Properties

Label 338.4.b.f.337.1
Level $338$
Weight $4$
Character 338.337
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(337,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.337"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.1
Root \(-1.24698i\) of defining polynomial
Character \(\chi\) \(=\) 338.337
Dual form 338.4.b.f.337.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -8.74094 q^{3} -4.00000 q^{4} +14.1685i q^{5} +17.4819i q^{6} +28.6504i q^{7} +8.00000i q^{8} +49.4040 q^{9} +28.3370 q^{10} +9.49349i q^{11} +34.9638 q^{12} +57.3008 q^{14} -123.846i q^{15} +16.0000 q^{16} -30.6104 q^{17} -98.8080i q^{18} +153.860i q^{19} -56.6741i q^{20} -250.431i q^{21} +18.9870 q^{22} +36.0030 q^{23} -69.9275i q^{24} -75.7470 q^{25} -195.832 q^{27} -114.602i q^{28} -49.2567 q^{29} -247.692 q^{30} +166.984i q^{31} -32.0000i q^{32} -82.9820i q^{33} +61.2209i q^{34} -405.934 q^{35} -197.616 q^{36} +23.8808i q^{37} +307.720 q^{38} -113.348 q^{40} +125.474i q^{41} -500.863 q^{42} +434.774 q^{43} -37.9739i q^{44} +699.982i q^{45} -72.0061i q^{46} +186.017i q^{47} -139.855 q^{48} -477.845 q^{49} +151.494i q^{50} +267.564 q^{51} -400.631 q^{53} +391.664i q^{54} -134.509 q^{55} -229.203 q^{56} -1344.88i q^{57} +98.5134i q^{58} +408.208i q^{59} +495.385i q^{60} -603.762 q^{61} +333.968 q^{62} +1415.44i q^{63} -64.0000 q^{64} -165.964 q^{66} -287.548i q^{67} +122.442 q^{68} -314.700 q^{69} +811.868i q^{70} -961.803i q^{71} +395.232i q^{72} -963.198i q^{73} +47.7616 q^{74} +662.100 q^{75} -615.440i q^{76} -271.992 q^{77} -1043.18 q^{79} +226.696i q^{80} +377.848 q^{81} +250.948 q^{82} +313.304i q^{83} +1001.73i q^{84} -433.705i q^{85} -869.549i q^{86} +430.550 q^{87} -75.9479 q^{88} -675.754i q^{89} +1399.96 q^{90} -144.012 q^{92} -1459.60i q^{93} +372.034 q^{94} -2179.97 q^{95} +279.710i q^{96} -272.435i q^{97} +955.691i q^{98} +469.016i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{3} - 24 q^{4} + 18 q^{9} + 48 q^{10} + 96 q^{12} + 108 q^{14} + 96 q^{16} + 180 q^{17} - 328 q^{22} - 38 q^{23} + 122 q^{25} - 138 q^{27} - 202 q^{29} - 360 q^{30} - 916 q^{35} - 72 q^{36} + 520 q^{38}+ \cdots - 3658 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) −8.74094 −1.68219 −0.841097 0.540884i \(-0.818090\pi\)
−0.841097 + 0.540884i \(0.818090\pi\)
\(4\) −4.00000 −0.500000
\(5\) 14.1685i 1.26727i 0.773632 + 0.633636i \(0.218438\pi\)
−0.773632 + 0.633636i \(0.781562\pi\)
\(6\) 17.4819i 1.18949i
\(7\) 28.6504i 1.54698i 0.633811 + 0.773488i \(0.281490\pi\)
−0.633811 + 0.773488i \(0.718510\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 49.4040 1.82978
\(10\) 28.3370 0.896096
\(11\) 9.49349i 0.260218i 0.991500 + 0.130109i \(0.0415327\pi\)
−0.991500 + 0.130109i \(0.958467\pi\)
\(12\) 34.9638 0.841097
\(13\) 0 0
\(14\) 57.3008 1.09388
\(15\) − 123.846i − 2.13180i
\(16\) 16.0000 0.250000
\(17\) −30.6104 −0.436713 −0.218356 0.975869i \(-0.570070\pi\)
−0.218356 + 0.975869i \(0.570070\pi\)
\(18\) − 98.8080i − 1.29385i
\(19\) 153.860i 1.85778i 0.370351 + 0.928892i \(0.379237\pi\)
−0.370351 + 0.928892i \(0.620763\pi\)
\(20\) − 56.6741i − 0.633636i
\(21\) − 250.431i − 2.60231i
\(22\) 18.9870 0.184002
\(23\) 36.0030 0.326398 0.163199 0.986593i \(-0.447819\pi\)
0.163199 + 0.986593i \(0.447819\pi\)
\(24\) − 69.9275i − 0.594746i
\(25\) −75.7470 −0.605976
\(26\) 0 0
\(27\) −195.832 −1.39585
\(28\) − 114.602i − 0.773488i
\(29\) −49.2567 −0.315405 −0.157702 0.987487i \(-0.550409\pi\)
−0.157702 + 0.987487i \(0.550409\pi\)
\(30\) −247.692 −1.50741
\(31\) 166.984i 0.967459i 0.875217 + 0.483730i \(0.160718\pi\)
−0.875217 + 0.483730i \(0.839282\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) − 82.9820i − 0.437737i
\(34\) 61.2209i 0.308803i
\(35\) −405.934 −1.96044
\(36\) −197.616 −0.914889
\(37\) 23.8808i 0.106107i 0.998592 + 0.0530537i \(0.0168955\pi\)
−0.998592 + 0.0530537i \(0.983105\pi\)
\(38\) 307.720 1.31365
\(39\) 0 0
\(40\) −113.348 −0.448048
\(41\) 125.474i 0.477946i 0.971026 + 0.238973i \(0.0768107\pi\)
−0.971026 + 0.238973i \(0.923189\pi\)
\(42\) −500.863 −1.84011
\(43\) 434.774 1.54192 0.770959 0.636885i \(-0.219777\pi\)
0.770959 + 0.636885i \(0.219777\pi\)
\(44\) − 37.9739i − 0.130109i
\(45\) 699.982i 2.31883i
\(46\) − 72.0061i − 0.230798i
\(47\) 186.017i 0.577306i 0.957434 + 0.288653i \(0.0932073\pi\)
−0.957434 + 0.288653i \(0.906793\pi\)
\(48\) −139.855 −0.420549
\(49\) −477.845 −1.39314
\(50\) 151.494i 0.428490i
\(51\) 267.564 0.734636
\(52\) 0 0
\(53\) −400.631 −1.03832 −0.519159 0.854678i \(-0.673755\pi\)
−0.519159 + 0.854678i \(0.673755\pi\)
\(54\) 391.664i 0.987014i
\(55\) −134.509 −0.329766
\(56\) −229.203 −0.546939
\(57\) − 1344.88i − 3.12515i
\(58\) 98.5134i 0.223025i
\(59\) 408.208i 0.900748i 0.892840 + 0.450374i \(0.148709\pi\)
−0.892840 + 0.450374i \(0.851291\pi\)
\(60\) 495.385i 1.06590i
\(61\) −603.762 −1.26728 −0.633638 0.773630i \(-0.718439\pi\)
−0.633638 + 0.773630i \(0.718439\pi\)
\(62\) 333.968 0.684097
\(63\) 1415.44i 2.83062i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −165.964 −0.309527
\(67\) − 287.548i − 0.524322i −0.965024 0.262161i \(-0.915565\pi\)
0.965024 0.262161i \(-0.0844351\pi\)
\(68\) 122.442 0.218356
\(69\) −314.700 −0.549065
