Properties

Label 338.2.c.i.315.1
Level $338$
Weight $2$
Character 338.315
Analytic conductor $2.699$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,2,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.69894358832\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 315.1
Root \(0.222521 + 0.385418i\) of defining polynomial
Character \(\chi\) \(=\) 338.315
Dual form 338.2.c.i.191.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.34601 - 2.33136i) q^{3} +(-0.500000 + 0.866025i) q^{4} +2.49396 q^{5} +(1.34601 - 2.33136i) q^{6} +(0.801938 - 1.38900i) q^{7} -1.00000 q^{8} +(-2.12349 + 3.67799i) q^{9} +(1.24698 + 2.15983i) q^{10} +(-1.02446 - 1.77441i) q^{11} +2.69202 q^{12} +1.60388 q^{14} +(-3.35690 - 5.81431i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.27144 - 3.93425i) q^{17} -4.24698 q^{18} +(2.42543 - 4.20096i) q^{19} +(-1.24698 + 2.15983i) q^{20} -4.31767 q^{21} +(1.02446 - 1.77441i) q^{22} +(-1.35690 - 2.35021i) q^{23} +(1.34601 + 2.33136i) q^{24} +1.21983 q^{25} +3.35690 q^{27} +(0.801938 + 1.38900i) q^{28} +(4.60388 + 7.97415i) q^{29} +(3.35690 - 5.81431i) q^{30} +5.10992 q^{31} +(0.500000 - 0.866025i) q^{32} +(-2.75786 + 4.77676i) q^{33} +4.54288 q^{34} +(2.00000 - 3.46410i) q^{35} +(-2.12349 - 3.67799i) q^{36} +(-3.80194 - 6.58515i) q^{37} +4.85086 q^{38} -2.49396 q^{40} +(1.73341 + 3.00235i) q^{41} +(-2.15883 - 3.73921i) q^{42} +(-5.67241 + 9.82490i) q^{43} +2.04892 q^{44} +(-5.29590 + 9.17276i) q^{45} +(1.35690 - 2.35021i) q^{46} +0.219833 q^{47} +(-1.34601 + 2.33136i) q^{48} +(2.21379 + 3.83440i) q^{49} +(0.609916 + 1.05641i) q^{50} -12.2295 q^{51} -2.71379 q^{53} +(1.67845 + 2.90716i) q^{54} +(-2.55496 - 4.42532i) q^{55} +(-0.801938 + 1.38900i) q^{56} -13.0586 q^{57} +(-4.60388 + 7.97415i) q^{58} +(2.03803 - 3.52998i) q^{59} +6.71379 q^{60} +(-5.20775 + 9.02009i) q^{61} +(2.55496 + 4.42532i) q^{62} +(3.40581 + 5.89904i) q^{63} +1.00000 q^{64} -5.51573 q^{66} +(6.03803 + 10.4582i) q^{67} +(2.27144 + 3.93425i) q^{68} +(-3.65279 + 6.32682i) q^{69} +4.00000 q^{70} +(-0.643104 + 1.11389i) q^{71} +(2.12349 - 3.67799i) q^{72} +3.62565 q^{73} +(3.80194 - 6.58515i) q^{74} +(-1.64191 - 2.84387i) q^{75} +(2.42543 + 4.20096i) q^{76} -3.28621 q^{77} -5.32975 q^{79} +(-1.24698 - 2.15983i) q^{80} +(1.85205 + 3.20785i) q^{81} +(-1.73341 + 3.00235i) q^{82} +4.85086 q^{83} +(2.15883 - 3.73921i) q^{84} +(5.66487 - 9.81185i) q^{85} -11.3448 q^{86} +(12.3937 - 21.4666i) q^{87} +(1.02446 + 1.77441i) q^{88} +(8.28501 + 14.3501i) q^{89} -10.5918 q^{90} +2.71379 q^{92} +(-6.87800 - 11.9130i) q^{93} +(0.109916 + 0.190381i) q^{94} +(6.04892 - 10.4770i) q^{95} -2.69202 q^{96} +(-2.32036 + 4.01897i) q^{97} +(-2.21379 + 3.83440i) q^{98} +8.70171 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{3} - 3 q^{4} - 4 q^{5} + 3 q^{6} - 4 q^{7} - 6 q^{8} - 8 q^{9} - 2 q^{10} + 3 q^{11} + 6 q^{12} - 8 q^{14} - 12 q^{15} - 3 q^{16} - 5 q^{17} - 16 q^{18} + q^{19} + 2 q^{20} + 8 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.34601 2.33136i −0.777120 1.34601i −0.933595 0.358329i \(-0.883347\pi\)
0.156476 0.987682i \(-0.449987\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.49396 1.11533 0.557666 0.830065i \(-0.311697\pi\)
0.557666 + 0.830065i \(0.311697\pi\)
\(6\) 1.34601 2.33136i 0.549507 0.951773i
\(7\) 0.801938 1.38900i 0.303104 0.524991i −0.673733 0.738974i \(-0.735310\pi\)
0.976837 + 0.213983i \(0.0686437\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.12349 + 3.67799i −0.707830 + 1.22600i
\(10\) 1.24698 + 2.15983i 0.394330 + 0.682999i
\(11\) −1.02446 1.77441i −0.308886 0.535006i 0.669233 0.743053i \(-0.266623\pi\)
−0.978119 + 0.208047i \(0.933289\pi\)
\(12\) 2.69202 0.777120
\(13\) 0 0
\(14\) 1.60388 0.428654
\(15\) −3.35690 5.81431i −0.866747 1.50125i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.27144 3.93425i 0.550905 0.954195i −0.447305 0.894382i \(-0.647616\pi\)
0.998210 0.0598134i \(-0.0190506\pi\)
\(18\) −4.24698 −1.00102
\(19\) 2.42543 4.20096i 0.556431 0.963767i −0.441359 0.897330i \(-0.645504\pi\)
0.997791 0.0664368i \(-0.0211631\pi\)
\(20\) −1.24698 + 2.15983i −0.278833 + 0.482953i
\(21\) −4.31767 −0.942192
\(22\) 1.02446 1.77441i 0.218415 0.378306i
\(23\) −1.35690 2.35021i −0.282932 0.490053i 0.689173 0.724597i \(-0.257974\pi\)
−0.972106 + 0.234543i \(0.924641\pi\)
\(24\) 1.34601 + 2.33136i 0.274753 + 0.475887i
\(25\) 1.21983 0.243967
\(26\) 0 0
\(27\) 3.35690 0.646035
\(28\) 0.801938 + 1.38900i 0.151552 + 0.262496i
\(29\) 4.60388 + 7.97415i 0.854918 + 1.48076i 0.876721 + 0.480999i \(0.159726\pi\)
−0.0218027 + 0.999762i \(0.506941\pi\)
\(30\) 3.35690 5.81431i 0.612883 1.06154i
\(31\) 5.10992 0.917768 0.458884 0.888496i \(-0.348249\pi\)
0.458884 + 0.888496i \(0.348249\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −2.75786 + 4.77676i −0.480083 + 0.831528i
\(34\) 4.54288 0.779097
\(35\) 2.00000 3.46410i 0.338062 0.585540i
\(36\) −2.12349 3.67799i −0.353915 0.612999i
\(37\) −3.80194 6.58515i −0.625035 1.08259i −0.988534 0.150997i \(-0.951751\pi\)
0.363499 0.931594i \(-0.381582\pi\)
\(38\) 4.85086 0.786913
\(39\) 0 0
\(40\) −2.49396 −0.394330
\(41\) 1.73341 + 3.00235i 0.270713 + 0.468888i 0.969044 0.246886i \(-0.0794074\pi\)
