.44 −0.206817
\(461\) −10621.1 −1.07305 −0.536525 0.843885i \(-0.680263\pi\)
−0.536525 + 0.843885i \(0.680263\pi\)
\(462\) 4754.93 0.478830
\(463\) 10407.3 1.04464 0.522318 0.852751i \(-0.325067\pi\)
0.522318 + 0.852751i \(0.325067\pi\)
\(464\) −788.107 −0.0788512
\(465\) −20680.3 −2.06243
\(466\) −1070.28 −0.106394
\(467\) −15784.0 −1.56402 −0.782010 0.623266i \(-0.785805\pi\)
−0.782010 + 0.623266i \(0.785805\pi\)
\(468\) 0 0
\(469\) 8238.36 0.811113
\(470\) 5271.17 0.517321
\(471\) 5379.11 0.526234
\(472\) 3265.66 0.318462
\(473\) 4127.52 0.401234
\(474\) −18236.7 −1.76717
\(475\) 11654.4 1.12577
\(476\) −3508.00 −0.337792
\(477\) −19792.8 −1.89989
\(478\) 2293.46 0.219457
\(479\) −18263.7 −1.74215 −0.871075 0.491149i \(-0.836577\pi\)
−0.871075 + 0.491149i \(0.836577\pi\)
\(480\) 3963.08 0.376852
\(481\) 0 0
\(482\) 6706.06 0.633720
\(483\) −9016.29 −0.849390
\(484\) −4963.49 −0.466143
\(485\) −3860.00 −0.361389
\(486\) −3969.44 −0.370489
\(487\) −5369.01 −0.499575 −0.249788 0.968301i \(-0.580361\pi\)
−0.249788 + 0.968301i \(0.580361\pi\)
\(488\) 4830.09 0.448049
\(489\) 10140.3 0.937750
\(490\) −13540.7 −1.24838
\(491\) −1491.33 −0.137073 −0.0685366 0.997649i \(-0.521833\pi\)
−0.0685366 + 0.997649i \(0.521833\pi\)
\(492\) −4387.05 −0.401999
\(493\) −1507.77 −0.137741
\(494\) 0 0
\(495\) −6645.27 −0.603399
\(496\) 2671.75 0.241865
\(497\) 27556.0 2.48704
\(498\) 5477.14 0.492844
\(499\) −10067.4 −0.903163 −0.451582 0.892230i \(-0.649140\pi\)
−0.451582 + 0.892230i \(0.649140\pi\)
\(500\) −2791.37 −0.249668
\(501\) −17737.7 −1.58176
\(502\) −10715.9 −0.952738
\(503\) 4683.07 0.415124 0.207562 0.978222i \(-0.433447\pi\)
0.207562 + 0.978222i \(0.433447\pi\)
\(504\) 11323.6 1.00078
\(505\) −9373.34 −0.825957
\(506\) −683.589 −0.0600577
\(507\) 0 0
\(508\) −7491.23 −0.654271
\(509\) 11545.0 1.00535 0.502673 0.864476i \(-0.332350\pi\)
0.502673 + 0.864476i \(0.332350\pi\)
\(510\) 7581.97 0.658305
\(511\) −27596.0 −2.38899
\(512\) −512.000 −0.0441942
\(513\) −30130.7 −2.59318
\(514\) 12584.2 1.07989
\(515\) −4468.09 −0.382306
\(516\) 15201.3 1.29690
\(517\) 1765.95 0.150225
\(518\) −1368.39 −0.116069
\(519\) 26866.2 2.27224
\(520\) 0 0
\(521\) 19889.6 1.67252 0.836258 0.548336i \(-0.184739\pi\)
0.836258 + 0.548336i \(0.184739\pi\)
\(522\) 4866.96 0.408086
\(523\) −5090.07 −0.425570 −0.212785 0.977099i \(-0.568253\pi\)
−0.212785 + 0.977099i \(0.568253\pi\)
\(524\) −7400.86 −0.617000
\(525\) 18969.4 1.57694
\(526\) 9595.51 0.795407
\(527\) 5111.46 0.422502
\(528\) 1327.71 0.109434