\(70\) 811.868i 1.38624i
\(71\) − 961.803i − 1.60768i −0.594848 0.803838i \(-0.702788\pi\)
0.594848 0.803838i \(-0.297212\pi\)
\(72\) 395.232i 0.646924i
\(73\) − 963.198i − 1.54430i −0.635441 0.772149i \(-0.719182\pi\)
0.635441 0.772149i \(-0.280818\pi\)
\(74\) 47.7616 0.0750293
\(75\) 662.100 1.01937
\(76\) − 615.440i − 0.928892i
\(77\) −271.992 −0.402550
\(78\) 0 0
\(79\) −1043.18 −1.48566 −0.742828 0.669482i \(-0.766516\pi\)
−0.742828 + 0.669482i \(0.766516\pi\)
\(80\) 226.696i 0.316818i
\(81\) 377.848 0.518310
\(82\) 250.948 0.337959
\(83\) 313.304i 0.414332i 0.978306 + 0.207166i \(0.0664240\pi\)
−0.978306 + 0.207166i \(0.933576\pi\)
\(84\) 1001.73i 1.30116i
\(85\) − 433.705i − 0.553434i
\(86\) − 869.549i − 1.09030i
\(87\) 430.550 0.530572
\(88\) −75.9479 −0.0920008
\(89\) − 675.754i − 0.804829i −0.915458 0.402414i \(-0.868171\pi\)
0.915458 0.402414i \(-0.131829\pi\)
\(90\) 1399.96 1.63966
\(91\) 0 0
\(92\) −144.012 −0.163199
\(93\) − 1459.60i − 1.62745i
\(94\) 372.034 0.408217
\(95\) −2179.97 −2.35432
\(96\) 279.710i 0.297373i
\(97\) − 272.435i − 0.285171i −0.989783 0.142585i \(-0.954458\pi\)
0.989783 0.142585i \(-0.0455415\pi\)
\(98\) 955.691i 0.985095i
\(99\) 469.016i 0.476140i
\(100\) 302.988 0.302988
\(101\) 661.561 0.651760 0.325880 0.945411i \(-0.394339\pi\)
0.325880 + 0.945411i \(0.394339\pi\)
\(102\) − 535.128i − 0.519466i
\(103\) 315.353 0.301676 0.150838 0.988558i \(-0.451803\pi\)
0.150838 + 0.988558i \(0.451803\pi\)
\(104\) 0 0
\(105\) 3548.24 3.29784
\(106\) 801.262i 0.734202i
\(107\) 2121.32 1.91660 0.958299 0.285769i \(-0.0922490\pi\)
0.958299 + 0.285769i \(0.0922490\pi\)
\(108\) 783.328 0.697924
\(109\) 884.432i 0.777185i 0.921410 + 0.388593i \(0.127039\pi\)
−0.921410 + 0.388593i \(0.872961\pi\)
\(110\) 269.017i 0.233180i
\(111\) − 208.740i − 0.178493i
\(112\) 458.406i 0.386744i
\(113\) −132.205 −0.110060 −0.0550299 0.998485i \(-0.517525\pi\)
−0.0550299 + 0.998485i \(0.517525\pi\)
\(114\) −2689.76 −2.20982
\(115\) 510.110i 0.413635i
\(116\) 197.027 0.157702
\(117\) 0 0
\(118\) 816.415 0.636925
\(119\) − 877.001i − 0.675585i
\(120\) 990.769 0.753704
\(121\) 1240.87 0.932287
\(122\) 1207.52i 0.896099i
\(123\) − 1096.76i − 0.803998i
\(124\) − 667.937i − 0.483730i
\(125\) 697.842i 0.499335i
\(126\) 2830.89 2.00155
\(127\) 1872.81 1.30854 0.654271 0.756260i \(-0.272976\pi\)
0.654271 + 0.756260i \(0.272976\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −3800.34 −2.59381
\(130\) 0 0
\(131\) −1850.21 −1.23400 −0.617000 0.786963i \(-0.711652\pi\)
−0.617000 + 0.786963i \(0.711652\pi\)
\(132\) 331.928i 0.218868i
\(133\) −4408.15 −2.87395
\(134\) −575.096 −0.370751
\(135\) − 2774.65i − 1.76892i
\(136\) − 244.883i − 0.154401i
\(137\) − 967.375i − 0.603273i −0.953423 0.301637i \(-0.902467\pi\)
0.953423 0.301637i \(-0.0975329\pi\)
\(138\) 629.401i 0.388247i
\(139\) −103.597 −0.0632157 −0.0316078 0.999500i \(-0.510063\pi\)
−0.0316078 + 0.999500i \(0.510063\pi\)
\(140\) 1623.74 0.980219
\(141\) − 1625.96i − 0.971140i
\(142\) −1923.61 −1.13680
\(143\) 0 0
\(144\) 790.464 0.457445
\(145\) − 697.894i − 0.399703i
\(146\) −1926.40 −1.09198
\(147\) 4176.82 2.34352
\(148\) − 95.5231i − 0.0530537i
\(149\) − 1917.44i − 1.05424i −0.849789 0.527122i \(-0.823271\pi\)
0.849789 0.527122i \(-0.176729\pi\)
\(150\) − 1324.20i − 0.720803i
\(151\) 2035.28i 1.09688i 0.836191 + 0.548439i \(0.184778\pi\)
−0.836191 + 0.548439i \(0.815222\pi\)
\(152\) −1230.88 −0.656826
\(153\) −1512.28 −0.799088
\(154\) 543.984i 0.284646i
\(155\) −2365.92 −1.22603
\(156\) 0 0
\(157\) −615.393 −0.312826 −0.156413 0.987692i \(-0.549993\pi\)
−0.156413 + 0.987692i \(0.549993\pi\)
\(158\) 2086.36i 1.05052i
\(159\) 3501.89 1.74665
\(160\) 453.393 0.224024
\(161\) 1031.50i 0.504930i
\(162\) − 755.696i − 0.366501i
\(163\) 1160.09i 0.557456i 0.960370 + 0.278728i \(0.0899128\pi\)
−0.960370 + 0.278728i \(0.910087\pi\)
\(164\) − 501.897i − 0.238973i
\(165\) 1175.73 0.554731
\(166\) 626.608 0.292977
\(167\) − 2029.26i − 0.940295i −0.882588 0.470147i \(-0.844201\pi\)
0.882588 0.470147i \(-0.155799\pi\)
\(168\) 2003.45 0.920057
\(169\) 0 0
\(170\) −867.409 −0.391337
\(171\) 7601.30i 3.39933i
\(172\) −1739.10 −0.770959
\(173\) 3073.60 1.35076 0.675380 0.737469i \(-0.263979\pi\)
0.675380 + 0.737469i \(0.263979\pi\)
\(174\) − 861.099i − 0.375171i
\(175\) − 2170.18i − 0.937431i
\(176\) 151.896i 0.0650544i
\(177\) − 3568.12i − 1.51523i
\(178\) −1351.51 −0.569100
\(179\) −2313.89 −0.966190 −0.483095 0.875568i \(-0.660487\pi\)
−0.483095 + 0.875568i \(0.660487\pi\)
\(180\) − 2799.93i − 1.15941i
\(181\) 1670.01 0.685805 0.342903 0.939371i \(-0.388590\pi\)
0.342903 + 0.939371i \(0.388590\pi\)
\(182\) 0 0
\(183\) 5277.44 2.13180
\(184\) 288.024i 0.115399i
\(185\) −338.355 −0.134467
\(186\) −2919.20 −1.15078
\(187\) − 290.600i − 0.113640i
\(188\) − 744.068i − 0.288653i
\(189\) − 5610.67i − 2.15934i
\(190\) 4359.94i 1.66475i
\(191\) 3825.21 1.44912 0.724561 0.689211i \(-0.242043\pi\)
0.724561 + 0.689211i \(0.242043\pi\)
\(192\) 559.420 0.210274
\(193\) 908.832i 0.338959i 0.985534 + 0.169480i \(0.0542087\pi\)
−0.985534 + 0.169480i \(0.945791\pi\)
\(194\) −544.869 −0.201646
\(195\) 0 0
\(196\) 1911.38 0.696568