−0.698332 + 0.715774i \(0.746074\pi\)
\(42\) −2.15883 3.73921i −0.333115 0.576973i
\(43\) −5.67241 + 9.82490i −0.865034 + 1.49828i 0.00197946 + 0.999998i \(0.499370\pi\)
−0.867013 + 0.498285i \(0.833963\pi\)
\(44\) 2.04892 0.308886
\(45\) −5.29590 + 9.17276i −0.789466 + 1.36739i
\(46\) 1.35690 2.35021i 0.200063 0.346520i
\(47\) 0.219833 0.0320659 0.0160329 0.999871i \(-0.494896\pi\)
0.0160329 + 0.999871i \(0.494896\pi\)
\(48\) −1.34601 + 2.33136i −0.194280 + 0.336503i
\(49\) 2.21379 + 3.83440i 0.316256 + 0.547771i
\(50\) 0.609916 + 1.05641i 0.0862552 + 0.149398i
\(51\) −12.2295 −1.71248
\(52\) 0 0
\(53\) −2.71379 −0.372768 −0.186384 0.982477i \(-0.559677\pi\)
−0.186384 + 0.982477i \(0.559677\pi\)
\(54\) 1.67845 + 2.90716i 0.228408 + 0.395614i
\(55\) −2.55496 4.42532i −0.344510 0.596710i
\(56\) −0.801938 + 1.38900i −0.107163 + 0.185613i
\(57\) −13.0586 −1.72965
\(58\) −4.60388 + 7.97415i −0.604518 + 1.04706i
\(59\) 2.03803 3.52998i 0.265329 0.459564i −0.702321 0.711861i \(-0.747853\pi\)
0.967650 + 0.252297i \(0.0811860\pi\)
\(60\) 6.71379 0.866747
\(61\) −5.20775 + 9.02009i −0.666784 + 1.15490i 0.312014 + 0.950077i \(0.398996\pi\)
−0.978798 + 0.204827i \(0.934337\pi\)
\(62\) 2.55496 + 4.42532i 0.324480 + 0.562016i
\(63\) 3.40581 + 5.89904i 0.429092 + 0.743209i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −5.51573 −0.678939
\(67\) 6.03803 + 10.4582i 0.737663 + 1.27767i 0.953545 + 0.301250i \(0.0974040\pi\)
−0.215882 + 0.976419i \(0.569263\pi\)
\(68\) 2.27144 + 3.93425i 0.275452 + 0.477097i
\(69\) −3.65279 + 6.32682i −0.439745 + 0.761660i
\(70\) 4.00000 0.478091
\(71\) −0.643104 + 1.11389i −0.0763224 + 0.132194i −0.901661 0.432444i \(-0.857651\pi\)
0.825338 + 0.564639i \(0.190984\pi\)
\(72\) 2.12349 3.67799i 0.250256 0.433456i
\(73\) 3.62565 0.424350 0.212175 0.977232i \(-0.431945\pi\)
0.212175 + 0.977232i \(0.431945\pi\)
\(74\) 3.80194 6.58515i 0.441966 0.765508i
\(75\) −1.64191 2.84387i −0.189591 0.328382i
\(76\) 2.42543 + 4.20096i 0.278216 + 0.481884i
\(77\) −3.28621 −0.374498
\(78\) 0 0
\(79\) −5.32975 −0.599644 −0.299822 0.953995i \(-0.596927\pi\)
−0.299822 + 0.953995i \(0.596927\pi\)
\(80\) −1.24698 2.15983i −0.139417 0.241477i
\(81\) 1.85205 + 3.20785i 0.205784 + 0.356427i
\(82\) −1.73341 + 3.00235i −0.191423 + 0.331554i
\(83\) 4.85086 0.532451 0.266225 0.963911i \(-0.414223\pi\)
0.266225 + 0.963911i \(0.414223\pi\)
\(84\) 2.15883 3.73921i 0.235548 0.407981i
\(85\) 5.66487 9.81185i 0.614442 1.06424i
\(86\) −11.3448 −1.22334
\(87\) 12.3937 21.4666i 1.32875 2.30146i
\(88\) 1.02446 + 1.77441i 0.109208 + 0.189153i
\(89\) 8.28501 + 14.3501i 0.878209 + 1.52110i 0.853304 + 0.521414i \(0.174595\pi\)
0.0249054 + 0.999690i \(0.492072\pi\)
\(90\) −10.5918 −1.11647
\(91\) 0 0
\(92\) 2.71379 0.282932
\(93\) −6.87800 11.9130i −0.713216 1.23533i
\(94\) 0.109916 + 0.190381i 0.0113370 + 0.0196363i
\(95\) 6.04892 10.4770i 0.620606 1.07492i
\(96\) −2.69202 −0.274753
\(97\) −2.32036 + 4.01897i −0.235596 + 0.408065i −0.959446 0.281893i \(-0.909038\pi\)
0.723849 + 0.689958i \(0.242371\pi\)
\(98\) −2.21379 + 3.83440i −0.223627 + 0.387333i
\(99\) 8.70171 0.874555
\(100\) −0.609916 + 1.05641i −0.0609916 + 0.105641i
\(101\) −3.71379 6.43248i −0.369536 0.640055i 0.619957 0.784636i \(-0.287150\pi\)
−0.989493 + 0.144581i \(0.953817\pi\)
\(102\) −6.11476 10.5911i −0.605452 1.04867i
\(103\) 0.518122 0.0510521 0.0255261 0.999674i \(-0.491874\pi\)
0.0255261 + 0.999674i \(0.491874\pi\)
\(104\) 0 0
\(105\) −10.7681 −1.05086
\(106\) −1.35690 2.35021i −0.131793 0.228273i
\(107\) −1.75518 3.04005i −0.169679 0.293893i 0.768628 0.639696i \(-0.220940\pi\)
−0.938307 + 0.345803i \(0.887607\pi\)
\(108\) −1.67845 + 2.90716i −0.161509 + 0.279741i
\(109\) −3.38404 −0.324133 −0.162066 0.986780i \(-0.551816\pi\)
−0.162066 + 0.986780i \(0.551816\pi\)
\(110\) 2.55496 4.42532i 0.243606 0.421937i
\(111\) −10.2349 + 17.7274i −0.971454 + 1.68261i
\(112\) −1.60388 −0.151552
\(113\) 2.72468 4.71928i 0.256316 0.443952i −0.708936 0.705273i \(-0.750825\pi\)
0.965252 + 0.261320i \(0.0841579\pi\)
\(114\) −6.52930 11.3091i −0.611525 1.05919i
\(115\) −3.38404 5.86133i −0.315564 0.546572i
\(116\) −9.20775 −0.854918
\(117\) 0 0
\(118\) 4.07606 0.375232
\(119\) −3.64310 6.31004i −0.333963 0.578441i
\(120\) 3.35690 + 5.81431i 0.306441 + 0.530772i
\(121\) 3.40097 5.89065i 0.309179 0.535514i
\(122\) −10.4155 −0.942975
\(123\) 4.66637 8.08238i 0.420752 0.728764i
\(124\) −2.55496 + 4.42532i −0.229442 + 0.397405i
\(125\) −9.42758 −0.843229
\(126\) −3.40581 + 5.89904i −0.303414 + 0.525528i
\(127\) 3.09783 + 5.36561i 0.274888 + 0.476121i 0.970107 0.242678i \(-0.0780258\pi\)
−0.695219 + 0.718798i \(0.744692\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 30.5405 2.68894
\(130\) 0 0
\(131\) −4.13706 −0.361457 −0.180728 0.983533i \(-0.557846\pi\)
−0.180728 + 0.983533i \(0.557846\pi\)
\(132\) −2.75786 4.77676i −0.240041 0.415764i
\(133\) −3.89008 6.73782i −0.337313 0.584243i
\(134\) −6.03803 + 10.4582i −0.521607 + 0.903449i
\(135\) 8.37196 0.720544
\(136\) −2.27144 + 3.93425i −0.194774 + 0.337359i
\(137\) 9.69083 16.7850i 0.827943 1.43404i −0.0717061 0.997426i \(-0.522844\pi\)
0.899649 0.436614i \(-0.143822\pi\)
\(138\) −7.30559 −0.621893