\(529\) −10870.8 −0.893464
\(530\) 11352.7 0.930433
\(531\) −20167.1 −1.64817
\(532\) −17632.6 −1.43697
\(533\) 0 0
\(534\) 11813.4 0.957337
\(535\) 30056.0 2.42885
\(536\) 2300.38 0.185376
\(537\) −20225.5 −1.62532
\(538\) −12492.9 −1.00113
\(539\) −4536.42 −0.362518
\(540\) −11098.6 −0.884459
\(541\) −5958.49 −0.473523 −0.236761 0.971568i \(-0.576086\pi\)
−0.236761 + 0.971568i \(0.576086\pi\)
\(542\) −3662.30 −0.290239
\(543\) 14597.4 1.15366
\(544\) −979.534 −0.0772007
\(545\) 12531.1 0.984905
\(546\) 0 0
\(547\) 2475.52 0.193502 0.0967509 0.995309i \(-0.469155\pi\)
0.0967509 + 0.995309i \(0.469155\pi\)
\(548\) 3869.50 0.301637
\(549\) −29828.3 −2.31883
\(550\) 1438.21 0.111501
\(551\) −7578.63 −0.585954
\(552\) −2517.60 −0.194124
\(553\) 29887.5 2.29827
\(554\) 3202.85 0.245624
\(555\) 2957.54 0.226199
\(556\) −414.388 −0.0316078
\(557\) 23311.5 1.77332 0.886662 0.462417i \(-0.153018\pi\)
0.886662 + 0.462417i \(0.153018\pi\)
\(558\) −16499.4 −1.25175
\(559\) 0 0
\(560\) −6494.94 −0.490110
\(561\) 2540.11 0.191165
\(562\) −9033.27 −0.678017
\(563\) 24626.2 1.84347 0.921733 0.387825i \(-0.126773\pi\)
0.921733 + 0.387825i \(0.126773\pi\)
\(564\) 6503.85 0.485570
\(565\) −1873.14 −0.139476
\(566\) −14166.0 −1.05202
\(567\) −10825.5 −0.801813
\(568\) 7694.42 0.568399
\(569\) −13198.6 −0.972431 −0.486215 0.873839i \(-0.661623\pi\)
−0.486215 + 0.873839i \(0.661623\pi\)
\(570\) 38109.9 2.80044
\(571\) 20934.2 1.53427 0.767137 0.641483i \(-0.221681\pi\)
0.767137 + 0.641483i \(0.221681\pi\)
\(572\) 0 0
\(573\) −33435.9 −2.43770
\(574\) 7189.77 0.522814
\(575\) −2727.12 −0.197789
\(576\) 3161.86 0.228722
\(577\) −17083.2 −1.23255 −0.616275 0.787531i \(-0.711359\pi\)
−0.616275 + 0.787531i \(0.711359\pi\)
\(578\) 7952.00 0.572249
\(579\) 7944.04 0.570195
\(580\) −2791.58 −0.199852
\(581\) −8976.28 −0.640962
\(582\) −4762.67 −0.339208
\(583\) 3803.38 0.270189
\(584\) −7705.58 −0.545992
\(585\) 0 0
\(586\) −13847.0 −0.976136
\(587\) −4458.82 −0.313518 −0.156759 0.987637i \(-0.550105\pi\)
−0.156759 + 0.987637i \(0.550105\pi\)
\(588\) −16707.3 −1.17176
\(589\) 25692.2 1.79733
\(590\) 11567.4 0.807156
\(591\) 11692.5 0.813813
\(592\) −382.092 −0.0265269
\(593\) 3217.47 0.222809 0.111404 0.993775i \(-0.464465\pi\)
0.111404 + 0.993775i \(0.464465\pi\)
\(594\) −3718.26 −0.256838
\(595\) −12425.8 −0.856149
\(596\) −7669.74 −0.527122
\(597\) −10004.7 −0.685872
\(598\) 0 0
\(599\) −4495.37 −0.306637 −0.153319 0.988177i \(-0.548996\pi\)
−0.153319 + 0.988177i \(0.548996\pi\)