\(197\) − 1337.67i − 0.483781i −0.970304 0.241890i \(-0.922233\pi\)
0.970304 0.241890i \(-0.0777674\pi\)
\(198\) 938.033 0.336682
\(199\) −1144.58 −0.407725 −0.203862 0.979000i \(-0.565349\pi\)
−0.203862 + 0.979000i \(0.565349\pi\)
\(200\) − 605.976i − 0.214245i
\(201\) 2513.44i 0.882011i
\(202\) − 1323.12i − 0.460864i
\(203\) − 1411.22i − 0.487924i
\(204\) −1070.26 −0.367318
\(205\) −1777.78 −0.605687
\(206\) − 630.706i − 0.213317i
\(207\) 1778.69 0.597236
\(208\) 0 0
\(209\) −1460.67 −0.483428
\(210\) − 7096.49i − 2.33192i
\(211\) −11.2252 −0.00366245 −0.00183123 0.999998i \(-0.500583\pi\)
−0.00183123 + 0.999998i \(0.500583\pi\)
\(212\) 1602.52 0.519159
\(213\) 8407.06i 2.70442i
\(214\) − 4242.64i − 1.35524i
\(215\) 6160.11i 1.95403i
\(216\) − 1566.66i − 0.493507i
\(217\) −4784.16 −1.49664
\(218\) 1768.86 0.549553
\(219\) 8419.25i 2.59781i
\(220\) 538.035 0.164883
\(221\) 0 0
\(222\) −417.481 −0.126214
\(223\) − 2739.74i − 0.822720i −0.911473 0.411360i \(-0.865054\pi\)
0.911473 0.411360i \(-0.134946\pi\)
\(224\) 916.813 0.273469
\(225\) −3742.21 −1.10880
\(226\) 264.409i 0.0778241i
\(227\) 4529.75i 1.32445i 0.749305 + 0.662225i \(0.230388\pi\)
−0.749305 + 0.662225i \(0.769612\pi\)
\(228\) 5379.52i 1.56258i
\(229\) 867.892i 0.250445i 0.992129 + 0.125222i \(0.0399645\pi\)
−0.992129 + 0.125222i \(0.960036\pi\)
\(230\) 1020.22 0.292484
\(231\) 2377.47 0.677168
\(232\) − 394.053i − 0.111512i
\(233\) −535.138 −0.150464 −0.0752319 0.997166i \(-0.523970\pi\)
−0.0752319 + 0.997166i \(0.523970\pi\)
\(234\) 0 0
\(235\) −2635.59 −0.731603
\(236\) − 1632.83i − 0.450374i
\(237\) 9118.36 2.49916
\(238\) −1754.00 −0.477710
\(239\) − 1146.73i − 0.310359i −0.987886 0.155180i \(-0.950404\pi\)
0.987886 0.155180i \(-0.0495956\pi\)
\(240\) − 1981.54i − 0.532949i
\(241\) 3353.03i 0.896215i 0.893980 + 0.448107i \(0.147902\pi\)
−0.893980 + 0.448107i \(0.852098\pi\)
\(242\) − 2481.75i − 0.659226i
\(243\) 1984.72 0.523950
\(244\) 2415.05 0.633638
\(245\) − 6770.36i − 1.76548i
\(246\) −2193.52 −0.568512
\(247\) 0 0
\(248\) −1335.87 −0.342048
\(249\) − 2738.57i − 0.696987i
\(250\) 1395.68 0.353083
\(251\) −5357.96 −1.34738 −0.673688 0.739016i \(-0.735291\pi\)
−0.673688 + 0.739016i \(0.735291\pi\)
\(252\) − 5661.78i − 1.41531i
\(253\) 341.794i 0.0849345i
\(254\) − 3745.62i − 0.925279i
\(255\) 3790.99i 0.930983i
\(256\) 256.000 0.0625000
\(257\) 6292.11 1.52720 0.763601 0.645689i \(-0.223430\pi\)
0.763601 + 0.645689i \(0.223430\pi\)
\(258\) 7600.67i 1.83410i
\(259\) −684.194 −0.164146
\(260\) 0 0
\(261\) −2433.48 −0.577121
\(262\) 3700.43i 0.872569i
\(263\) −4797.76 −1.12488 −0.562438 0.826840i \(-0.690136\pi\)
−0.562438 + 0.826840i \(0.690136\pi\)
\(264\) 663.856 0.154763
\(265\) − 5676.35i − 1.31583i
\(266\) 8816.30i 2.03219i
\(267\) 5906.72i 1.35388i
\(268\) 1150.19i 0.262161i
\(269\) 6246.43 1.41581 0.707903 0.706310i \(-0.249642\pi\)
0.707903 + 0.706310i \(0.249642\pi\)
\(270\) −5549.30 −1.25081
\(271\) − 1831.15i − 0.410460i −0.978714 0.205230i \(-0.934206\pi\)
0.978714 0.205230i \(-0.0657942\pi\)
\(272\) −489.767 −0.109178
\(273\) 0 0
\(274\) −1934.75 −0.426578
\(275\) − 719.103i − 0.157686i
\(276\) 1258.80 0.274532
\(277\) 1601.42 0.347365 0.173683 0.984802i \(-0.444433\pi\)
0.173683 + 0.984802i \(0.444433\pi\)
\(278\) 207.194i 0.0447002i
\(279\) 8249.69i 1.77024i
\(280\) − 3247.47i − 0.693120i
\(281\) − 4516.64i − 0.958861i −0.877580 0.479431i \(-0.840843\pi\)
0.877580 0.479431i \(-0.159157\pi\)
\(282\) −3251.93 −0.686700
\(283\) −7083.02 −1.48778 −0.743890 0.668302i \(-0.767022\pi\)
−0.743890 + 0.668302i \(0.767022\pi\)
\(284\) 3847.21i 0.803838i
\(285\) 19055.0 3.96042
\(286\) 0 0
\(287\) −3594.89 −0.739371
\(288\) − 1580.93i − 0.323462i
\(289\) −3976.00 −0.809282
\(290\) −1395.79 −0.282633
\(291\) 2381.34i 0.479713i
\(292\) 3852.79i 0.772149i
\(293\) − 6923.52i − 1.38047i −0.723588 0.690233i \(-0.757508\pi\)
0.723588 0.690233i \(-0.242492\pi\)
\(294\) − 8353.64i − 1.65712i
\(295\) −5783.70 −1.14149
\(296\) −191.046 −0.0375146
\(297\) − 1859.13i − 0.363224i
\(298\) −3834.87 −0.745463
\(299\) 0 0
\(300\) −2648.40 −0.509685
\(301\) 12456.5i 2.38531i
\(302\) 4070.56 0.775610
\(303\) −5782.66 −1.09639
\(304\) 2461.76i 0.464446i
\(305\) − 8554.41i − 1.60598i
\(306\) 3024.56i 0.565040i
\(307\) 8778.50i 1.63197i 0.578071 + 0.815986i \(0.303805\pi\)
−0.578071 + 0.815986i \(0.696195\pi\)
\(308\) 1087.97 0.201275
\(309\) −2756.48 −0.507478
\(310\) 4731.84i 0.866936i
\(311\) 2197.35 0.400644 0.200322 0.979730i \(-0.435801\pi\)
0.200322 + 0.979730i \(0.435801\pi\)
\(312\) 0 0
\(313\) −5052.55 −0.912419 −0.456209 0.889873i \(-0.650793\pi\)
−0.456209 + 0.889873i \(0.650793\pi\)
\(314\) 1230.79i 0.221201i
\(315\) −20054.8 −3.58717
\(316\) 4172.72 0.742828
\(317\) − 1889.91i − 0.334852i −0.985885 0.167426i \(-0.946455\pi\)
0.985885 0.167426i \(-0.0535455\pi\)
\(318\) − 7003.78i − 1.23507i
\(319\) − 467.618i − 0.0820738i
\(320\) − 906.785i − 0.158409i
\(321\) −18542.3 −3.22409
\(322\) 2063.00 0.357039
\(323\) − 4709.72i − 0.811318i
\(324\) −1511.39 −0.259155
\(325\) 0 0
\(326\) 2320.18 0.394181
\(327\) − 7730.76i − 1.30738i
\(328\) −1003.79 −0.168979
\(329\) −5329.46 −0.893078
\(330\) − 2351.46i − 0.392254i