\(139\) −9.29321 + 16.0963i −0.788240 + 1.36527i 0.138805 + 0.990320i \(0.455674\pi\)
−0.927044 + 0.374951i \(0.877659\pi\)
\(140\) 2.00000 + 3.46410i 0.169031 + 0.292770i
\(141\) −0.295897 0.512509i −0.0249190 0.0431610i
\(142\) −1.28621 −0.107936
\(143\) 0 0
\(144\) 4.24698 0.353915
\(145\) 11.4819 + 19.8872i 0.953518 + 1.65154i
\(146\) 1.81282 + 3.13990i 0.150030 + 0.259860i
\(147\) 5.95957 10.3223i 0.491537 0.851368i
\(148\) 7.60388 0.625035
\(149\) 1.82908 3.16807i 0.149844 0.259538i −0.781325 0.624124i \(-0.785456\pi\)
0.931170 + 0.364586i \(0.118789\pi\)
\(150\) 1.64191 2.84387i 0.134061 0.232201i
\(151\) 14.5918 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(152\) −2.42543 + 4.20096i −0.196728 + 0.340743i
\(153\) 9.64675 + 16.7087i 0.779894 + 1.35082i
\(154\) −1.64310 2.84594i −0.132405 0.229332i
\(155\) 12.7439 1.02362
\(156\) 0 0
\(157\) 21.6039 1.72418 0.862088 0.506758i \(-0.169156\pi\)
0.862088 + 0.506758i \(0.169156\pi\)
\(158\) −2.66487 4.61570i −0.212006 0.367205i
\(159\) 3.65279 + 6.32682i 0.289685 + 0.501750i
\(160\) 1.24698 2.15983i 0.0985824 0.170750i
\(161\) −4.35258 −0.343032
\(162\) −1.85205 + 3.20785i −0.145511 + 0.252032i
\(163\) −6.80463 + 11.7860i −0.532979 + 0.923147i 0.466279 + 0.884638i \(0.345594\pi\)
−0.999258 + 0.0385097i \(0.987739\pi\)
\(164\) −3.46681 −0.270713
\(165\) −6.87800 + 11.9130i −0.535452 + 0.927430i
\(166\) 2.42543 + 4.20096i 0.188250 + 0.326058i
\(167\) −7.00000 12.1244i −0.541676 0.938211i −0.998808 0.0488118i \(-0.984457\pi\)
0.457132 0.889399i \(-0.348877\pi\)
\(168\) 4.31767 0.333115
\(169\) 0 0
\(170\) 11.3297 0.868952
\(171\) 10.3007 + 17.8414i 0.787717 + 1.36437i
\(172\) −5.67241 9.82490i −0.432517 0.749141i
\(173\) 2.10992 3.65448i 0.160414 0.277845i −0.774603 0.632447i \(-0.782050\pi\)
0.935017 + 0.354602i \(0.115384\pi\)
\(174\) 24.7875 1.87913
\(175\) 0.978230 1.69434i 0.0739472 0.128080i
\(176\) −1.02446 + 1.77441i −0.0772215 + 0.133752i
\(177\) −10.9729 −0.824770
\(178\) −8.28501 + 14.3501i −0.620988 + 1.07558i
\(179\) −7.91454 13.7084i −0.591561 1.02461i −0.994022 0.109176i \(-0.965179\pi\)
0.402462 0.915437i \(-0.368155\pi\)
\(180\) −5.29590 9.17276i −0.394733 0.683697i
\(181\) −15.3056 −1.13766 −0.568828 0.822457i \(-0.692603\pi\)
−0.568828 + 0.822457i \(0.692603\pi\)
\(182\) 0 0
\(183\) 28.0388 2.07268
\(184\) 1.35690 + 2.35021i 0.100032 + 0.173260i
\(185\) −9.48188 16.4231i −0.697122 1.20745i
\(186\) 6.87800 11.9130i 0.504320 0.873507i
\(187\) −9.30798 −0.680667
\(188\) −0.109916 + 0.190381i −0.00801647 + 0.0138849i
\(189\) 2.69202 4.66272i 0.195816 0.339163i
\(190\) 12.0978 0.877669
\(191\) −1.80194 + 3.12105i −0.130384 + 0.225831i −0.923824 0.382816i \(-0.874954\pi\)
0.793441 + 0.608647i \(0.208288\pi\)
\(192\) −1.34601 2.33136i −0.0971400 0.168251i
\(193\) 5.61141 + 9.71924i 0.403918 + 0.699607i 0.994195 0.107594i \(-0.0343148\pi\)
−0.590277 + 0.807201i \(0.700981\pi\)
\(194\) −4.64071 −0.333184
\(195\) 0 0
\(196\) −4.42758 −0.316256
\(197\) −11.5526 20.0096i −0.823086 1.42563i −0.903373 0.428855i \(-0.858917\pi\)
0.0802870 0.996772i \(-0.474416\pi\)
\(198\) 4.35086 + 7.53590i 0.309202 + 0.535553i
\(199\) −10.6310 + 18.4135i −0.753613 + 1.30530i 0.192448 + 0.981307i \(0.438357\pi\)
−0.946061 + 0.323989i \(0.894976\pi\)
\(200\) −1.21983 −0.0862552
\(201\) 16.2545 28.1536i 1.14650 1.98580i
\(202\) 3.71379 6.43248i 0.261301 0.452587i
\(203\) 14.7681 1.03652
\(204\) 6.11476 10.5911i 0.428119 0.741524i
\(205\) 4.32304 + 7.48773i 0.301934 + 0.522966i
\(206\) 0.259061 + 0.448707i 0.0180496 + 0.0312629i
\(207\) 11.5254 0.801072
\(208\) 0 0
\(209\) −9.93900 −0.687495
\(210\) −5.38404 9.32544i −0.371534 0.643516i
\(211\) −0.853543 1.47838i −0.0587604 0.101776i 0.835149 0.550024i \(-0.185381\pi\)
−0.893909 + 0.448248i \(0.852048\pi\)
\(212\) 1.35690 2.35021i 0.0931920 0.161413i
\(213\) 3.46250 0.237247
\(214\) 1.75518 3.04005i 0.119981 0.207814i
\(215\) −14.1468 + 24.5029i −0.964800 + 1.67108i
\(216\) −3.35690 −0.228408
\(217\) 4.09783 7.09766i 0.278179 0.481820i
\(218\) −1.69202 2.93067i −0.114598 0.198490i
\(219\) −4.88016 8.45268i −0.329771 0.571179i
\(220\) 5.10992 0.344510
\(221\) 0 0
\(222\) −20.4698 −1.37384
\(223\) −3.10992 5.38653i −0.208255 0.360709i 0.742910 0.669392i \(-0.233445\pi\)
−0.951165 + 0.308683i \(0.900112\pi\)
\(224\) −0.801938 1.38900i −0.0535817 0.0928063i
\(225\) −2.59030 + 4.48653i −0.172687 + 0.299102i
\(226\) 5.44935 0.362486
\(227\) 0.477697 0.827396i 0.0317059 0.0549162i −0.849737 0.527207i \(-0.823239\pi\)
0.881443 + 0.472291i \(0.156573\pi\)
\(228\) 6.52930 11.3091i 0.432414 0.748962i
\(229\) −22.4155 −1.48126 −0.740629 0.671914i \(-0.765472\pi\)
−0.740629 + 0.671914i \(0.765472\pi\)
\(230\) 3.38404 5.86133i 0.223137 0.386485i
\(231\) 4.42327 + 7.66133i 0.291030 + 0.504079i
\(232\) −4.60388 7.97415i −0.302259 0.523528i
\(233\) 2.99031 0.195902 0.0979509 0.995191i \(-0.468771\pi\)
0.0979509 + 0.995191i \(0.468771\pi\)
\(234\) 0 0
\(235\) 0.548253 0.0357641
\(236\) 2.03803 + 3.52998i 0.132665 + 0.229782i
\(237\) 7.17390 + 12.4256i 0.465995 + 0.807127i
\(238\) 3.64310 6.31004i 0.236147 0.409019i
\(239\) −11.1293 −0.719894 −0.359947 0.932973i \(-0.617205\pi\)
−0.359947 + 0.932973i \(0.617205\pi\)
