Properties

Label 338.4.b.f
Level $338$
Weight $4$
Character orbit 338.b
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(337,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.337");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_{5} q^{2} + (3 \beta_{4} - 5) q^{3} - 4 q^{4} + (\beta_{5} - 8 \beta_{3} + \beta_1) q^{5} + (10 \beta_{5} - 6 \beta_1) q^{6} + (8 \beta_{5} - 8 \beta_{3} - 5 \beta_1) q^{7} + 8 \beta_{5} q^{8} + ( - 30 \beta_{4} - 9 \beta_{2} + 16) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 \beta_{5} q^{2} + (3 \beta_{4} - 5) q^{3} - 4 q^{4} + (\beta_{5} - 8 \beta_{3} + \beta_1) q^{5} + (10 \beta_{5} - 6 \beta_1) q^{6} + (8 \beta_{5} - 8 \beta_{3} - 5 \beta_1) q^{7} + 8 \beta_{5} q^{8} + ( - 30 \beta_{4} - 9 \beta_{2} + 16) q^{9} + ( - 14 \beta_{4} - 16 \beta_{2} + 18) q^{10} + ( - 35 \beta_{5} - 24 \beta_{3} - \beta_1) q^{11} + ( - 12 \beta_{4} + 20) q^{12} + ( - 26 \beta_{4} - 16 \beta_{2} + 32) q^{14} + ( - 26 \beta_{5} + 37 \beta_{3} + 25 \beta_1) q^{15} + 16 q^{16} + (38 \beta_{4} - 5 \beta_{2} + 19) q^{17} + ( - 14 \beta_{5} + 18 \beta_{3} + 42 \beta_1) q^{18} + (57 \beta_{5} - 15 \beta_{3} - 56 \beta_1) q^{19} + ( - 4 \beta_{5} + 32 \beta_{3} - 4 \beta_1) q^{20} + ( - 79 \beta_{5} + 55 \beta_{3} + 58 \beta_1) q^{21} + ( - 50 \beta_{4} - 48 \beta_{2} - 22) q^{22} + ( - 34 \beta_{4} - 102 \beta_{2} + 39) q^{23} + ( - 40 \beta_{5} + 24 \beta_1) q^{24} + (62 \beta_{4} + 17 \beta_{2} - 6) q^{25} + (117 \beta_{4} + 108 \beta_{2} - 98) q^{27} + ( - 32 \beta_{5} + 32 \beta_{3} + 20 \beta_1) q^{28} + ( - 3 \beta_{4} - 182 \beta_{2} + 28) q^{29} + (124 \beta_{4} + 74 \beta_{2} - 126) q^{30} + (128 \beta_{5} - 68 \beta_{3} + 67 \beta_1) q^{31} - 32 \beta_{5} q^{32} + (100 \beta_{5} + 123 \beta_{3} - 31 \beta_1) q^{33} + ( - 28 \beta_{5} + 10 \beta_{3} - 86 \beta_1) q^{34} + (165 \beta_{4} + 67 \beta_{2} - 230) q^{35} + (120 \beta_{4} + 36 \beta_{2} - 64) q^{36} + ( - 55 \beta_{5} - 59 \beta_{3} + 22 \beta_1) q^{37} + ( - 142 \beta_{4} - 30 \beta_{2} + 144) q^{38} + (56 \beta_{4} + 64 \beta_{2} - 72) q^{40} + (239 \beta_{5} + 254 \beta_{3} - 276 \beta_1) q^{41} + (226 \beta_{4} + 110 \beta_{2} - 268) q^{42} + ( - 23 \beta_{4} - 29 \beta_{2} + 419) q^{43} + (140 \beta_{5} + 96 \beta_{3} + 4 \beta_1) q^{44} + (289 \beta_{5} - 44 \beta_{3} - 266 \beta_1) q^{45} + (126 \beta_{5} + 204 \beta_{3} - 136 \beta_1) q^{46} + (359 \beta_{5} + 278 \beta_{3} - 263 \beta_1) q^{47} + (48 \beta_{4} - 80) q^{48} + (352 \beta_{4} + 153 \beta_{2} - 107) q^{49} + ( - 22 \beta_{5} - 34 \beta_{3} - 90 \beta_1) q^{50} + ( - 133 \beta_{4} - 104 \beta_{2} + 148) q^{51} + (27 \beta_{4} + 63 \beta_{2} - 395) q^{53} + ( - 20 \beta_{5} - 216 \beta_{3} - 18 \beta_1) q^{54} + ( - 44 \beta_{4} - 257 \beta_{2} - 75) q^{55} + (104 \beta_{4} + 64 \beta_{2} - 128) q^{56} + ( - 498 \beta_{5} + 243 \beta_{3} + 328 \beta_1) q^{57} + (308 \beta_{5} + 364 \beta_{3} - 358 \beta_1) q^{58} + (351 \beta_{5} - 166 \beta_{3} + 194 \beta_1) q^{59} + (104 \beta_{5} - 148 \beta_{3} - 100 \beta_1) q^{60} + (147 \beta_{4} - 19 \beta_{2} - 412) q^{61} + ( - 2 \beta_{4} - 136 \beta_{2} + 392) q^{62} + (518 \beta_{5} - 233 \beta_{3} - 383 \beta_1) q^{63} - 64 q^{64} + (184 \beta_{4} + 246 \beta_{2} - 46) q^{66} + ( - 432 \beta_{5} + 79 \beta_{3} - 230 \beta_1) q^{67} + ( - 152 \beta_{4} + 20 \beta_{2} - 76) q^{68} + (287 \beta_{4} + 306 \beta_{2} - 93) q^{69} + (326 \beta_{5} - 134 \beta_{3} - 196 \beta_1) q^{70} + ( - 359 \beta_{5} + 129 \beta_{3} + 297 \beta_1) q^{71} + (56 \beta_{5} - 72 \beta_{3} - 168 \beta_1) q^{72} + (122 \beta_{5} + 623 \beta_{3} - 30 \beta_1) q^{73} + ( - 74 \beta_{4} - 118 \beta_{2} + 8) q^{74} + ( - 328 \beta_{4} - 220 \beta_{2} + 351) q^{75} + ( - 228 \beta_{5} + 60 \beta_{3} + 224 \beta_1) q^{76} + (65 \beta_{4} - 83 \beta_{2} - 154) q^{77} + (258 \beta_{4} + 163 \beta_{2} - 794) q^{79} + (16 \beta_{5} - 128 \beta_{3} + 16 \beta_1) q^{80} + ( - 69 \beta_{4} - 324 \beta_{2} + 436) q^{81} + ( - 44 \beta_{4} + 508 \beta_{2} - 30) q^{82} + (207 \beta_{5} + 141 \beta_{3} - 289 \beta_1) q^{83} + (316 \beta_{5} - 220 \beta_{3} - 232 \beta_1) q^{84} + ( - 212 \beta_{5} - 160 \beta_{3} + 409 \beta_1) q^{85} + ( - 780 \beta_{5} + 58 \beta_{3} - 12 \beta_1) q^{86} + (99 \beta_{4} + 373 \beta_{2} + 388) q^{87} + (200 \beta_{4} + 192 \beta_{2} + 88) q^{88} + ( - 443 \beta_{5} - 21 \beta_{3} + 217 \beta_1) q^{89} + ( - 620 \beta_{4} - 88 \beta_{2} + 666) q^{90} + (136 \beta_{4} + 408 \beta_{2} - 156) q^{92} + ( - 643 \beta_{5} + 139 \beta_{3} + 454 \beta_1) q^{93} + (30 \beta_{4} + 556 \beta_{2} + 162) q^{94} + (1023 \beta_{4} + 415 \beta_{2} - 1089) q^{95} + (160 \beta_{5} - 96 \beta_1) q^{96} + ( - 740 \beta_{5} - 674 \beta_{3} + 599 \beta_1) q^{97} + ( - 92 \beta_{5} - 306 \beta_{3} - 398 \beta_1) q^{98} + (721 \beta_{5} + 126 \beta_{3} + 20 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{3} - 24 q^{4} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 24 q^{3} - 24 q^{4} + 18 q^{9} + 48 q^{10} + 96 q^{12} + 108 q^{14} + 96 q^{16} + 180 q^{17} - 328 q^{22} - 38 q^{23} + 122 q^{25} - 138 q^{27} - 202 q^{29} - 360 q^{30} - 916 q^{35} - 72 q^{36} + 520 q^{38} - 192 q^{40} - 936 q^{42} + 2410 q^{43} - 384 q^{48} + 368 q^{49} + 414 q^{51} - 2190 q^{53} - 1052 q^{55} - 432 q^{56} - 2216 q^{61} + 2076 q^{62} - 384 q^{64} + 584 q^{66} - 720 q^{68} + 628 q^{69} - 336 q^{74} + 1010 q^{75} - 960 q^{77} - 3922 q^{79} + 1830 q^{81} + 748 q^{82} + 3272 q^{87} + 1312 q^{88} + 2580 q^{90} + 152 q^{92} + 2144 q^{94} - 3658 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.24698i
0.445042i
1.80194i
1.24698i
0.445042i
1.80194i
2.00000i −8.74094 −4.00000 14.1685i 17.4819i 28.6504i 8.00000i 49.4040 28.3370
337.2 2.00000i −3.66487 −4.00000 8.53079i 7.32975i 4.20105i 8.00000i −13.5687 −17.0616