\(331\) 2549.39i 0.423344i 0.977341 + 0.211672i \(0.0678909\pi\)
−0.977341 + 0.211672i \(0.932109\pi\)
\(332\) − 1253.22i − 0.207166i
\(333\) 1179.81i 0.194153i
\(334\) −4058.53 −0.664889
\(335\) 4074.13 0.664458
\(336\) − 4006.90i − 0.650579i
\(337\) −140.649 −0.0227349 −0.0113674 0.999935i \(-0.503618\pi\)
−0.0113674 + 0.999935i \(0.503618\pi\)
\(338\) 0 0
\(339\) 1155.59 0.185142
\(340\) 1734.82i 0.276717i
\(341\) −1585.26 −0.251750
\(342\) 15202.6 2.40369
\(343\) − 3863.38i − 0.608171i
\(344\) 3478.19i 0.545150i
\(345\) − 4458.84i − 0.695814i
\(346\) − 6147.20i − 0.955132i
\(347\) 140.513 0.0217382 0.0108691 0.999941i \(-0.496540\pi\)
0.0108691 + 0.999941i \(0.496540\pi\)
\(348\) −1722.20 −0.265286
\(349\) 12273.2i 1.88244i 0.337794 + 0.941220i \(0.390319\pi\)
−0.337794 + 0.941220i \(0.609681\pi\)
\(350\) −4340.37 −0.662864
\(351\) 0 0
\(352\) 303.792 0.0460004
\(353\) − 5887.97i − 0.887776i −0.896082 0.443888i \(-0.853599\pi\)
0.896082 0.443888i \(-0.146401\pi\)
\(354\) −7136.24 −1.07143
\(355\) 13627.3 2.03736
\(356\) 2703.02i 0.402414i
\(357\) 7665.81i 1.13646i
\(358\) 4627.77i 0.683199i
\(359\) − 5902.88i − 0.867806i −0.900960 0.433903i \(-0.857136\pi\)
0.900960 0.433903i \(-0.142864\pi\)
\(360\) −5599.85 −0.819828
\(361\) −16813.9 −2.45136
\(362\) − 3340.02i − 0.484937i
\(363\) −10846.4 −1.56829
\(364\) 0 0
\(365\) 13647.1 1.95704
\(366\) − 10554.9i − 1.50741i
\(367\) −3318.93 −0.472062 −0.236031 0.971746i \(-0.575847\pi\)
−0.236031 + 0.971746i \(0.575847\pi\)
\(368\) 576.049 0.0815995
\(369\) 6198.93i 0.874535i
\(370\) 676.711i 0.0950825i
\(371\) − 11478.2i − 1.60625i
\(372\) 5838.39i 0.813727i
\(373\) 242.215 0.0336232 0.0168116 0.999859i \(-0.494648\pi\)
0.0168116 + 0.999859i \(0.494648\pi\)
\(374\) −581.199 −0.0803559
\(375\) − 6099.79i − 0.839979i
\(376\) −1488.14 −0.204108
\(377\) 0 0
\(378\) −11221.3 −1.52689
\(379\) 12904.3i 1.74894i 0.485081 + 0.874469i \(0.338790\pi\)
−0.485081 + 0.874469i \(0.661210\pi\)
\(380\) 8719.87 1.17716
\(381\) −16370.1 −2.20122
\(382\) − 7650.41i − 1.02468i
\(383\) 4591.02i 0.612507i 0.951950 + 0.306253i \(0.0990755\pi\)
−0.951950 + 0.306253i \(0.900925\pi\)
\(384\) − 1118.84i − 0.148686i
\(385\) − 3853.73i − 0.510141i
\(386\) 1817.66 0.239680
\(387\) 21479.6 2.82137
\(388\) 1089.74i 0.142585i
\(389\) 13973.1 1.82125 0.910623 0.413239i \(-0.135603\pi\)
0.910623 + 0.413239i \(0.135603\pi\)
\(390\) 0 0
\(391\) −1102.07 −0.142542
\(392\) − 3822.76i − 0.492548i
\(393\) 16172.6 2.07583
\(394\) −2675.33 −0.342085
\(395\) − 14780.3i − 1.88273i
\(396\) − 1876.07i − 0.238070i
\(397\) 2617.73i 0.330932i 0.986215 + 0.165466i \(0.0529129\pi\)
−0.986215 + 0.165466i \(0.947087\pi\)
\(398\) 2289.16i 0.288305i
\(399\) 38531.4 4.83454
\(400\) −1211.95 −0.151494
\(401\) 7889.19i 0.982463i 0.871029 + 0.491231i \(0.163453\pi\)
−0.871029 + 0.491231i \(0.836547\pi\)
\(402\) 5026.87 0.623676
\(403\) 0 0
\(404\) −2646.24 −0.325880
\(405\) 5353.55i 0.656839i
\(406\) −2822.45 −0.345014
\(407\) −226.712 −0.0276110
\(408\) 2140.51i 0.259733i
\(409\) − 7731.54i − 0.934719i −0.884067 0.467359i \(-0.845205\pi\)
0.884067 0.467359i \(-0.154795\pi\)
\(410\) 3555.57i 0.428285i
\(411\) 8455.76i 1.01482i
\(412\) −1261.41 −0.150838
\(413\) −11695.3 −1.39344
\(414\) − 3557.39i − 0.422309i
\(415\) −4439.05 −0.525071
\(416\) 0 0
\(417\) 905.535 0.106341
\(418\) 2921.33i 0.341835i
\(419\) 2756.41 0.321383 0.160691 0.987005i \(-0.448628\pi\)
0.160691 + 0.987005i \(0.448628\pi\)
\(420\) −14193.0 −1.64892
\(421\) 11815.2i 1.36778i 0.729585 + 0.683890i \(0.239713\pi\)
−0.729585 + 0.683890i \(0.760287\pi\)
\(422\) 22.4505i 0.00258974i
\(423\) 9189.98i 1.05634i
\(424\) − 3205.05i − 0.367101i
\(425\) 2318.65 0.264638
\(426\) 16814.1 1.91232
\(427\) − 17298.0i − 1.96044i
\(428\) −8485.29 −0.958299
\(429\) 0 0
\(430\) 12320.2 1.38171
\(431\) − 10601.2i − 1.18479i −0.805649 0.592393i \(-0.798183\pi\)
0.805649 0.592393i \(-0.201817\pi\)
\(432\) −3133.31 −0.348962
\(433\) 9229.72 1.02437 0.512185 0.858875i \(-0.328836\pi\)
0.512185 + 0.858875i \(0.328836\pi\)
\(434\) 9568.32i 1.05828i
\(435\) 6100.25i 0.672379i
\(436\) − 3537.73i − 0.388593i
\(437\) 5539.42i 0.606377i
\(438\) 16838.5 1.83693
\(439\) −7201.66 −0.782953 −0.391476 0.920188i \(-0.628036\pi\)
−0.391476 + 0.920188i \(0.628036\pi\)
\(440\) − 1076.07i − 0.116590i
\(441\) −23607.5 −2.54913
\(442\) 0 0
\(443\) −3544.70 −0.380167 −0.190083 0.981768i \(-0.560876\pi\)
−0.190083 + 0.981768i \(0.560876\pi\)
\(444\) 834.962i 0.0892467i
\(445\) 9574.43 1.01994
\(446\) −5479.48 −0.581751
\(447\) 16760.2i 1.77344i
\(448\) − 1833.63i − 0.193372i
\(449\) 18325.4i 1.92612i 0.269289 + 0.963059i \(0.413211\pi\)
−0.269289 + 0.963059i \(0.586789\pi\)
\(450\) 7484.41i 0.784041i
\(451\) −1191.19 −0.124370
\(452\) 528.818 0.0550299
\(453\) − 17790.2i − 1.84516i
\(454\) 9059.50 0.936527
\(455\) 0 0
\(456\) 10759.0 1.10491
\(457\) − 5383.84i − 0.551084i −0.961289 0.275542i \(-0.911143\pi\)
0.961289 0.275542i \(-0.0888573\pi\)
\(458\) 1735.78 0.177091
\(459\) 5994.51 0.609585
\(460\) − 2040.44i − 0.206817i
\(461\) − 10621.1i − 1.07305i −0.843885 0.536525i \(-0.819737\pi\)
0.843885 0.536525i \(-0.180263\pi\)
\(462\) − 4754.93i − 0.478830i
\(463\) − 10407.3i − 1.04464i −0.852751 0.522318i \(-0.825067\pi\)