\(240\) −3.35690 + 5.81431i −0.216687 + 0.375312i
\(241\) −2.60388 + 4.51004i −0.167730 + 0.290518i −0.937622 0.347658i \(-0.886977\pi\)
0.769891 + 0.638175i \(0.220310\pi\)
\(242\) 6.80194 0.437245
\(243\) 10.0211 17.3571i 0.642854 1.11346i
\(244\) −5.20775 9.02009i −0.333392 0.577452i
\(245\) 5.52111 + 9.56284i 0.352731 + 0.610947i
\(246\) 9.33273 0.595033
\(247\) 0 0
\(248\) −5.10992 −0.324480
\(249\) −6.52930 11.3091i −0.413778 0.716684i
\(250\) −4.71379 8.16453i −0.298126 0.516370i
\(251\) 11.3475 19.6545i 0.716248 1.24058i −0.246228 0.969212i \(-0.579191\pi\)
0.962476 0.271366i \(-0.0874754\pi\)
\(252\) −6.81163 −0.429092
\(253\) −2.78017 + 4.81539i −0.174788 + 0.302741i
\(254\) −3.09783 + 5.36561i −0.194375 + 0.336668i
\(255\) −30.4999 −1.90998
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.21528 9.03314i −0.325320 0.563472i 0.656257 0.754538i \(-0.272139\pi\)
−0.981577 + 0.191066i \(0.938806\pi\)
\(258\) 15.2702 + 26.4488i 0.950684 + 1.64663i
\(259\) −12.1957 −0.757802
\(260\) 0 0
\(261\) −39.1051 −2.42055
\(262\) −2.06853 3.58280i −0.127794 0.221346i
\(263\) 3.55496 + 6.15737i 0.219208 + 0.379680i 0.954566 0.297999i \(-0.0963193\pi\)
−0.735358 + 0.677679i \(0.762986\pi\)
\(264\) 2.75786 4.77676i 0.169735 0.293989i
\(265\) −6.76809 −0.415760
\(266\) 3.89008 6.73782i 0.238516 0.413122i
\(267\) 22.3034 38.6307i 1.36495 2.36416i
\(268\) −12.0761 −0.737663
\(269\) −1.01208 + 1.75298i −0.0617077 + 0.106881i −0.895229 0.445607i \(-0.852988\pi\)
0.833521 + 0.552488i \(0.186321\pi\)
\(270\) 4.18598 + 7.25033i 0.254751 + 0.441241i
\(271\) 7.98254 + 13.8262i 0.484905 + 0.839880i 0.999850 0.0173435i \(-0.00552089\pi\)
−0.514945 + 0.857223i \(0.672188\pi\)
\(272\) −4.54288 −0.275452
\(273\) 0 0
\(274\) 19.3817 1.17089
\(275\) −1.24967 2.16449i −0.0753578 0.130524i
\(276\) −3.65279 6.32682i −0.219872 0.380830i
\(277\) −6.85086 + 11.8660i −0.411628 + 0.712961i −0.995068 0.0991957i \(-0.968373\pi\)
0.583440 + 0.812156i \(0.301706\pi\)
\(278\) −18.5864 −1.11474
\(279\) −10.8509 + 18.7942i −0.649624 + 1.12518i
\(280\) −2.00000 + 3.46410i −0.119523 + 0.207020i
\(281\) 15.2024 0.906898 0.453449 0.891282i \(-0.350193\pi\)
0.453449 + 0.891282i \(0.350193\pi\)
\(282\) 0.295897 0.512509i 0.0176204 0.0305194i
\(283\) −10.3034 17.8461i −0.612475 1.06084i −0.990822 0.135174i \(-0.956841\pi\)
0.378347 0.925664i \(-0.376493\pi\)
\(284\) −0.643104 1.11389i −0.0381612 0.0660972i
\(285\) −32.5676 −1.92914
\(286\) 0 0
\(287\) 5.56033 0.328216
\(288\) 2.12349 + 3.67799i 0.125128 + 0.216728i
\(289\) −1.81886 3.15036i −0.106992 0.185316i
\(290\) −11.4819 + 19.8872i −0.674239 + 1.16782i
\(291\) 12.4929 0.732346
\(292\) −1.81282 + 3.13990i −0.106087 + 0.183749i
\(293\) −1.08815 + 1.88472i −0.0635702 + 0.110107i −0.896059 0.443935i \(-0.853582\pi\)
0.832489 + 0.554042i \(0.186915\pi\)
\(294\) 11.9191 0.695139
\(295\) 5.08277 8.80361i 0.295930 0.512566i
\(296\) 3.80194 + 6.58515i 0.220983 + 0.382754i
\(297\) −3.43900 5.95652i −0.199551 0.345633i
\(298\) 3.65817 0.211912
\(299\) 0 0
\(300\) 3.28382 0.189591
\(301\) 9.09783 + 15.7579i 0.524390 + 0.908271i
\(302\) 7.29590 + 12.6369i 0.419832 + 0.727170i
\(303\) −9.99761 + 17.3164i −0.574348 + 0.994799i
\(304\) −4.85086 −0.278216
\(305\) −12.9879 + 22.4957i −0.743686 + 1.28810i
\(306\) −9.64675 + 16.7087i −0.551468 + 0.955171i
\(307\) 17.0127 0.970965 0.485482 0.874247i \(-0.338644\pi\)
0.485482 + 0.874247i \(0.338644\pi\)
\(308\) 1.64310 2.84594i 0.0936245 0.162162i
\(309\) −0.697398 1.20793i −0.0396736 0.0687167i
\(310\) 6.37196 + 11.0366i 0.361903 + 0.626835i
\(311\) −4.71379 −0.267295 −0.133647 0.991029i \(-0.542669\pi\)
−0.133647 + 0.991029i \(0.542669\pi\)
\(312\) 0 0
\(313\) 1.67696 0.0947872 0.0473936 0.998876i \(-0.484909\pi\)
0.0473936 + 0.998876i \(0.484909\pi\)
\(314\) 10.8019 + 18.7095i 0.609589 + 1.05584i
\(315\) 8.49396 + 14.7120i 0.478580 + 0.828926i
\(316\) 2.66487 4.61570i 0.149911 0.259653i
\(317\) 29.1400 1.63667 0.818334 0.574743i \(-0.194898\pi\)
0.818334 + 0.574743i \(0.194898\pi\)
\(318\) −3.65279 + 6.32682i −0.204838 + 0.354791i
\(319\) 9.43296 16.3384i 0.528144 0.914773i
\(320\) 2.49396 0.139417
\(321\) −4.72497 + 8.18389i −0.263722 + 0.456780i
\(322\) −2.17629 3.76945i −0.121280 0.210063i
\(323\) −11.0184 19.0845i −0.613081 1.06189i
\(324\) −3.70410 −0.205784
\(325\) 0 0
\(326\) −13.6093 −0.753747
\(327\) 4.55496 + 7.88942i 0.251890 + 0.436286i
\(328\) −1.73341 3.00235i −0.0957113 0.165777i
\(329\) 0.176292 0.305347i 0.00971929 0.0168343i
\(330\) −13.7560 −0.757243
\(331\) −4.37196 + 7.57246i −0.240305 + 0.416220i −0.960801 0.277239i \(-0.910581\pi\)
0.720496 + 0.693459i \(0.243914\pi\)
\(332\) −2.42543 + 4.20096i −0.133113 + 0.230558i
\(333\) 32.2935 1.76967
\(334\) 7.00000 12.1244i 0.383023 0.663415i
\(335\) 15.0586 + 26.0823i 0.822740 + 1.42503i
\(336\) 2.15883 + 3.73921i 0.117774 + 0.203991i
\(337\) −3.10560 −0.169173 −0.0845865 0.996416i \(-0.526957\pi\)
−0.0845865 + 0.996416i \(0.526957\pi\)
\(338\) 0 0
\(339\) −14.6698 −0.796753
\(340\) 5.66487 + 9.81185i 0.307221 + 0.532122i
\(341\) −5.23490 9.06711i −0.283486 0.491011i
\(342\) −10.3007 + 17.8414i −0.557000 + 0.964753i
\(343\) 18.3284 0.989642
\(344\) 5.67241 9.82490i 0.305836 0.529723i