\(600\) 5296.80 0.360402
\(601\) −10918.5 −0.741054 −0.370527 0.928822i \(-0.620823\pi\)
−0.370527 + 0.928822i \(0.620823\pi\)
\(602\) −24912.9 −1.68667
\(603\) −14206.0 −0.959392
\(604\) −8141.11 −0.548439
\(605\) −17581.3 −1.18146
\(606\) −11565.3 −0.775263
\(607\) 12487.0 0.834980 0.417490 0.908682i \(-0.362910\pi\)
0.417490 + 0.908682i \(0.362910\pi\)
\(608\) −4923.52 −0.328413
\(609\) −12335.4 −0.820782
\(610\) 17108.8 1.13560
\(611\) 0 0
\(612\) 6049.11 0.399544
\(613\) −961.468 −0.0633496 −0.0316748 0.999498i \(-0.510084\pi\)
−0.0316748 + 0.999498i \(0.510084\pi\)
\(614\) 17557.0 1.15398
\(615\) −15539.5 −1.01888
\(616\) −2175.94 −0.142323
\(617\) 15433.5 1.00701 0.503507 0.863991i \(-0.332043\pi\)
0.503507 + 0.863991i \(0.332043\pi\)
\(618\) −5512.96 −0.358841
\(619\) −24569.6 −1.59537 −0.797686 0.603073i \(-0.793943\pi\)
−0.797686 + 0.603073i \(0.793943\pi\)
\(620\) 9463.67 0.613017
\(621\) 7050.55 0.455602
\(622\) 4394.70 0.283298
\(623\) −19360.6 −1.24505
\(624\) 0 0
\(625\) −19355.8 −1.23877
\(626\) 10105.1 0.645177
\(627\) 12767.6 0.813220
\(628\) −2461.57 −0.156413
\(629\) −731.001 −0.0463385
\(630\) 40109.5 2.53651
\(631\) −13322.2 −0.840489 −0.420245 0.907411i \(-0.638056\pi\)
−0.420245 + 0.907411i \(0.638056\pi\)
\(632\) 8345.43 0.525259
\(633\) 98.1191 0.00616096
\(634\) 3779.82 0.236776
\(635\) −26534.9 −1.65828
\(636\) 14007.6 0.873327
\(637\) 0 0
\(638\) −935.235 −0.0580350
\(639\) −47516.9 −2.94169
\(640\) −1813.57 −0.112012
\(641\) 14894.6 0.917784 0.458892 0.888492i \(-0.348246\pi\)
0.458892 + 0.888492i \(0.348246\pi\)
\(642\) 37084.7 2.27978
\(643\) −9247.56 −0.567167 −0.283583 0.958948i \(-0.591523\pi\)
−0.283583 + 0.958948i \(0.591523\pi\)
\(644\) 4126.01 0.252465
\(645\) 53845.1 3.28705
\(646\) −9419.44 −0.573689
\(647\) 2734.14 0.166136 0.0830681 0.996544i \(-0.473528\pi\)
0.0830681 + 0.996544i \(0.473528\pi\)
\(648\) −3022.78 −0.183250
\(649\) 3875.31 0.234390
\(650\) 0 0
\(651\) 41818.1 2.51763
\(652\) −4640.37 −0.278728
\(653\) −6562.78 −0.393295 −0.196647 0.980474i \(-0.563005\pi\)
−0.196647 + 0.980474i \(0.563005\pi\)
\(654\) 15461.5 0.924455
\(655\) −26214.8 −1.56381
\(656\) 2007.59 0.119486
\(657\) 47585.8 2.82572
\(658\) −10658.9 −0.631501
\(659\) −4953.84 −0.292829 −0.146414 0.989223i \(-0.546773\pi\)
−0.146414 + 0.989223i \(0.546773\pi\)
\(660\) 4702.93 0.277365
\(661\) 9347.27 0.550025 0.275013 0.961441i \(-0.411318\pi\)
0.275013 + 0.961441i \(0.411318\pi\)
\(662\) −5098.78 −0.299350
\(663\) 0 0
\(664\) −2506.43 −0.146489
\(665\) −62456.9 −3.64207
