Properties

Label 338.4.c.l
Level $338$
Weight $4$
Character orbit 338.c
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(191,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta_{5} + 2) q^{2} + ( - 5 \beta_{5} - 3 \beta_{4} + 5) q^{3} - 4 \beta_{5} q^{4} + (7 \beta_{3} - 8 \beta_{2} + 9) q^{5} + ( - 10 \beta_{5} - 6 \beta_{4} - 6 \beta_{3}) q^{6} + (16 \beta_{5} + 13 \beta_{4} + \cdots + 8 \beta_1) q^{7}+ \cdots + ( - 16 \beta_{5} - 30 \beta_{4} + \cdots - 9 \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \beta_{5} + 2) q^{2} + ( - 5 \beta_{5} - 3 \beta_{4} + 5) q^{3} - 4 \beta_{5} q^{4} + (7 \beta_{3} - 8 \beta_{2} + 9) q^{5} + ( - 10 \beta_{5} - 6 \beta_{4} - 6 \beta_{3}) q^{6} + (16 \beta_{5} + 13 \beta_{4} + \cdots + 8 \beta_1) q^{7}+ \cdots + (146 \beta_{3} - 126 \beta_{2} - 595) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 12 q^{3} - 12 q^{4} + 24 q^{5} - 24 q^{6} + 27 q^{7} - 48 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} + 12 q^{3} - 12 q^{4} + 24 q^{5} - 24 q^{6} + 27 q^{7} - 48 q^{8} - 9 q^{9} + 24 q^{10} - 82 q^{11} - 96 q^{12} + 108 q^{14} + 90 q^{15} - 48 q^{16} + 90 q^{17} - 36 q^{18} - 130 q^{19} - 48 q^{20} + 468 q^{21} + 164 q^{22} - 19 q^{23} - 96 q^{24} - 122 q^{25} - 138 q^{27} + 108 q^{28} + 101 q^{29} - 180 q^{30} + 1038 q^{31} + 96 q^{32} + 146 q^{33} + 360 q^{34} + 458 q^{35} - 36 q^{36} - 84 q^{37} - 520 q^{38} - 192 q^{40} - 187 q^{41} + 468 q^{42} + 1205 q^{43} + 656 q^{44} - 645 q^{45} + 38 q^{46} - 1072 q^{47} + 192 q^{48} + 184 q^{49} - 122 q^{50} - 414 q^{51} - 2190 q^{53} - 138 q^{54} + 526 q^{55} - 216 q^{56} - 2818 q^{57} - 202 q^{58} + 1413 q^{59} - 720 q^{60} + 1108 q^{61} + 1038 q^{62} + 1404 q^{63} + 384 q^{64} + 584 q^{66} + 1605 q^{67} + 360 q^{68} + 314 q^{69} + 1832 q^{70} + 909 q^{71} + 72 q^{72} + 574 q^{73} + 168 q^{74} + 505 q^{75} - 520 q^{76} + 960 q^{77} - 3922 q^{79} - 192 q^{80} - 915 q^{81} + 374 q^{82} + 382 q^{83} - 936 q^{84} - 67 q^{85} + 4820 q^{86} - 1636 q^{87} + 656 q^{88} - 1091 q^{89} - 2580 q^{90} + 152 q^{92} + 1614 q^{93} - 1072 q^{94} - 1829 q^{95} + 768 q^{96} + 947 q^{97} - 368 q^{98} - 4114 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 3\nu^{4} - 9\nu^{3} + 5\nu^{2} - 2\nu + 6 ) / 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{5} + 9\nu^{4} - 14\nu^{3} + 15\nu^{2} - 6\nu + 18 ) / 13 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{5} - \nu^{4} - 10\nu^{3} - 6\nu^{2} - 34\nu - 2 ) / 13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -6\nu^{5} + 5\nu^{4} - 15\nu^{3} - 9\nu^{2} - 25\nu + 10 ) / 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} - 3\beta_{4} - 4\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{4} - 4\beta_{3} + 9\beta_{2} - 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-\beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
−0.623490 + 1.07992i
0.900969 1.56052i
0.222521 0.385418i
−0.623490 1.07992i
0.900969 + 1.56052i
0.222521 + 0.385418i
1.00000 1.73205i −0.202907 + 0.351445i −2.00000 3.46410i 6.36227 0.405813 + 0.702889i 1.27532 + 2.20892i −8.00000 13.4177 + 23.2401i 6.36227 11.0198i
191.2 1.00000 1.73205i 1.83244 3.17387i −2.00000 3.46410i −8.53079 −3.66487 6.34775i −2.10052 3.63821i −8.00000 6.78435 + 11.7508i −8.53079 + 14.7758i