\(345\) −9.10992 + 15.7788i −0.490461 + 0.849504i
\(346\) 4.21983 0.226860
\(347\) −8.98792 + 15.5675i −0.482497 + 0.835709i −0.999798 0.0200944i \(-0.993603\pi\)
0.517301 + 0.855803i \(0.326937\pi\)
\(348\) 12.3937 + 21.4666i 0.664374 + 1.15073i
\(349\) −7.58211 13.1326i −0.405861 0.702972i 0.588560 0.808453i \(-0.299695\pi\)
−0.994421 + 0.105482i \(0.966362\pi\)
\(350\) 1.95646 0.104577
\(351\) 0 0
\(352\) −2.04892 −0.109208
\(353\) 1.65010 + 2.85806i 0.0878262 + 0.152119i 0.906592 0.422008i \(-0.138675\pi\)
−0.818766 + 0.574128i \(0.805341\pi\)
\(354\) −5.48643 9.50277i −0.291600 0.505066i
\(355\) −1.60388 + 2.77799i −0.0851249 + 0.147441i
\(356\) −16.5700 −0.878209
\(357\) −9.80731 + 16.9868i −0.519058 + 0.899035i
\(358\) 7.91454 13.7084i 0.418297 0.724511i
\(359\) 18.8901 0.996980 0.498490 0.866895i \(-0.333888\pi\)
0.498490 + 0.866895i \(0.333888\pi\)
\(360\) 5.29590 9.17276i 0.279118 0.483447i
\(361\) −2.26540 3.92378i −0.119231 0.206515i
\(362\) −7.65279 13.2550i −0.402222 0.696669i
\(363\) −18.3110 −0.961076
\(364\) 0 0
\(365\) 9.04221 0.473291
\(366\) 14.0194 + 24.2823i 0.732805 + 1.26925i
\(367\) 0.0978347 + 0.169455i 0.00510693 + 0.00884546i 0.868568 0.495571i \(-0.165041\pi\)
−0.863461 + 0.504416i \(0.831708\pi\)
\(368\) −1.35690 + 2.35021i −0.0707331 + 0.122513i
\(369\) −14.7235 −0.766474
\(370\) 9.48188 16.4231i 0.492939 0.853796i
\(371\) −2.17629 + 3.76945i −0.112987 + 0.195700i
\(372\) 13.7560 0.713216
\(373\) 5.38404 9.32544i 0.278775 0.482853i −0.692305 0.721605i \(-0.743405\pi\)
0.971081 + 0.238752i \(0.0767382\pi\)
\(374\) −4.65399 8.06095i −0.240652 0.416822i
\(375\) 12.6896 + 21.9791i 0.655290 + 1.13499i
\(376\) −0.219833 −0.0113370
\(377\) 0 0
\(378\) 5.38404 0.276925
\(379\) −13.9813 24.2164i −0.718173 1.24391i −0.961723 0.274024i \(-0.911645\pi\)
0.243549 0.969889i \(-0.421688\pi\)
\(380\) 6.04892 + 10.4770i 0.310303 + 0.537460i
\(381\) 8.33944 14.4443i 0.427242 0.740005i
\(382\) −3.60388 −0.184390
\(383\) −16.4155 + 28.4325i −0.838793 + 1.45283i 0.0521115 + 0.998641i \(0.483405\pi\)
−0.890904 + 0.454191i \(0.849928\pi\)
\(384\) 1.34601 2.33136i 0.0686883 0.118972i
\(385\) −8.19567 −0.417690
\(386\) −5.61141 + 9.71924i −0.285613 + 0.494697i
\(387\) −24.0906 41.7261i −1.22459 2.12106i
\(388\) −2.32036 4.01897i −0.117798 0.204032i
\(389\) 8.90946 0.451728 0.225864 0.974159i \(-0.427480\pi\)
0.225864 + 0.974159i \(0.427480\pi\)
\(390\) 0 0
\(391\) −12.3284 −0.623475
\(392\) −2.21379 3.83440i −0.111813 0.193666i
\(393\) 5.56853 + 9.64498i 0.280895 + 0.486525i
\(394\) 11.5526 20.0096i 0.582010 1.00807i
\(395\) −13.2922 −0.668802
\(396\) −4.35086 + 7.53590i −0.218639 + 0.378693i
\(397\) −5.89440 + 10.2094i −0.295831 + 0.512395i −0.975178 0.221423i \(-0.928930\pi\)
0.679347 + 0.733817i \(0.262263\pi\)
\(398\) −21.2620 −1.06577
\(399\) −10.4722 + 18.1384i −0.524265 + 0.908054i
\(400\) −0.609916 1.05641i −0.0304958 0.0528203i
\(401\) −1.60656 2.78265i −0.0802280 0.138959i 0.823120 0.567868i \(-0.192231\pi\)
−0.903348 + 0.428909i \(0.858898\pi\)
\(402\) 32.5090 1.62140
\(403\) 0 0
\(404\) 7.42758 0.369536
\(405\) 4.61894 + 8.00024i 0.229517 + 0.397535i
\(406\) 7.38404 + 12.7895i 0.366464 + 0.634734i
\(407\) −7.78986 + 13.4924i −0.386129 + 0.668795i
\(408\) 12.2295 0.605452
\(409\) −6.01089 + 10.4112i −0.297219 + 0.514799i −0.975499 0.220005i \(-0.929393\pi\)
0.678280 + 0.734804i \(0.262726\pi\)
\(410\) −4.32304 + 7.48773i −0.213500 + 0.369793i
\(411\) −52.1758 −2.57364
\(412\) −0.259061 + 0.448707i −0.0127630 + 0.0221062i
\(413\) −3.26875 5.66164i −0.160845 0.278591i
\(414\) 5.76271 + 9.98130i 0.283222 + 0.490554i
\(415\) 12.0978 0.593859
\(416\) 0 0
\(417\) 50.0350 2.45023
\(418\) −4.96950 8.60743i −0.243066 0.421003i
\(419\) 1.78017 + 3.08334i 0.0869669 + 0.150631i 0.906228 0.422790i \(-0.138949\pi\)
−0.819261 + 0.573421i \(0.805616\pi\)
\(420\) 5.38404 9.32544i 0.262714 0.455035i
\(421\) −1.28621 −0.0626860 −0.0313430 0.999509i \(-0.509978\pi\)
−0.0313430 + 0.999509i \(0.509978\pi\)
\(422\) 0.853543 1.47838i 0.0415498 0.0719664i
\(423\) −0.466812 + 0.808542i −0.0226972 + 0.0393127i
\(424\) 2.71379 0.131793
\(425\) 2.77077 4.79912i 0.134402 0.232792i
\(426\) 1.73125 + 2.99861i 0.0838793 + 0.145283i
\(427\) 8.35258 + 14.4671i 0.404210 + 0.700112i
\(428\) 3.51035 0.169679
\(429\) 0 0
\(430\) −28.2935 −1.36443
\(431\) −13.4940 23.3722i −0.649981 1.12580i −0.983127 0.182925i \(-0.941443\pi\)
0.333146 0.942875i \(-0.391890\pi\)
\(432\) −1.67845 2.90716i −0.0807544 0.139871i
\(433\) 8.00849 13.8711i 0.384864 0.666603i −0.606887 0.794788i \(-0.707582\pi\)
0.991750 + 0.128185i \(0.0409152\pi\)
\(434\) 8.19567 0.393405
\(435\) 30.9095 53.5368i 1.48200 2.56689i
\(436\) 1.69202 2.93067i 0.0810331 0.140354i
\(437\) −13.1642 −0.629730
\(438\) 4.88016 8.45268i 0.233183 0.403885i
\(439\) 18.5700 + 32.1642i 0.886299 + 1.53511i 0.844218 + 0.536000i \(0.180065\pi\)
0.0420812 + 0.999114i \(0.486601\pi\)
\(440\) 2.55496 + 4.42532i 0.121803 + 0.210969i
\(441\) −18.8039 −0.895422
\(442\) 0 0
\(443\) −41.2083 −1.95787 −0.978934 0.204178i \(-0.934548\pi\)
−0.978934 + 0.204178i \(0.934548\pi\)
\(444\) −10.2349 17.7274i −0.485727 0.841303i
\(445\) 20.6625 + 35.7885i 0.979496 + 1.69654i