\(666\) 2359.61 0.137287
\(667\) 1773.39 0.102947
\(668\) 8117.06 0.470147
\(669\) 23947.9 1.38398
\(670\) 8148.25 0.469843
\(671\) 5731.80 0.329767
\(672\) −8013.80 −0.460029
\(673\) 15419.0 0.883150 0.441575 0.897224i \(-0.354420\pi\)
0.441575 + 0.897224i \(0.354420\pi\)
\(674\) −281.298 −0.0160760
\(675\) −14833.7 −0.845851
\(676\) 0 0
\(677\) 26079.0 1.48050 0.740248 0.672334i \(-0.234708\pi\)
0.740248 + 0.672334i \(0.234708\pi\)
\(678\) −2311.18 −0.130915
\(679\) 7805.36 0.441152
\(680\) −3469.64 −0.195668
\(681\) −39594.3 −2.22798
\(682\) 3170.52 0.178014
\(683\) −14890.0 −0.834190 −0.417095 0.908863i \(-0.636952\pi\)
−0.417095 + 0.908863i \(0.636952\pi\)
\(684\) 30405.2 1.69967
\(685\) 13706.3 0.764510
\(686\) 7726.75 0.430042
\(687\) 7586.19 0.421297
\(688\) −6956.39 −0.385479
\(689\) 0 0
\(690\) −8917.68 −0.492015
\(691\) −4071.03 −0.224123 −0.112062 0.993701i \(-0.535745\pi\)
−0.112062 + 0.993701i \(0.535745\pi\)
\(692\) −12294.4 −0.675380
\(693\) 13437.5 0.736578
\(694\) −281.026 −0.0153712
\(695\) −1467.82 −0.0801114
\(696\) −3444.40 −0.187586
\(697\) 3840.82 0.208725
\(698\) 24546.5 1.33109
\(699\) −4677.61 −0.253109
\(700\) −8680.73 −0.468715
\(701\) 18378.1 0.990200 0.495100 0.868836i \(-0.335131\pi\)
0.495100 + 0.868836i \(0.335131\pi\)
\(702\) 0 0
\(703\) −3674.29 −0.197125
\(704\) −607.583 −0.0325272
\(705\) 23037.5 1.23070
\(706\) 11775.9 0.627753
\(707\) 18954.0 1.00826
\(708\) 14272.5 0.757616
\(709\) 14946.4 0.791710 0.395855 0.918313i \(-0.370448\pi\)
0.395855 + 0.918313i \(0.370448\pi\)
\(710\) 27254.7 1.44063
\(711\) −51537.2 −2.71842
\(712\) −5406.03 −0.284550
\(713\) −6011.94 −0.315777
\(714\) −15331.6 −0.803602
\(715\) 0 0
\(716\) 9255.55 0.483095
\(717\) 10023.5 0.522084
\(718\) −11805.8 −0.613631
\(719\) 15005.8 0.778335 0.389168 0.921167i \(-0.372763\pi\)
0.389168 + 0.921167i \(0.372763\pi\)
\(720\) 11199.7 0.579706
\(721\) 9034.99 0.466686
\(722\) −33627.8 −1.73337
\(723\) 29308.6 1.50761
\(724\) −6680.03 −0.342903
\(725\) −3731.05 −0.191128
\(726\) −21692.8 −1.10895
\(727\) −30390.1 −1.55035 −0.775177 0.631744i \(-0.782339\pi\)
−0.775177 + 0.631744i \(0.782339\pi\)
\(728\) 0 0
\(729\) −27550.2 −1.39970
\(730\) −27294.2 −1.38384
\(731\) −13308.6 −0.673375
\(732\) 21109.8 1.06590
\(733\) 31143.3 1.56931 0.784655 0.619932i \(-0.212840\pi\)
0.784655 + 0.619932i \(0.212840\pi\)
\(734\) 6637.86 0.333798
\(735\) −59179.3 −2.96988
\(736\) 1152.10 0.0576995
\(737\) 2729.83 0.136438
\(738\) −12397.9 −0.618389