0.852751 0.522318i \(-0.174933\pi\)
\(464\) −788.107 −0.0788512
\(465\) 20680.3 2.06243
\(466\) 1070.28i 0.106394i
\(467\) 15784.0 1.56402 0.782010 0.623266i \(-0.214195\pi\)
0.782010 + 0.623266i \(0.214195\pi\)
\(468\) 0 0
\(469\) 8238.36 0.811113
\(470\) 5271.17i 0.517321i
\(471\) 5379.11 0.526234
\(472\) −3265.66 −0.318462
\(473\) 4127.52i 0.401234i
\(474\) − 18236.7i − 1.76717i
\(475\) − 11654.4i − 1.12577i
\(476\) 3508.00i 0.337792i
\(477\) −19792.8 −1.89989
\(478\) −2293.46 −0.219457
\(479\) 18263.7i 1.74215i 0.491149 + 0.871075i \(0.336577\pi\)
−0.491149 + 0.871075i \(0.663423\pi\)
\(480\) −3963.08 −0.376852
\(481\) 0 0
\(482\) 6706.06 0.633720
\(483\) − 9016.29i − 0.849390i
\(484\) −4963.49 −0.466143
\(485\) 3860.00 0.361389
\(486\) − 3969.44i − 0.370489i
\(487\) − 5369.01i − 0.499575i −0.968301 0.249788i \(-0.919639\pi\)
0.968301 0.249788i \(-0.0803608\pi\)
\(488\) − 4830.09i − 0.448049i
\(489\) − 10140.3i − 0.937750i
\(490\) −13540.7 −1.24838
\(491\) 1491.33 0.137073 0.0685366 0.997649i \(-0.478167\pi\)
0.0685366 + 0.997649i \(0.478167\pi\)
\(492\) 4387.05i 0.401999i
\(493\) 1507.77 0.137741
\(494\) 0 0
\(495\) −6645.27 −0.603399
\(496\) 2671.75i 0.241865i
\(497\) 27556.0 2.48704
\(498\) −5477.14 −0.492844
\(499\) − 10067.4i − 0.903163i −0.892230 0.451582i \(-0.850860\pi\)
0.892230 0.451582i \(-0.149140\pi\)
\(500\) − 2791.37i − 0.249668i
\(501\) 17737.7i 1.58176i
\(502\) 10715.9i 0.952738i
\(503\) 4683.07 0.415124 0.207562 0.978222i \(-0.433447\pi\)
0.207562 + 0.978222i \(0.433447\pi\)
\(504\) −11323.6 −1.00078
\(505\) 9373.34i 0.825957i
\(506\) 683.589 0.0600577
\(507\) 0 0
\(508\) −7491.23 −0.654271
\(509\) 11545.0i 1.00535i 0.864476 + 0.502673i \(0.167650\pi\)
−0.864476 + 0.502673i \(0.832350\pi\)
\(510\) 7581.97 0.658305
\(511\) 27596.0 2.38899
\(512\) − 512.000i − 0.0441942i
\(513\) − 30130.7i − 2.59318i
\(514\) − 12584.2i − 1.07989i
\(515\) 4468.09i 0.382306i
\(516\) 15201.3 1.29690
\(517\) −1765.95 −0.150225
\(518\) 1368.39i 0.116069i
\(519\) −26866.2 −2.27224
\(520\) 0 0
\(521\) 19889.6 1.67252 0.836258 0.548336i \(-0.184739\pi\)
0.836258 + 0.548336i \(0.184739\pi\)
\(522\) 4866.96i 0.408086i
\(523\) −5090.07 −0.425570 −0.212785 0.977099i \(-0.568253\pi\)
−0.212785 + 0.977099i \(0.568253\pi\)
\(524\) 7400.86 0.617000
\(525\) 18969.4i 1.57694i
\(526\) 9595.51i 0.795407i
\(527\) − 5111.46i − 0.422502i
\(528\) − 1327.71i − 0.109434i
\(529\) −10870.8 −0.893464
\(530\) −11352.7 −0.930433
\(531\) 20167.1i 1.64817i
\(532\) 17632.6 1.43697
\(533\) 0 0
\(534\) 11813.4 0.957337
\(535\) 30056.0i 2.42885i
\(536\) 2300.38 0.185376
\(537\) 20225.5 1.62532
\(538\) − 12492.9i − 1.00113i
\(539\) − 4536.42i − 0.362518i
\(540\) 11098.6i 0.884459i
\(541\) 5958.49i 0.473523i 0.971568 + 0.236761i \(0.0760859\pi\)
−0.971568 + 0.236761i \(0.923914\pi\)
\(542\) −3662.30 −0.290239
\(543\) −14597.4 −1.15366
\(544\) 979.534i 0.0772007i
\(545\) −12531.1 −0.984905
\(546\) 0 0
\(547\) 2475.52 0.193502 0.0967509 0.995309i \(-0.469155\pi\)
0.0967509 + 0.995309i \(0.469155\pi\)
\(548\) 3869.50i 0.301637i
\(549\) −29828.3 −2.31883
\(550\) −1438.21 −0.111501
\(551\) − 7578.63i − 0.585954i
\(552\) − 2517.60i − 0.194124i
\(553\) − 29887.5i − 2.29827i
\(554\) − 3202.85i − 0.245624i
\(555\) 2957.54 0.226199
\(556\) 414.388 0.0316078
\(557\) − 23311.5i − 1.77332i −0.462417 0.886662i \(-0.653018\pi\)
0.462417 0.886662i \(-0.346982\pi\)
\(558\) 16499.4 1.25175
\(559\) 0 0
\(560\) −6494.94 −0.490110
\(561\) 2540.11i 0.191165i
\(562\) −9033.27 −0.678017
\(563\) −24626.2 −1.84347 −0.921733 0.387825i \(-0.873227\pi\)
−0.921733 + 0.387825i \(0.873227\pi\)
\(564\) 6503.85i 0.485570i
\(565\) − 1873.14i − 0.139476i
\(566\) 14166.0i 1.05202i
\(567\) 10825.5i 0.801813i
\(568\) 7694.42 0.568399
\(569\) 13198.6 0.972431 0.486215 0.873839i \(-0.338377\pi\)
0.486215 + 0.873839i \(0.338377\pi\)
\(570\) − 38109.9i − 2.80044i
\(571\) −20934.2 −1.53427 −0.767137 0.641483i \(-0.778319\pi\)
−0.767137 + 0.641483i \(0.778319\pi\)
\(572\) 0 0
\(573\) −33435.9 −2.43770
\(574\) 7189.77i 0.522814i
\(575\) −2727.12 −0.197789
\(576\) −3161.86 −0.228722
\(577\) − 17083.2i − 1.23255i −0.787531 0.616275i \(-0.788641\pi\)
0.787531 0.616275i \(-0.211359\pi\)
\(578\) 7952.00i 0.572249i
\(579\) − 7944.04i − 0.570195i
\(580\) 2791.58i 0.199852i
\(581\) −8976.28 −0.640962
\(582\) 4762.67 0.339208
\(583\) − 3803.38i − 0.270189i
\(584\) 7705.58 0.545992
\(585\) 0 0
\(586\) −13847.0 −0.976136
\(587\) − 4458.82i − 0.313518i −0.987637 0.156759i \(-0.949895\pi\)
0.987637 0.156759i \(-0.0501046\pi\)
\(588\) −16707.3 −1.17176
\(589\) −25692.2 −1.79733
\(590\) 11567.4i 0.807156i
\(591\) 11692.5i 0.813813i
\(592\) 382.092i 0.0265269i
\(593\) − 3217.47i − 0.222809i −0.993775 0.111404i \(-0.964465\pi\)
0.993775 0.111404i \(-0.0355349\pi\)
\(594\) −3718.26 −0.256838
\(595\) 12425.8 0.856149
\(596\) 7669.74i 0.527122i
\(597\) 10004.7 0.685872
\(598\) 0 0
\(599\) −4495.37 −0.306637 −0.153319 0.988177i \(-0.548996\pi\)
−0.153319 + 0.988177i \(0.548996\pi\)
\(600\) 5296.80i 0.360402i
\(601\) −10918.5 −0.741054 −0.370527 0.928822i \(-0.620823\pi\)
−0.370527 + 0.928822i \(0.620823\pi\)
\(602\) 24912.9 1.68667