\(446\) 3.10992 5.38653i 0.147259 0.255060i
\(447\) −9.84787 −0.465788
\(448\) 0.801938 1.38900i 0.0378880 0.0656239i
\(449\) 5.06315 8.76964i 0.238945 0.413865i −0.721467 0.692449i \(-0.756532\pi\)
0.960412 + 0.278584i \(0.0898651\pi\)
\(450\) −5.18060 −0.244216
\(451\) 3.55161 6.15156i 0.167239 0.289666i
\(452\) 2.72468 + 4.71928i 0.128158 + 0.221976i
\(453\) −19.6407 34.0187i −0.922801 1.59834i
\(454\) 0.955395 0.0448389
\(455\) 0 0
\(456\) 13.0586 0.611525
\(457\) −10.8780 18.8413i −0.508851 0.881357i −0.999947 0.0102511i \(-0.996737\pi\)
0.491096 0.871105i \(-0.336596\pi\)
\(458\) −11.2078 19.4124i −0.523704 0.907082i
\(459\) 7.62498 13.2069i 0.355904 0.616443i
\(460\) 6.76809 0.315564
\(461\) 19.2838 33.4005i 0.898137 1.55562i 0.0682631 0.997667i \(-0.478254\pi\)
0.829874 0.557951i \(-0.188412\pi\)
\(462\) −4.42327 + 7.66133i −0.205789 + 0.356437i
\(463\) −33.0073 −1.53398 −0.766990 0.641660i \(-0.778246\pi\)
−0.766990 + 0.641660i \(0.778246\pi\)
\(464\) 4.60388 7.97415i 0.213730 0.370190i
\(465\) −17.1535 29.7107i −0.795473 1.37780i
\(466\) 1.49516 + 2.58969i 0.0692617 + 0.119965i
\(467\) 6.53989 0.302630 0.151315 0.988486i \(-0.451649\pi\)
0.151315 + 0.988486i \(0.451649\pi\)
\(468\) 0 0
\(469\) 19.3685 0.894354
\(470\) 0.274127 + 0.474801i 0.0126445 + 0.0219010i
\(471\) −29.0790 50.3664i −1.33989 2.32076i
\(472\) −2.03803 + 3.52998i −0.0938080 + 0.162480i
\(473\) 23.2446 1.06879
\(474\) −7.17390 + 12.4256i −0.329508 + 0.570725i
\(475\) 2.95862 5.12447i 0.135751 0.235127i
\(476\) 7.28621 0.333963
\(477\) 5.76271 9.98130i 0.263856 0.457013i
\(478\) −5.56465 9.63825i −0.254521 0.440843i
\(479\) −4.15346 7.19400i −0.189776 0.328702i 0.755399 0.655265i \(-0.227443\pi\)
−0.945176 + 0.326563i \(0.894110\pi\)
\(480\) −6.71379 −0.306441
\(481\) 0 0
\(482\) −5.20775 −0.237207
\(483\) 5.85862 + 10.1474i 0.266577 + 0.461724i
\(484\) 3.40097 + 5.89065i 0.154589 + 0.267757i
\(485\) −5.78687 + 10.0232i −0.262768 + 0.455128i
\(486\) 20.0422 0.909133
\(487\) 15.8267 27.4126i 0.717176 1.24219i −0.244938 0.969539i \(-0.578768\pi\)
0.962114 0.272646i \(-0.0878989\pi\)
\(488\) 5.20775 9.02009i 0.235744 0.408320i
\(489\) 36.6364 1.65676
\(490\) −5.52111 + 9.56284i −0.249418 + 0.432005i
\(491\) 18.3315 + 31.7512i 0.827291 + 1.43291i 0.900156 + 0.435568i \(0.143452\pi\)
−0.0728653 + 0.997342i \(0.523214\pi\)
\(492\) 4.66637 + 8.08238i 0.210376 + 0.364382i
\(493\) 41.8297 1.88391
\(494\) 0 0
\(495\) 21.7017 0.975419
\(496\) −2.55496 4.42532i −0.114721 0.198703i
\(497\) 1.03146 + 1.78654i 0.0462673 + 0.0801372i
\(498\) 6.52930 11.3091i 0.292585 0.506772i
\(499\) −29.8920 −1.33815 −0.669075 0.743195i \(-0.733309\pi\)
−0.669075 + 0.743195i \(0.733309\pi\)
\(500\) 4.71379 8.16453i 0.210807 0.365129i
\(501\) −18.8442 + 32.6390i −0.841895 + 1.45820i
\(502\) 22.6950 1.01293
\(503\) −7.79523 + 13.5017i −0.347572 + 0.602013i −0.985818 0.167820i \(-0.946327\pi\)
0.638245 + 0.769833i \(0.279661\pi\)
\(504\) −3.40581 5.89904i −0.151707 0.262764i
\(505\) −9.26205 16.0423i −0.412156 0.713874i
\(506\) −5.56033 −0.247187
\(507\) 0 0
\(508\) −6.19567 −0.274888
\(509\) 8.58211 + 14.8646i 0.380395 + 0.658864i 0.991119 0.132980i \(-0.0424547\pi\)
−0.610724 + 0.791844i \(0.709121\pi\)
\(510\) −15.2500 26.4137i −0.675280 1.16962i
\(511\) 2.90754 5.03601i 0.128622 0.222780i
\(512\) −1.00000 −0.0441942
\(513\) 8.14191 14.1022i 0.359474 0.622627i
\(514\) 5.21528 9.03314i 0.230036 0.398435i
\(515\) 1.29218 0.0569401
\(516\) −15.2702 + 26.4488i −0.672235 + 1.16435i
\(517\) −0.225209 0.390074i −0.00990470 0.0171554i
\(518\) −6.09783 10.5618i −0.267923 0.464057i
\(519\) −11.3599 −0.498643
\(520\) 0 0
\(521\) 6.15452 0.269634 0.134817 0.990870i \(-0.456955\pi\)
0.134817 + 0.990870i \(0.456955\pi\)
\(522\) −19.5526 33.8660i −0.855793 1.48228i
\(523\) −3.46950 6.00935i −0.151711 0.262771i 0.780146 0.625598i \(-0.215145\pi\)
−0.931856 + 0.362827i \(0.881812\pi\)
\(524\) 2.06853 3.58280i 0.0903642 0.156515i
\(525\) −5.26683 −0.229863
\(526\) −3.55496 + 6.15737i −0.155004 + 0.268474i
\(527\) 11.6069 20.1037i 0.505603 0.875730i
\(528\) 5.51573 0.240041
\(529\) 7.81767 13.5406i 0.339899 0.588722i
\(530\) −3.38404 5.86133i −0.146993 0.254600i
\(531\) 8.65548 + 14.9917i 0.375616 + 0.650586i
\(532\) 7.78017 0.337313
\(533\) 0 0
\(534\) 44.6069 1.93033
\(535\) −4.37734 7.58177i −0.189249 0.327789i
\(536\) −6.03803 10.4582i −0.260803 0.451725i
\(537\) −21.3061 + 36.9033i −0.919427 + 1.59249i
\(538\) −2.02416 −0.0872679
\(539\) 4.53588 7.85637i 0.195374 0.338398i
\(540\) −4.18598 + 7.25033i −0.180136 + 0.312005i
\(541\) −0.426256 −0.0183262 −0.00916308 0.999958i \(-0.502917\pi\)
−0.00916308 + 0.999958i \(0.502917\pi\)
\(542\) −7.98254 + 13.8262i −0.342880 + 0.593885i
\(543\) 20.6015 + 35.6828i 0.884094 + 1.53130i
\(544\) −2.27144 3.93425i −0.0973871 0.168679i
\(545\) −8.43967 −0.361516
\(546\) 0 0
\(547\) 3.72348 0.159205 0.0796023 0.996827i \(-0.474635\pi\)
0.0796023 + 0.996827i \(0.474635\pi\)
\(548\) 9.69083 + 16.7850i 0.413972 + 0.717020i
\(549\) −22.1172 38.3081i −0.943940 1.63495i
\(550\) 1.24967 2.16449i 0.0532860 0.0922941i
\(551\) 44.6655 1.90281
\(552\) 3.65279 6.32682i 0.155473 0.269287i
\(553\) −4.27413 + 7.40300i −0.181754 + 0.314808i