337.3 2.00000i 0.405813 −4.00000 6.36227i 0.811626i 2.55065i 8.00000i −26.8353 12.7245
337.4 2.00000i −8.74094 −4.00000 14.1685i 17.4819i 28.6504i 8.00000i 49.4040 28.3370
337.5 2.00000i −3.66487 −4.00000 8.53079i 7.32975i 4.20105i 8.00000i −13.5687 −17.0616
337.6 2.00000i 0.405813 −4.00000 6.36227i 0.811626i 2.55065i 8.00000i −26.8353 12.7245
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.b.f 6
13.b even 2 1 inner 338.4.b.f 6
13.c even 3 2 338.4.e.h 12
13.d odd 4 1 338.4.a.j 3
13.d odd 4 1 338.4.a.k yes 3
13.e even 6 2 338.4.e.h 12
13.f odd 12 2 338.4.c.k 6
13.f odd 12 2 338.4.c.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
338.4.a.j 3 13.d odd 4 1
338.4.a.k yes 3 13.d odd 4 1
338.4.b.f 6 1.a even 1 1 trivial
338.4.b.f 6 13.b even 2 1 inner
338.4.c.k 6 13.f odd 12 2
338.4.c.l 6 13.f odd 12 2
338.4.e.h 12 13.c even 3 2
338.4.e.h 12 13.e even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 12T_{3}^{2} + 27T_{3} - 13 \) acting on \(S_{4}^{\mathrm{new}}(338, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{3} \) Copy content Toggle raw display
$3$ \( (T^{3} + 12 T^{2} + \cdots - 13)^{2} \) Copy content Toggle raw display
$5$ \( T^{6} + 314 T^{4} + \cdots + 591361 \) Copy content Toggle raw display
$7$ \( T^{6} + 845 T^{4} + \cdots + 94249 \) Copy content Toggle raw display
$11$ \( T^{6} + 5046 T^{4} + \cdots + 262796521 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( (T^{3} - 90 T^{2} + \cdots + 77167)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 5868938881 \) Copy content Toggle raw display
$23$ \( (T^{3} + 19 T^{2} + \cdots + 604157)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} + 101 T^{2} + \cdots - 3703349)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 11573311429849 \) Copy content Toggle raw display
$37$ \( T^{6} + 14798 T^{4} + \cdots + 955984561 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 406923583488409 \) Copy content Toggle raw display
$43$ \( (T^{3} - 1205 T^{2} + \cdots - 64126453)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 682686545449441 \) Copy content Toggle raw display
$53$ \( (T^{3} + 1095 T^{2} + \cdots + 45870749)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 53\!\cdots\!41 \) Copy content Toggle raw display
$61$ \( (T^{3} + 1108 T^{2} + \cdots + 28377551)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 12\!\cdots\!01 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 56772774022441 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 31\!\cdots\!69 \) Copy content Toggle raw display
$79$ \( (T^{3} + 1961 T^{2} + \cdots + 214064899)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 899211352843609 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 115238228298649 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 52\!\cdots\!81 \) Copy content Toggle raw display
show more
show less