191.3 1.00000 1.73205i 4.37047 7.56988i −2.00000 3.46410i 14.1685 −8.74094 15.1398i 14.3252 + 24.8120i −8.00000 −24.7020 42.7851i 14.1685 24.5406i
315.1 1.00000 + 1.73205i −0.202907 0.351445i −2.00000 + 3.46410i 6.36227 0.405813 0.702889i 1.27532 2.20892i −8.00000 13.4177 23.2401i 6.36227 + 11.0198i
315.2 1.00000 + 1.73205i 1.83244 + 3.17387i −2.00000 + 3.46410i −8.53079 −3.66487 + 6.34775i −2.10052 + 3.63821i −8.00000 6.78435 11.7508i −8.53079 14.7758i
315.3 1.00000 + 1.73205i 4.37047 + 7.56988i −2.00000 + 3.46410i 14.1685 −8.74094 + 15.1398i 14.3252 24.8120i −8.00000 −24.7020 + 42.7851i 14.1685 + 24.5406i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 191.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.c.l 6
13.b even 2 1 338.4.c.k 6
13.c even 3 1 338.4.a.j 3
13.c even 3 1 inner 338.4.c.l 6
13.d odd 4 2 338.4.e.h 12
13.e even 6 1 338.4.a.k yes 3
13.e even 6 1 338.4.c.k 6
13.f odd 12 2 338.4.b.f 6
13.f odd 12 2 338.4.e.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
338.4.a.j 3 13.c even 3 1
338.4.a.k yes 3 13.e even 6 1
338.4.b.f 6 13.f odd 12 2
338.4.c.k 6 13.b even 2 1
338.4.c.k 6 13.e even 6 1
338.4.c.l 6 1.a even 1 1 trivial
338.4.c.l 6 13.c even 3 1 inner
338.4.e.h 12 13.d odd 4 2
338.4.e.h 12 13.f odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(338, [\chi])\):

\( T_{3}^{6} - 12T_{3}^{5} + 117T_{3}^{4} - 350T_{3}^{3} + 885T_{3}^{2} + 351T_{3} + 169 \) Copy content Toggle raw display
\( T_{5}^{3} - 12T_{5}^{2} - 85T_{5} + 769 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} - 12 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$5$ \( (T^{3} - 12 T^{2} + \cdots + 769)^{2} \) Copy content Toggle raw display
$7$ \( T^{6} - 27 T^{5} + \cdots + 94249 \) Copy content Toggle raw display
$11$ \( T^{6} + 82 T^{5} + \cdots + 262796521 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 5954745889 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 5868938881 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 365005680649 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 13714793815801 \) Copy content Toggle raw display
$31$ \( (T^{3} - 519 T^{2} + \cdots - 3401957)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 84 T^{5} + \cdots + 955984561 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 406923583488409 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 41\!\cdots\!09 \) Copy content Toggle raw display
$47$ \( (T^{3} + 536 T^{2} + \cdots - 26128271)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 1095 T^{2} + \cdots + 45870749)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 53\!\cdots\!41 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 805285400757601 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 12\!\cdots\!01 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 56772774022441 \) Copy content Toggle raw display
$73$ \( (T^{3} - 287 T^{2} + \cdots + 178534237)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 1961 T^{2} + \cdots + 214064899)^{2} \) Copy content Toggle raw display
$83$ \( (T^{3} - 191 T^{2} + \cdots + 29986853)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 115238228298649 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 52\!\cdots\!81 \) Copy content Toggle raw display
show more
show less