\(554\) −13.7017 −0.582130
\(555\) −25.5254 + 44.2113i −1.08349 + 1.87667i
\(556\) −9.29321 16.0963i −0.394120 0.682636i
\(557\) 21.3980 + 37.0625i 0.906664 + 1.57039i 0.818668 + 0.574268i \(0.194713\pi\)
0.0879966 + 0.996121i \(0.471954\pi\)
\(558\) −21.7017 −0.918707
\(559\) 0 0
\(560\) −4.00000 −0.169031
\(561\) 12.5286 + 21.7002i 0.528960 + 0.916185i
\(562\) 7.60119 + 13.1656i 0.320637 + 0.555359i
\(563\) −1.46250 + 2.53312i −0.0616370 + 0.106758i −0.895197 0.445670i \(-0.852965\pi\)
0.833560 + 0.552429i \(0.186299\pi\)
\(564\) 0.591794 0.0249190
\(565\) 6.79523 11.7697i 0.285878 0.495155i
\(566\) 10.3034 17.8461i 0.433085 0.750126i
\(567\) 5.94092 0.249495
\(568\) 0.643104 1.11389i 0.0269840 0.0467377i
\(569\) 13.2947 + 23.0271i 0.557343 + 0.965346i 0.997717 + 0.0675318i \(0.0215124\pi\)
−0.440374 + 0.897814i \(0.645154\pi\)
\(570\) −16.2838 28.2044i −0.682054 1.18135i
\(571\) −2.34422 −0.0981027 −0.0490513 0.998796i \(-0.515620\pi\)
−0.0490513 + 0.998796i \(0.515620\pi\)
\(572\) 0 0
\(573\) 9.70171 0.405295
\(574\) 2.78017 + 4.81539i 0.116042 + 0.200991i
\(575\) −1.65519 2.86687i −0.0690260 0.119557i
\(576\) −2.12349 + 3.67799i −0.0884787 + 0.153250i
\(577\) 40.4064 1.68214 0.841070 0.540926i \(-0.181926\pi\)
0.841070 + 0.540926i \(0.181926\pi\)
\(578\) 1.81886 3.15036i 0.0756548 0.131038i
\(579\) 15.1060 26.1644i 0.627785 1.08736i
\(580\) −22.9638 −0.953518
\(581\) 3.89008 6.73782i 0.161388 0.279532i
\(582\) 6.24645 + 10.8192i 0.258924 + 0.448469i
\(583\) 2.78017 + 4.81539i 0.115143 + 0.199433i
\(584\) −3.62565 −0.150030
\(585\) 0 0
\(586\) −2.17629 −0.0899018
\(587\) 21.6090 + 37.4279i 0.891900 + 1.54482i 0.837596 + 0.546291i \(0.183961\pi\)
0.0543039 + 0.998524i \(0.482706\pi\)
\(588\) 5.95957 + 10.3223i 0.245769 + 0.425684i
\(589\) 12.3937 21.4666i 0.510675 0.884515i
\(590\) 10.1655 0.418509
\(591\) −31.0998 + 53.8664i −1.27927 + 2.21577i
\(592\) −3.80194 + 6.58515i −0.156259 + 0.270648i
\(593\) −7.01746 −0.288172 −0.144086 0.989565i \(-0.546024\pi\)
−0.144086 + 0.989565i \(0.546024\pi\)
\(594\) 3.43900 5.95652i 0.141104 0.244399i
\(595\) −9.08575 15.7370i −0.372480 0.645154i
\(596\) 1.82908 + 3.16807i 0.0749222 + 0.129769i
\(597\) 57.2379 2.34259
\(598\) 0 0
\(599\) 14.9772 0.611950 0.305975 0.952039i \(-0.401018\pi\)
0.305975 + 0.952039i \(0.401018\pi\)
\(600\) 1.64191 + 2.84387i 0.0670306 + 0.116100i
\(601\) 18.6386 + 32.2829i 0.760283 + 1.31685i 0.942705 + 0.333628i \(0.108273\pi\)
−0.182422 + 0.983220i \(0.558394\pi\)
\(602\) −9.09783 + 15.7579i −0.370800 + 0.642245i
\(603\) −51.2868 −2.08856
\(604\) −7.29590 + 12.6369i −0.296866 + 0.514187i
\(605\) 8.48188 14.6910i 0.344837 0.597276i
\(606\) −19.9952 −0.812250
\(607\) −0.401501 + 0.695421i −0.0162964 + 0.0282263i −0.874059 0.485820i \(-0.838521\pi\)
0.857762 + 0.514047i \(0.171854\pi\)
\(608\) −2.42543 4.20096i −0.0983641 0.170372i
\(609\) −19.8780 34.4297i −0.805497 1.39516i
\(610\) −25.9758 −1.05173
\(611\) 0 0
\(612\) −19.2935 −0.779894
\(613\) −2.43535 4.21816i −0.0983630 0.170370i 0.812644 0.582760i \(-0.198027\pi\)
−0.911007 + 0.412390i \(0.864694\pi\)
\(614\) 8.50634 + 14.7334i 0.343288 + 0.594592i
\(615\) 11.6377 20.1571i 0.469278 0.812814i
\(616\) 3.28621 0.132405
\(617\) −1.67145 + 2.89503i −0.0672899 + 0.116550i −0.897707 0.440592i \(-0.854769\pi\)
0.830418 + 0.557142i \(0.188102\pi\)
\(618\) 0.697398 1.20793i 0.0280535 0.0485900i
\(619\) −34.1715 −1.37347 −0.686734 0.726908i \(-0.740956\pi\)
−0.686734 + 0.726908i \(0.740956\pi\)
\(620\) −6.37196 + 11.0366i −0.255904 + 0.443239i
\(621\) −4.55496 7.88942i −0.182784 0.316591i
\(622\) −2.35690 4.08226i −0.0945029 0.163684i
\(623\) 26.5763 1.06476
\(624\) 0 0
\(625\) −29.6112 −1.18445
\(626\) 0.838478 + 1.45229i 0.0335123 + 0.0580450i
\(627\) 13.3780 + 23.1714i 0.534266 + 0.925376i
\(628\) −10.8019 + 18.7095i −0.431044 + 0.746591i
\(629\) −34.5435 −1.37734
\(630\) −8.49396 + 14.7120i −0.338407 + 0.586139i
\(631\) −19.9148 + 34.4935i −0.792797 + 1.37316i 0.131431 + 0.991325i \(0.458043\pi\)
−0.924229 + 0.381840i \(0.875291\pi\)
\(632\) 5.32975 0.212006
\(633\) −2.29776 + 3.97983i −0.0913277 + 0.158184i
\(634\) 14.5700 + 25.2360i 0.578650 + 1.00225i
\(635\) 7.72587 + 13.3816i 0.306592 + 0.531033i
\(636\) −7.30559 −0.289685
\(637\) 0 0
\(638\) 18.8659 0.746909
\(639\) −2.73125 4.73066i −0.108047 0.187142i
\(640\) 1.24698 + 2.15983i 0.0492912 + 0.0853749i
\(641\) 6.74549 11.6835i 0.266431 0.461472i −0.701507 0.712663i \(-0.747489\pi\)
0.967937 + 0.251191i \(0.0808223\pi\)
\(642\) −9.44994 −0.372960
\(643\) 8.33190 14.4313i 0.328578 0.569114i −0.653652 0.756795i \(-0.726764\pi\)
0.982230 + 0.187681i \(0.0600972\pi\)
\(644\) 2.17629 3.76945i 0.0857579 0.148537i
\(645\) 76.1667 2.99906
\(646\) 11.0184 19.0845i 0.433514 0.750868i
\(647\) −24.3666 42.2042i −0.957949 1.65922i −0.727470 0.686140i \(-0.759304\pi\)
−0.230479 0.973077i \(-0.574029\pi\)
\(648\) −1.85205 3.20785i −0.0727555 0.126016i
\(649\) −8.35152 −0.327826
\(650\) 0 0
\(651\) −22.0629 −0.864714
\(652\) −6.80463 11.7860i −0.266490 0.461574i
\(653\) −23.5351 40.7640i −0.921000 1.59522i −0.797871 0.602828i \(-0.794041\pi\)
−0.123129 0.992391i \(-0.539293\pi\)
\(654\) −4.55496 + 7.88942i −0.178113 + 0.308501i