\(739\) 3884.81 0.193376 0.0966881 0.995315i \(-0.469175\pi\)
0.0966881 + 0.995315i \(0.469175\pi\)
\(740\) −1353.42 −0.0672334
\(741\) 0 0
\(742\) −22956.5 −1.13579
\(743\) 11614.8 0.573495 0.286748 0.958006i \(-0.407426\pi\)
0.286748 + 0.958006i \(0.407426\pi\)
\(744\) 11676.8 0.575392
\(745\) −27167.2 −1.33601
\(746\) −484.431 −0.0237752
\(747\) 15478.5 0.758136
\(748\) −1162.40 −0.0568202
\(749\) −60776.7 −2.96493
\(750\) −12199.6 −0.593955
\(751\) −34410.2 −1.67196 −0.835982 0.548757i \(-0.815101\pi\)
−0.835982 + 0.548757i \(0.815101\pi\)
\(752\) −2976.27 −0.144326
\(753\) −46833.6 −2.26655
\(754\) 0 0
\(755\) −28836.9 −1.39004
\(756\) 22442.7 1.07967
\(757\) −29456.8 −1.41430 −0.707150 0.707063i \(-0.750020\pi\)
−0.707150 + 0.707063i \(0.750020\pi\)
\(758\) −25808.5 −1.23669
\(759\) −2987.60 −0.142876
\(760\) −17439.7 −0.832376
\(761\) 32950.1 1.56957 0.784784 0.619769i \(-0.212774\pi\)
0.784784 + 0.619769i \(0.212774\pi\)
\(762\) −32740.2 −1.55650
\(763\) −25339.3 −1.20229
\(764\) 15300.8 0.724561
\(765\) 21426.7 1.01266
\(766\) −9182.04 −0.433108
\(767\) 0 0
\(768\) −2237.68 −0.105137
\(769\) 10223.7 0.479424 0.239712 0.970844i \(-0.422947\pi\)
0.239712 + 0.970844i \(0.422947\pi\)
\(770\) −7707.45 −0.360724
\(771\) 54998.9 2.56905
\(772\) −3635.33 −0.169480
\(773\) 10140.1 0.471815 0.235908 0.971776i \(-0.424194\pi\)
0.235908 + 0.971776i \(0.424194\pi\)
\(774\) 42959.2 1.99501
\(775\) 12648.6 0.586257
\(776\) 2179.48 0.100823
\(777\) −5980.50 −0.276125
\(778\) 27946.2 1.28781
\(779\) 19305.4 0.887920
\(780\) 0 0
\(781\) 9130.86 0.418346
\(782\) 2204.14 0.100793
\(783\) 9646.04 0.440257
\(784\) 7645.53 0.348284
\(785\) −8719.21 −0.396435
\(786\) −32345.2 −1.46783
\(787\) −9088.53 −0.411653 −0.205827 0.978588i \(-0.565988\pi\)
−0.205827 + 0.978588i \(0.565988\pi\)
\(788\) −5350.67 −0.241890
\(789\) 41936.9 1.89226
\(790\) 29560.6 1.33129
\(791\) 3787.71 0.170260
\(792\) 3752.13 0.168341
\(793\) 0 0
\(794\) 5235.46 0.234004
\(795\) 49616.6 2.21348
\(796\) 4578.32 0.203862
\(797\) −21032.4 −0.934764 −0.467382 0.884055i \(-0.654803\pi\)
−0.467382 + 0.884055i \(0.654803\pi\)
\(798\) −77062.7 −3.41853
\(799\) −5694.06 −0.252117
\(800\) −2423.90 −0.107122
\(801\) 33385.0 1.47266
\(802\) 15778.4 0.694706
\(803\) −9144.10 −0.401854
\(804\) 10053.7 0.441005
\(805\) 14614.9 0.639883
\(806\) 0 0
\(807\) −54599.7 −2.38166
\(808\) 5292.49 0.230432
\(809\) −43644.9 −1.89675 −0.948376 0.317147i \(-0.897275\pi\)
−0.948376 + 0.317147i \(0.897275\pi\)
\(810\) −10707.1 −0.464456