\(603\) − 14206.0i − 0.959392i
\(604\) − 8141.11i − 0.548439i
\(605\) 17581.3i 1.18146i
\(606\) 11565.3i 0.775263i
\(607\) 12487.0 0.834980 0.417490 0.908682i \(-0.362910\pi\)
0.417490 + 0.908682i \(0.362910\pi\)
\(608\) 4923.52 0.328413
\(609\) 12335.4i 0.820782i
\(610\) −17108.8 −1.13560
\(611\) 0 0
\(612\) 6049.11 0.399544
\(613\) − 961.468i − 0.0633496i −0.999498 0.0316748i \(-0.989916\pi\)
0.999498 0.0316748i \(-0.0100841\pi\)
\(614\) 17557.0 1.15398
\(615\) 15539.5 1.01888
\(616\) − 2175.94i − 0.142323i
\(617\) 15433.5i 1.00701i 0.863991 + 0.503507i \(0.167957\pi\)
−0.863991 + 0.503507i \(0.832043\pi\)
\(618\) 5512.96i 0.358841i
\(619\) 24569.6i 1.59537i 0.603073 + 0.797686i \(0.293943\pi\)
−0.603073 + 0.797686i \(0.706057\pi\)
\(620\) 9463.67 0.613017
\(621\) −7050.55 −0.455602
\(622\) − 4394.70i − 0.283298i
\(623\) 19360.6 1.24505
\(624\) 0 0
\(625\) −19355.8 −1.23877
\(626\) 10105.1i 0.645177i
\(627\) 12767.6 0.813220
\(628\) 2461.57 0.156413
\(629\) − 731.001i − 0.0463385i
\(630\) 40109.5i 2.53651i
\(631\) 13322.2i 0.840489i 0.907411 + 0.420245i \(0.138056\pi\)
−0.907411 + 0.420245i \(0.861944\pi\)
\(632\) − 8345.43i − 0.525259i
\(633\) 98.1191 0.00616096
\(634\) −3779.82 −0.236776
\(635\) 26534.9i 1.65828i
\(636\) −14007.6 −0.873327
\(637\) 0 0
\(638\) −935.235 −0.0580350
\(639\) − 47516.9i − 2.94169i
\(640\) −1813.57 −0.112012
\(641\) −14894.6 −0.917784 −0.458892 0.888492i \(-0.651754\pi\)
−0.458892 + 0.888492i \(0.651754\pi\)
\(642\) 37084.7i 2.27978i
\(643\) − 9247.56i − 0.567167i −0.958948 0.283583i \(-0.908477\pi\)
0.958948 0.283583i \(-0.0915233\pi\)
\(644\) − 4126.01i − 0.252465i
\(645\) − 53845.1i − 3.28705i
\(646\) −9419.44 −0.573689
\(647\) −2734.14 −0.166136 −0.0830681 0.996544i \(-0.526472\pi\)
−0.0830681 + 0.996544i \(0.526472\pi\)
\(648\) 3022.78i 0.183250i
\(649\) −3875.31 −0.234390
\(650\) 0 0
\(651\) 41818.1 2.51763
\(652\) − 4640.37i − 0.278728i
\(653\) −6562.78 −0.393295 −0.196647 0.980474i \(-0.563005\pi\)
−0.196647 + 0.980474i \(0.563005\pi\)
\(654\) −15461.5 −0.924455
\(655\) − 26214.8i − 1.56381i
\(656\) 2007.59i 0.119486i
\(657\) − 47585.8i − 2.82572i
\(658\) 10658.9i 0.631501i
\(659\) −4953.84 −0.292829 −0.146414 0.989223i \(-0.546773\pi\)
−0.146414 + 0.989223i \(0.546773\pi\)
\(660\) −4702.93 −0.277365
\(661\) − 9347.27i − 0.550025i −0.961441 0.275013i \(-0.911318\pi\)
0.961441 0.275013i \(-0.0886821\pi\)
\(662\) 5098.78 0.299350
\(663\) 0 0
\(664\) −2506.43 −0.146489
\(665\) − 62456.9i − 3.64207i
\(666\) 2359.61 0.137287
\(667\) −1773.39 −0.102947
\(668\) 8117.06i 0.470147i
\(669\) 23947.9i 1.38398i
\(670\) − 8148.25i − 0.469843i
\(671\) − 5731.80i − 0.329767i
\(672\) −8013.80 −0.460029
\(673\) −15419.0 −0.883150 −0.441575 0.897224i \(-0.645580\pi\)
−0.441575 + 0.897224i \(0.645580\pi\)
\(674\) 281.298i 0.0160760i
\(675\) 14833.7 0.845851
\(676\) 0 0
\(677\) 26079.0 1.48050 0.740248 0.672334i \(-0.234708\pi\)
0.740248 + 0.672334i \(0.234708\pi\)
\(678\) − 2311.18i − 0.130915i
\(679\) 7805.36 0.441152
\(680\) 3469.64 0.195668
\(681\) − 39594.3i − 2.22798i
\(682\) 3170.52i 0.178014i
\(683\) 14890.0i 0.834190i 0.908863 + 0.417095i \(0.136952\pi\)
−0.908863 + 0.417095i \(0.863048\pi\)
\(684\) − 30405.2i − 1.69967i
\(685\) 13706.3 0.764510
\(686\) −7726.75 −0.430042
\(687\) − 7586.19i − 0.421297i
\(688\) 6956.39 0.385479
\(689\) 0 0
\(690\) −8917.68 −0.492015
\(691\) − 4071.03i − 0.224123i −0.993701 0.112062i \(-0.964255\pi\)
0.993701 0.112062i \(-0.0357454\pi\)
\(692\) −12294.4 −0.675380
\(693\) −13437.5 −0.736578
\(694\) − 281.026i − 0.0153712i
\(695\) − 1467.82i − 0.0801114i
\(696\) 3444.40i 0.187586i
\(697\) − 3840.82i − 0.208725i
\(698\) 24546.5 1.33109
\(699\) 4677.61 0.253109
\(700\) 8680.73i 0.468715i
\(701\) −18378.1 −0.990200 −0.495100 0.868836i \(-0.664869\pi\)
−0.495100 + 0.868836i \(0.664869\pi\)
\(702\) 0 0
\(703\) −3674.29 −0.197125
\(704\) − 607.583i − 0.0325272i
\(705\) 23037.5 1.23070
\(706\) −11775.9 −0.627753
\(707\) 18954.0i 1.00826i
\(708\) 14272.5i 0.757616i
\(709\) − 14946.4i − 0.791710i −0.918313 0.395855i \(-0.870448\pi\)
0.918313 0.395855i \(-0.129552\pi\)
\(710\) − 27254.7i − 1.44063i
\(711\) −51537.2 −2.71842
\(712\) 5406.03 0.284550
\(713\) 6011.94i 0.315777i
\(714\) 15331.6 0.803602
\(715\) 0 0
\(716\) 9255.55 0.483095
\(717\) 10023.5i 0.522084i
\(718\) −11805.8 −0.613631
\(719\) −15005.8 −0.778335 −0.389168 0.921167i \(-0.627237\pi\)
−0.389168 + 0.921167i \(0.627237\pi\)
\(720\) 11199.7i 0.579706i
\(721\) 9034.99i 0.466686i
\(722\) 33627.8i 1.73337i
\(723\) − 29308.6i − 1.50761i
\(724\) −6680.03 −0.342903
\(725\) 3731.05 0.191128
\(726\) 21692.8i 1.10895i
\(727\) 30390.1 1.55035 0.775177 0.631744i \(-0.217661\pi\)
0.775177 + 0.631744i \(0.217661\pi\)
\(728\) 0 0
\(729\) −27550.2 −1.39970
\(730\) − 27294.2i − 1.38384i
\(731\) −13308.6 −0.673375
\(732\) −21109.8 −1.06590
\(733\) 31143.3i 1.56931i 0.619932 + 0.784655i \(0.287160\pi\)
−0.619932 + 0.784655i \(0.712840\pi\)
\(734\) 6637.86i 0.333798i
\(735\) 59179.3i 2.96988i
\(736\) − 1152.10i − 0.0576995i
\(737\) 2729.83 0.136438
\(738\) 12397.9 0.618389
\(739\) − 3884.81i − 0.193376i −0.995315 0.0966881i \(-0.969175\pi\)
0.995315 0.0966881i \(-0.0308249\pi\)
\(740\) 1353.42 0.0672334