\(811\) 28688.1 1.24214 0.621069 0.783756i \(-0.286699\pi\)
0.621069 + 0.783756i \(0.286699\pi\)
\(812\) 5644.89 0.243962
\(813\) −16006.0 −0.690473
\(814\) −453.424 −0.0195239
\(815\) −16436.8 −0.706448
\(816\) −4281.02 −0.183659
\(817\) −66894.3 −2.86455
\(818\) 15463.1 0.660946
\(819\) 0 0
\(820\) 7111.14 0.302843
\(821\) 16042.2 0.681947 0.340973 0.940073i \(-0.389243\pi\)
0.340973 + 0.940073i \(0.389243\pi\)
\(822\) 16911.5 0.717588
\(823\) −12138.9 −0.514137 −0.257068 0.966393i \(-0.582757\pi\)
−0.257068 + 0.966393i \(0.582757\pi\)
\(824\) 2522.82 0.106659
\(825\) 6285.64 0.265258
\(826\) −23390.6 −0.985307
\(827\) −17136.2 −0.720538 −0.360269 0.932848i \(-0.617315\pi\)
−0.360269 + 0.932848i \(0.617315\pi\)
\(828\) −7114.78 −0.298618
\(829\) 10947.3 0.458642 0.229321 0.973351i \(-0.426349\pi\)
0.229321 + 0.973351i \(0.426349\pi\)
\(830\) −8878.11 −0.371281
\(831\) 13997.9 0.584336
\(832\) 0 0
\(833\) 14627.1 0.608400
\(834\) −1811.07 −0.0751945
\(835\) 28751.7 1.19161
\(836\) −5842.67 −0.241714
\(837\) −32700.9 −1.35043
\(838\) −5512.82 −0.227252
\(839\) 13628.7 0.560805 0.280402 0.959883i \(-0.409532\pi\)
0.280402 + 0.959883i \(0.409532\pi\)
\(840\) −28385.9 −1.16596
\(841\) −21962.8 −0.900520
\(842\) −23630.3 −0.967167
\(843\) −39479.6 −1.61299
\(844\) −44.9010 −0.00183123
\(845\) 0 0
\(846\) 18380.0 0.746946
\(847\) 35551.5 1.44223
\(848\) −6410.09 −0.259580
\(849\) −61912.3 −2.50274
\(850\) −4637.30 −0.187127
\(851\) 859.780 0.0346332
\(852\) 33628.2 1.35221
\(853\) −6645.59 −0.266753 −0.133377 0.991065i \(-0.542582\pi\)
−0.133377 + 0.991065i \(0.542582\pi\)
\(854\) −34596.0 −1.38624
\(855\) 107699. 4.30788
\(856\) −16970.6 −0.677619
\(857\) 15552.6 0.619914 0.309957 0.950751i \(-0.399685\pi\)
0.309957 + 0.950751i \(0.399685\pi\)
\(858\) 0 0
\(859\) −48006.5 −1.90682 −0.953412 0.301672i \(-0.902455\pi\)
−0.953412 + 0.301672i \(0.902455\pi\)
\(860\) −24640.4 −0.977014
\(861\) 31422.7 1.24377
\(862\) 21202.4 0.837770
\(863\) 3572.64 0.140920 0.0704601 0.997515i \(-0.477553\pi\)
0.0704601 + 0.997515i \(0.477553\pi\)
\(864\) 6266.63 0.246753
\(865\) −43548.4 −1.71178
\(866\) 18459.4 0.724339
\(867\) 34754.0 1.36137
\(868\) −19136.6 −0.748318
\(869\) 9903.40 0.386594
\(870\) −12200.5 −0.475443
\(871\) 0 0
\(872\) −7075.45 −0.274777
\(873\) −13459.4 −0.521799
\(874\) 11078.8 0.428773
\(875\) 19993.4 0.772459
\(876\) −33677.0 −1.29891
\(877\) 2699.84 0.103953 0.0519767 0.998648i \(-0.483448\pi\)
0.0519767 + 0.998648i \(0.483448\pi\)
\(878\) −14403.3 −0.553631
\(879\) −60518.1 −2.32221
\(880\) −2152.14 −0.0824416
\(881\) 3982.46 0.152295 0.0761477 0.997097i \(-0.475738\pi\)
0.0761477 + 0.997097i \(0.475738\pi\)
\(882\) −47215.0 −1.80251
\(883\) 21896.7 0.834523 0.417261 0.908787i \(-0.362990\pi\)
0.417261 + 0.908787i \(0.362990\pi\)
\(884\) 0 0
\(885\) 50555.0 1.92021
\(886\) 7089.41 0.268819
\(887\) −21219.7 −0.803254 −0.401627 0.915803i \(-0.631555\pi\)
−0.401627 + 0.915803i \(0.631555\pi\)
\(888\) −1669.92 −0.0631069
\(889\) 53656.7 2.02428
\(890\) −19148.9 −0.721204
\(891\) −3587.09 −0.134873
\(892\) −10959.0 −0.411360
\(893\) −28620.6 −1.07251
\(894\) −33520.4 −1.25401
\(895\) 32784.4 1.22442
\(896\) 3667.25 0.136735
\(897\) 0 0
\(898\) 36650.7 1.36197
\(899\) −8225.08 −0.305141
\(900\) 14968.8 0.554401
\(901\) −12263.5 −0.453447
\(902\) 2382.37 0.0879428
\(903\) −108881. −4.01256
\(904\) 1057.64 0.0389120
\(905\) −23661.5 −0.869101
\(906\) −35580.5 −1.30473
\(907\) −42873.6 −1.56957 −0.784783 0.619771i \(-0.787225\pi\)
−0.784783 + 0.619771i \(0.787225\pi\)
\(908\) 18119.0 0.662225
\(909\) −32683.8 −1.19258
\(910\) 0 0
\(911\) 28943.9 1.05264 0.526319 0.850287i \(-0.323572\pi\)
0.526319 + 0.850287i \(0.323572\pi\)
\(912\) −21518.1 −0.781288
\(913\) −2974.35 −0.107817
\(914\) 10767.7 0.389675
\(915\) 74773.6 2.70157
\(916\) −3471.57 −0.125222
\(917\) 53009.4 1.90897
\(918\) 11989.0 0.431042
\(919\) 2735.02 0.0981720 0.0490860 0.998795i \(-0.484369\pi\)
0.0490860 + 0.998795i \(0.484369\pi\)
\(920\) 4080.88 0.146242
\(921\) 76732.3 2.74529
\(922\) 21242.3 0.758760
\(923\) 0 0
\(924\) −9509.87 −0.338584
\(925\) −1808.90 −0.0642986
\(926\) −20814.5 −0.738669
\(927\) −15579.7 −0.552001
\(928\) 1576.21 0.0557562
\(929\) 15091.8 0.532988 0.266494 0.963837i \(-0.414135\pi\)
0.266494 + 0.963837i \(0.414135\pi\)
\(930\) 41360.7 1.45836
\(931\) 73521.3 2.58814
\(932\) 2140.55 0.0752319
\(933\) 19206.9 0.673961
\(934\) 31568.0 1.10593
\(935\) −4117.37 −0.144013
\(936\) 0 0
\(937\) −20974.5 −0.731278 −0.365639 0.930757i \(-0.619150\pi\)
−0.365639 + 0.930757i \(0.619150\pi\)
\(938\) −16476.7 −0.573544
\(939\) 44164.0 1.53487
\(940\) −10542.3 −0.365801
\(941\) −886.927 −0.0307258 −0.0153629 0.999882i \(-0.504890\pi\)
−0.0153629 + 0.999882i \(0.504890\pi\)
\(942\) −10758.2 −0.372104
\(943\) −4517.45 −0.156000
\(944\) −6531.32 −0.225187
\(945\) 79494.9 2.73647
\(946\) −8255.05 −0.283715
\(947\) 43341.3 1.48723 0.743613 0.668610i \(-0.233110\pi\)
0.743613 + 0.668610i \(0.233110\pi\)
\(948\) 36473.5 1.24958
\(949\) 0 0
\(950\) −23308.9 −0.796041
\(951\) 16519.6 0.563286