\(741\) 0 0
\(742\) −22956.5 −1.13579
\(743\) 11614.8i 0.573495i 0.958006 + 0.286748i \(0.0925741\pi\)
−0.958006 + 0.286748i \(0.907426\pi\)
\(744\) 11676.8 0.575392
\(745\) 27167.2 1.33601
\(746\) − 484.431i − 0.0237752i
\(747\) 15478.5i 0.758136i
\(748\) 1162.40i 0.0568202i
\(749\) 60776.7i 2.96493i
\(750\) −12199.6 −0.593955
\(751\) 34410.2 1.67196 0.835982 0.548757i \(-0.184899\pi\)
0.835982 + 0.548757i \(0.184899\pi\)
\(752\) 2976.27i 0.144326i
\(753\) 46833.6 2.26655
\(754\) 0 0
\(755\) −28836.9 −1.39004
\(756\) 22442.7i 1.07967i
\(757\) −29456.8 −1.41430 −0.707150 0.707063i \(-0.750020\pi\)
−0.707150 + 0.707063i \(0.750020\pi\)
\(758\) 25808.5 1.23669
\(759\) − 2987.60i − 0.142876i
\(760\) − 17439.7i − 0.832376i
\(761\) − 32950.1i − 1.56957i −0.619769 0.784784i \(-0.712774\pi\)
0.619769 0.784784i \(-0.287226\pi\)
\(762\) 32740.2i 1.55650i
\(763\) −25339.3 −1.20229
\(764\) −15300.8 −0.724561
\(765\) − 21426.7i − 1.01266i
\(766\) 9182.04 0.433108
\(767\) 0 0
\(768\) −2237.68 −0.105137
\(769\) 10223.7i 0.479424i 0.970844 + 0.239712i \(0.0770530\pi\)
−0.970844 + 0.239712i \(0.922947\pi\)
\(770\) −7707.45 −0.360724
\(771\) −54998.9 −2.56905
\(772\) − 3635.33i − 0.169480i
\(773\) 10140.1i 0.471815i 0.971776 + 0.235908i \(0.0758062\pi\)
−0.971776 + 0.235908i \(0.924194\pi\)
\(774\) − 42959.2i − 1.99501i
\(775\) − 12648.6i − 0.586257i
\(776\) 2179.48 0.100823
\(777\) 5980.50 0.276125
\(778\) − 27946.2i − 1.28781i
\(779\) −19305.4 −0.887920
\(780\) 0 0
\(781\) 9130.86 0.418346
\(782\) 2204.14i 0.100793i
\(783\) 9646.04 0.440257
\(784\) −7645.53 −0.348284
\(785\) − 8719.21i − 0.396435i
\(786\) − 32345.2i − 1.46783i
\(787\) 9088.53i 0.411653i 0.978588 + 0.205827i \(0.0659883\pi\)
−0.978588 + 0.205827i \(0.934012\pi\)
\(788\) 5350.67i 0.241890i
\(789\) 41936.9 1.89226
\(790\) −29560.6 −1.33129
\(791\) − 3787.71i − 0.170260i
\(792\) −3752.13 −0.168341
\(793\) 0 0
\(794\) 5235.46 0.234004
\(795\) 49616.6i 2.21348i
\(796\) 4578.32 0.203862
\(797\) 21032.4 0.934764 0.467382 0.884055i \(-0.345197\pi\)
0.467382 + 0.884055i \(0.345197\pi\)
\(798\) − 77062.7i − 3.41853i
\(799\) − 5694.06i − 0.252117i
\(800\) 2423.90i 0.107122i
\(801\) − 33385.0i − 1.47266i
\(802\) 15778.4 0.694706
\(803\) 9144.10 0.401854
\(804\) − 10053.7i − 0.441005i
\(805\) −14614.9 −0.639883
\(806\) 0 0
\(807\) −54599.7 −2.38166
\(808\) 5292.49i 0.230432i
\(809\) −43644.9 −1.89675 −0.948376 0.317147i \(-0.897275\pi\)
−0.948376 + 0.317147i \(0.897275\pi\)
\(810\) 10707.1 0.464456
\(811\) 28688.1i 1.24214i 0.783756 + 0.621069i \(0.213301\pi\)
−0.783756 + 0.621069i \(0.786699\pi\)
\(812\) 5644.89i 0.243962i
\(813\) 16006.0i 0.690473i
\(814\) 453.424i 0.0195239i
\(815\) −16436.8 −0.706448
\(816\) 4281.02 0.183659
\(817\) 66894.3i 2.86455i
\(818\) −15463.1 −0.660946
\(819\) 0 0
\(820\) 7111.14 0.302843
\(821\) 16042.2i 0.681947i 0.940073 + 0.340973i \(0.110757\pi\)
−0.940073 + 0.340973i \(0.889243\pi\)
\(822\) 16911.5 0.717588
\(823\) 12138.9 0.514137 0.257068 0.966393i \(-0.417243\pi\)
0.257068 + 0.966393i \(0.417243\pi\)
\(824\) 2522.82i 0.106659i
\(825\) 6285.64i 0.265258i
\(826\) 23390.6i 0.985307i
\(827\) 17136.2i 0.720538i 0.932848 + 0.360269i \(0.117315\pi\)
−0.932848 + 0.360269i \(0.882685\pi\)
\(828\) −7114.78 −0.298618
\(829\) −10947.3 −0.458642 −0.229321 0.973351i \(-0.573651\pi\)
−0.229321 + 0.973351i \(0.573651\pi\)
\(830\) 8878.11i 0.371281i
\(831\) −13997.9 −0.584336
\(832\) 0 0
\(833\) 14627.1 0.608400
\(834\) − 1811.07i − 0.0751945i
\(835\) 28751.7 1.19161
\(836\) 5842.67 0.241714
\(837\) − 32700.9i − 1.35043i
\(838\) − 5512.82i − 0.227252i
\(839\) − 13628.7i − 0.560805i −0.959883 0.280402i \(-0.909532\pi\)
0.959883 0.280402i \(-0.0904679\pi\)
\(840\) 28385.9i 1.16596i
\(841\) −21962.8 −0.900520
\(842\) 23630.3 0.967167
\(843\) 39479.6i 1.61299i
\(844\) 44.9010 0.00183123
\(845\) 0 0
\(846\) 18380.0 0.746946
\(847\) 35551.5i 1.44223i
\(848\) −6410.09 −0.259580
\(849\) 61912.3 2.50274
\(850\) − 4637.30i − 0.187127i
\(851\) 859.780i 0.0346332i
\(852\) − 33628.2i − 1.35221i
\(853\) 6645.59i 0.266753i 0.991065 + 0.133377i \(0.0425820\pi\)
−0.991065 + 0.133377i \(0.957418\pi\)
\(854\) −34596.0 −1.38624
\(855\) −107699. −4.30788
\(856\) 16970.6i 0.677619i
\(857\) −15552.6 −0.619914 −0.309957 0.950751i \(-0.600315\pi\)
−0.309957 + 0.950751i \(0.600315\pi\)
\(858\) 0 0
\(859\) −48006.5 −1.90682 −0.953412 0.301672i \(-0.902455\pi\)
−0.953412 + 0.301672i \(0.902455\pi\)
\(860\) − 24640.4i − 0.977014i
\(861\) 31422.7 1.24377
\(862\) −21202.4 −0.837770
\(863\) 3572.64i 0.140920i 0.997515 + 0.0704601i \(0.0224468\pi\)
−0.997515 + 0.0704601i \(0.977553\pi\)
\(864\) 6266.63i 0.246753i
\(865\) 43548.4i 1.71178i
\(866\) − 18459.4i − 0.724339i
\(867\) 34754.0 1.36137
\(868\) 19136.6 0.748318
\(869\) − 9903.40i − 0.386594i
\(870\) 12200.5 0.475443
\(871\) 0 0
\(872\) −7075.45 −0.274777
\(873\) − 13459.4i − 0.521799i
\(874\) 11078.8 0.428773
\(875\) −19993.4 −0.772459
\(876\) − 33677.0i − 1.29891i
\(877\) 2699.84i 0.103953i 0.998648 + 0.0519767i \(0.0165521\pi\)
−0.998648 + 0.0519767i \(0.983448\pi\)
\(878\) 14403.3i 0.553631i
\(879\) 60518.1i 2.32221i
\(880\) −2152.14 −0.0824416
\(881\) −3982.46 −0.152295 −0.0761477 0.997097i \(-0.524262\pi\)