\(952\) 7016.01 0.238855
\(953\) 16014.9 0.544357 0.272178 0.962247i \(-0.412256\pi\)
0.272178 + 0.962247i \(0.412256\pi\)
\(954\) 39585.5 1.34343
\(955\) 54197.5 1.83643
\(956\) −4586.92 −0.155180
\(957\) −4087.42 −0.138064
\(958\) 36527.4 1.23189
\(959\) −27715.7 −0.933249
\(960\) −7926.16 −0.266475
\(961\) −1907.30 −0.0640227
\(962\) 0 0
\(963\) 104802. 3.50695
\(964\) −13412.1 −0.448107
\(965\) −12876.8 −0.429553
\(966\) 18032.6 0.600610
\(967\) 7986.48 0.265592 0.132796 0.991143i \(-0.457604\pi\)
0.132796 + 0.991143i \(0.457604\pi\)
\(968\) 9926.99 0.329613
\(969\) −41167.4 −1.36479
\(970\) 7720.00 0.255540
\(971\) 25245.4 0.834361 0.417180 0.908824i \(-0.363018\pi\)
0.417180 + 0.908824i \(0.363018\pi\)
\(972\) 7938.88 0.261975
\(973\) 2968.09 0.0977932
\(974\) 10738.0 0.353253
\(975\) 0 0
\(976\) −9660.19 −0.316819
\(977\) −5231.76 −0.171319 −0.0856595 0.996324i \(-0.527300\pi\)
−0.0856595 + 0.996324i \(0.527300\pi\)
\(978\) −20280.6 −0.663089
\(979\) −6415.26 −0.209431
\(980\) 27081.5 0.882740
\(981\) 43694.5 1.42208
\(982\) 2982.67 0.0969254
\(983\) 22720.8 0.737212 0.368606 0.929586i \(-0.379835\pi\)
0.368606 + 0.929586i \(0.379835\pi\)
\(984\) 8774.10 0.284256
\(985\) −18952.8 −0.613081
\(986\) 3015.54 0.0973978
\(987\) −46584.5 −1.50233
\(988\) 0 0
\(989\) 15653.2 0.503279
\(990\) 13290.5 0.426668
\(991\) 19005.1 0.609200 0.304600 0.952480i \(-0.401477\pi\)
0.304600 + 0.952480i \(0.401477\pi\)
\(992\) −5343.49 −0.171024
\(993\) −22284.0 −0.712148
\(994\) −55112.1 −1.75860
\(995\) 16217.0 0.516698
\(996\) −10954.3 −0.348494
\(997\) 49243.2 1.56424 0.782121 0.623127i \(-0.214138\pi\)
0.782121 + 0.623127i \(0.214138\pi\)
\(998\) 20134.8 0.638633
\(999\) 4676.62 0.148110
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.a.j.1.1 3
13.2 odd 12 338.4.e.h.147.3 12
13.3 even 3 338.4.c.l.191.3 6
13.4 even 6 338.4.c.k.315.3 6
13.5 odd 4 338.4.b.f.337.4 6
13.6 odd 12 338.4.e.h.23.6 12
13.7 odd 12 338.4.e.h.23.3 12
13.8 odd 4 338.4.b.f.337.1 6
13.9 even 3 338.4.c.l.315.3 6
13.10 even 6 338.4.c.k.191.3 6
13.11 odd 12 338.4.e.h.147.6 12
13.12 even 2 338.4.a.k.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.j.1.1 3 1.1 even 1 trivial
338.4.a.k.1.1 yes 3 13.12 even 2
338.4.b.f.337.1 6 13.8 odd 4
338.4.b.f.337.4 6 13.5 odd 4
338.4.c.k.191.3 6 13.10 even 6
338.4.c.k.315.3 6 13.4 even 6
338.4.c.l.191.3 6 13.3 even 3
338.4.c.l.315.3 6 13.9 even 3
338.4.e.h.23.3 12 13.7 odd 12
338.4.e.h.23.6 12 13.6 odd 12
338.4.e.h.147.3 12 13.2 odd 12
338.4.e.h.147.6 12 13.11 odd 12