−0.0761477 + 0.997097i \(0.524262\pi\)
\(882\) 47215.0i 1.80251i
\(883\) −21896.7 −0.834523 −0.417261 0.908787i \(-0.637010\pi\)
−0.417261 + 0.908787i \(0.637010\pi\)
\(884\) 0 0
\(885\) 50555.0 1.92021
\(886\) 7089.41i 0.268819i
\(887\) −21219.7 −0.803254 −0.401627 0.915803i \(-0.631555\pi\)
−0.401627 + 0.915803i \(0.631555\pi\)
\(888\) 1669.92 0.0631069
\(889\) 53656.7i 2.02428i
\(890\) − 19148.9i − 0.721204i
\(891\) 3587.09i 0.134873i
\(892\) 10959.0i 0.411360i
\(893\) −28620.6 −1.07251
\(894\) 33520.4 1.25401
\(895\) − 32784.4i − 1.22442i
\(896\) −3667.25 −0.136735
\(897\) 0 0
\(898\) 36650.7 1.36197
\(899\) − 8225.08i − 0.305141i
\(900\) 14968.8 0.554401
\(901\) 12263.5 0.453447
\(902\) 2382.37i 0.0879428i
\(903\) − 108881.i − 4.01256i
\(904\) − 1057.64i − 0.0389120i
\(905\) 23661.5i 0.869101i
\(906\) −35580.5 −1.30473
\(907\) 42873.6 1.56957 0.784783 0.619771i \(-0.212775\pi\)
0.784783 + 0.619771i \(0.212775\pi\)
\(908\) − 18119.0i − 0.662225i
\(909\) 32683.8 1.19258
\(910\) 0 0
\(911\) 28943.9 1.05264 0.526319 0.850287i \(-0.323572\pi\)
0.526319 + 0.850287i \(0.323572\pi\)
\(912\) − 21518.1i − 0.781288i
\(913\) −2974.35 −0.107817
\(914\) −10767.7 −0.389675
\(915\) 74773.6i 2.70157i
\(916\) − 3471.57i − 0.125222i
\(917\) − 53009.4i − 1.90897i
\(918\) − 11989.0i − 0.431042i
\(919\) 2735.02 0.0981720 0.0490860 0.998795i \(-0.484369\pi\)
0.0490860 + 0.998795i \(0.484369\pi\)
\(920\) −4080.88 −0.146242
\(921\) − 76732.3i − 2.74529i
\(922\) −21242.3 −0.758760
\(923\) 0 0
\(924\) −9509.87 −0.338584
\(925\) − 1808.90i − 0.0642986i
\(926\) −20814.5 −0.738669
\(927\) 15579.7 0.552001
\(928\) 1576.21i 0.0557562i
\(929\) 15091.8i 0.532988i 0.963837 + 0.266494i \(0.0858652\pi\)
−0.963837 + 0.266494i \(0.914135\pi\)
\(930\) − 41360.7i − 1.45836i
\(931\) − 73521.3i − 2.58814i
\(932\) 2140.55 0.0752319
\(933\) −19206.9 −0.673961
\(934\) − 31568.0i − 1.10593i
\(935\) 4117.37 0.144013
\(936\) 0 0
\(937\) −20974.5 −0.731278 −0.365639 0.930757i \(-0.619150\pi\)
−0.365639 + 0.930757i \(0.619150\pi\)
\(938\) − 16476.7i − 0.573544i
\(939\) 44164.0 1.53487
\(940\) 10542.3 0.365801
\(941\) − 886.927i − 0.0307258i −0.999882 0.0153629i \(-0.995110\pi\)
0.999882 0.0153629i \(-0.00489036\pi\)
\(942\) − 10758.2i − 0.372104i
\(943\) 4517.45i 0.156000i
\(944\) 6531.32i 0.225187i
\(945\) 79494.9 2.73647
\(946\) 8255.05 0.283715
\(947\) − 43341.3i − 1.48723i −0.668610 0.743613i \(-0.733110\pi\)
0.668610 0.743613i \(-0.266890\pi\)
\(948\) −36473.5 −1.24958
\(949\) 0 0
\(950\) −23308.9 −0.796041
\(951\) 16519.6i 0.563286i
\(952\) 7016.01 0.238855
\(953\) −16014.9 −0.544357 −0.272178 0.962247i \(-0.587744\pi\)
−0.272178 + 0.962247i \(0.587744\pi\)
\(954\) 39585.5i 1.34343i
\(955\) 54197.5i 1.83643i
\(956\) 4586.92i 0.155180i
\(957\) 4087.42i 0.138064i
\(958\) 36527.4 1.23189
\(959\) 27715.7 0.933249
\(960\) 7926.16i 0.266475i
\(961\) 1907.30 0.0640227
\(962\) 0 0
\(963\) 104802. 3.50695
\(964\) − 13412.1i − 0.448107i
\(965\) −12876.8 −0.429553
\(966\) −18032.6 −0.600610
\(967\) 7986.48i 0.265592i 0.991143 + 0.132796i \(0.0423956\pi\)
−0.991143 + 0.132796i \(0.957604\pi\)
\(968\) 9926.99i 0.329613i
\(969\) 41167.4i 1.36479i
\(970\) − 7720.00i − 0.255540i
\(971\) 25245.4 0.834361 0.417180 0.908824i \(-0.363018\pi\)
0.417180 + 0.908824i \(0.363018\pi\)
\(972\) −7938.88 −0.261975
\(973\) − 2968.09i − 0.0977932i
\(974\) −10738.0 −0.353253
\(975\) 0 0
\(976\) −9660.19 −0.316819
\(977\) − 5231.76i − 0.171319i −0.996324 0.0856595i \(-0.972700\pi\)
0.996324 0.0856595i \(-0.0272997\pi\)
\(978\) −20280.6 −0.663089
\(979\) 6415.26 0.209431
\(980\) 27081.5i 0.882740i
\(981\) 43694.5i 1.42208i
\(982\) − 2982.67i − 0.0969254i
\(983\) − 22720.8i − 0.737212i −0.929586 0.368606i \(-0.879835\pi\)
0.929586 0.368606i \(-0.120165\pi\)
\(984\) 8774.10 0.284256
\(985\) 18952.8 0.613081
\(986\) − 3015.54i − 0.0973978i
\(987\) 46584.5 1.50233
\(988\) 0 0
\(989\) 15653.2 0.503279
\(990\) 13290.5i 0.426668i
\(991\) 19005.1 0.609200 0.304600 0.952480i \(-0.401477\pi\)
0.304600 + 0.952480i \(0.401477\pi\)
\(992\) 5343.49 0.171024
\(993\) − 22284.0i − 0.712148i
\(994\) − 55112.1i − 1.75860i
\(995\) − 16217.0i − 0.516698i
\(996\) 10954.3i 0.348494i
\(997\) 49243.2 1.56424 0.782121 0.623127i \(-0.214138\pi\)
0.782121 + 0.623127i \(0.214138\pi\)
\(998\) −20134.8 −0.638633
\(999\) − 4676.62i − 0.148110i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.b.f.337.1 6
13.2 odd 12 338.4.c.l.191.3 6
13.3 even 3 338.4.e.h.147.6 12
13.4 even 6 338.4.e.h.23.6 12
13.5 odd 4 338.4.a.j.1.1 3
13.6 odd 12 338.4.c.l.315.3 6
13.7 odd 12 338.4.c.k.315.3 6
13.8 odd 4 338.4.a.k.1.1 yes 3
13.9 even 3 338.4.e.h.23.3 12
13.10 even 6 338.4.e.h.147.3 12
13.11 odd 12 338.4.c.k.191.3 6
13.12 even 2 inner 338.4.b.f.337.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.j.1.1 3 13.5 odd 4
338.4.a.k.1.1 yes 3 13.8 odd 4
338.4.b.f.337.1 6 1.1 even 1 trivial
338.4.b.f.337.4 6 13.12 even 2 inner
338.4.c.k.191.3 6 13.11 odd 12
338.4.c.k.315.3 6 13.7 odd 12
338.4.c.l.191.3 6 13.2 odd 12
338.4.c.l.315.3 6 13.6 odd 12
338.4.e.h.23.3 12 13.9 even 3
338.4.e.h.23.6 12 13.4 even 6
338.4.e.h.147.3 12 13.10 even 6
338.4.e.h.147.6 12 13.3 even 3