\(655\) −10.3177 −0.403145
\(656\) 1.73341 3.00235i 0.0676781 0.117222i
\(657\) −7.69902 + 13.3351i −0.300367 + 0.520252i
\(658\) 0.352584 0.0137452
\(659\) 11.1262 19.2711i 0.433414 0.750696i −0.563750 0.825945i \(-0.690642\pi\)
0.997165 + 0.0752495i \(0.0239753\pi\)
\(660\) −6.87800 11.9130i −0.267726 0.463715i
\(661\) 1.28621 + 2.22778i 0.0500277 + 0.0866505i 0.889955 0.456049i \(-0.150736\pi\)
−0.839927 + 0.542699i \(0.817402\pi\)
\(662\) −8.74392 −0.339842
\(663\) 0 0
\(664\) −4.85086 −0.188250
\(665\) −9.70171 16.8039i −0.376216 0.651626i
\(666\) 16.1468 + 27.9670i 0.625674 + 1.08370i
\(667\) 12.4940 21.6402i 0.483768 0.837911i
\(668\) 14.0000 0.541676
\(669\) −8.37196 + 14.5007i −0.323679 + 0.560628i
\(670\) −15.0586 + 26.0823i −0.581765 + 1.00765i
\(671\) 21.3405 0.823841
\(672\) −2.15883 + 3.73921i −0.0832788 + 0.144243i
\(673\) −12.0846 20.9311i −0.465825 0.806833i 0.533413 0.845855i \(-0.320909\pi\)
−0.999238 + 0.0390217i \(0.987576\pi\)
\(674\) −1.55280 2.68953i −0.0598117 0.103597i
\(675\) 4.09485 0.157611
\(676\) 0 0
\(677\) −4.91425 −0.188870 −0.0944349 0.995531i \(-0.530104\pi\)
−0.0944349 + 0.995531i \(0.530104\pi\)
\(678\) −7.33489 12.7044i −0.281695 0.487910i
\(679\) 3.72156 + 6.44593i 0.142820 + 0.247372i
\(680\) −5.66487 + 9.81185i −0.217238 + 0.376267i
\(681\) −2.57194 −0.0985571
\(682\) 5.23490 9.06711i 0.200455 0.347198i
\(683\) 0.982779 1.70222i 0.0376050 0.0651337i −0.846610 0.532213i \(-0.821360\pi\)
0.884215 + 0.467079i \(0.154694\pi\)
\(684\) −20.6015 −0.787717
\(685\) 24.1685 41.8611i 0.923432 1.59943i
\(686\) 9.16421 + 15.8729i 0.349891 + 0.606029i
\(687\) 30.1715 + 52.2586i 1.15111 + 1.99379i
\(688\) 11.3448 0.432517
\(689\) 0 0
\(690\) −18.2198 −0.693617
\(691\) −12.7538 22.0903i −0.485179 0.840355i 0.514676 0.857385i \(-0.327912\pi\)
−0.999855 + 0.0170298i \(0.994579\pi\)
\(692\) 2.10992 + 3.65448i 0.0802070 + 0.138923i
\(693\) 6.97823 12.0866i 0.265081 0.459134i
\(694\) −17.9758 −0.682353
\(695\) −23.1769 + 40.1435i −0.879149 + 1.52273i
\(696\) −12.3937 + 21.4666i −0.469783 + 0.813688i
\(697\) 15.7493 0.596547
\(698\) 7.58211 13.1326i 0.286987 0.497076i
\(699\) −4.02499 6.97149i −0.152239 0.263686i
\(700\) 0.978230 + 1.69434i 0.0369736 + 0.0640402i
\(701\) −41.8491 −1.58062 −0.790308 0.612709i \(-0.790080\pi\)
−0.790308 + 0.612709i \(0.790080\pi\)
\(702\) 0 0
\(703\) −36.8853 −1.39116
\(704\) −1.02446 1.77441i −0.0386107 0.0668758i
\(705\) −0.737955 1.27818i −0.0277930 0.0481389i
\(706\) −1.65010 + 2.85806i −0.0621025 + 0.107565i
\(707\) −11.9129 −0.448031
\(708\) 5.48643 9.50277i 0.206193 0.357136i
\(709\) −16.6528 + 28.8435i −0.625409 + 1.08324i 0.363053 + 0.931769i \(0.381734\pi\)
−0.988462 + 0.151471i \(0.951599\pi\)
\(710\) −3.20775 −0.120385
\(711\) 11.3177 19.6028i 0.424446 0.735161i
\(712\) −8.28501 14.3501i −0.310494 0.537791i
\(713\) −6.93362 12.0094i −0.259666 0.449755i
\(714\) −19.6146 −0.734059
\(715\) 0 0
\(716\) 15.8291 0.591561
\(717\) 14.9801 + 25.9464i 0.559444 + 0.968985i
\(718\) 9.44504 + 16.3593i 0.352486 + 0.610523i
\(719\) −3.18598 + 5.51828i −0.118817 + 0.205797i −0.919299 0.393560i \(-0.871244\pi\)
0.800482 + 0.599357i \(0.204577\pi\)
\(720\) 10.5918 0.394733
\(721\) 0.415502 0.719670i 0.0154741 0.0268019i
\(722\) 2.26540 3.92378i 0.0843094 0.146028i
\(723\) 14.0194 0.521386
\(724\) 7.65279 13.2550i 0.284414 0.492619i
\(725\) 5.61596 + 9.72712i 0.208571 + 0.361256i
\(726\) −9.15548 15.8578i −0.339792 0.588537i
\(727\) 23.7995 0.882676 0.441338 0.897341i \(-0.354504\pi\)
0.441338 + 0.897341i \(0.354504\pi\)
\(728\) 0 0
\(729\) −42.8418 −1.58673
\(730\) 4.52111 + 7.83079i 0.167334 + 0.289830i
\(731\) 25.7690 + 44.6333i 0.953103 + 1.65082i
\(732\) −14.0194 + 24.2823i −0.518171 + 0.897499i
\(733\) −27.4142 −1.01257 −0.506283 0.862368i \(-0.668981\pi\)
−0.506283 + 0.862368i \(0.668981\pi\)
\(734\) −0.0978347 + 0.169455i −0.00361114 + 0.00625468i
\(735\) 14.8629 25.7434i 0.548228 0.949558i
\(736\) −2.71379 −0.100032
\(737\) 12.3714 21.4279i 0.455707 0.789308i
\(738\) −7.36174 12.7509i −0.270989 0.469367i
\(739\) −17.6637 30.5944i −0.649769 1.12543i −0.983178 0.182650i \(-0.941532\pi\)
0.333409 0.942782i \(-0.391801\pi\)
\(740\) 18.9638 0.697122
\(741\) 0 0
\(742\) −4.35258 −0.159788
\(743\) 11.9879 + 20.7637i 0.439794 + 0.761746i 0.997673 0.0681765i \(-0.0217181\pi\)
−0.557879 + 0.829922i \(0.688385\pi\)
\(744\) 6.87800 + 11.9130i 0.252160 + 0.436754i
\(745\) 4.56166 7.90103i 0.167126 0.289471i
\(746\) 10.7681 0.394248
\(747\) −10.3007 + 17.8414i −0.376884 + 0.652783i
\(748\) 4.65399 8.06095i 0.170167 0.294737i
\(749\) −5.63017 −0.205722
\(750\) −12.6896 + 21.9791i −0.463360 + 0.802563i
\(751\) 12.4330 + 21.5345i 0.453685 + 0.785806i 0.998612 0.0526781i \(-0.0167757\pi\)
−0.544926 + 0.838484i \(0.683442\pi\)
\(752\) −0.109916 0.190381i −0.00400823 0.00694246i
\(753\) −61.0954 −2.22644
\(754\) 0 0
\(755\) 36.3913 1.32442
\(756\) 2.69202 + 4.66272i 0.0979079 + 0.169581i
\(757\) −2.46681 4.27264i −0.0896578 0.155292i 0.817709 0.575632i \(-0.195244\pi\)
−0.907367 + 0.420340i \(0.861911\pi\)
\(758\) 13.9813 24.2164i 0.507825 0.879579i
\(759\) 14.9685 0.543324
\(760\) −6.04892 + 10.4770i −0.219417 + 0.380042i
\(761\) 7.50335 12.9962i 0.271996 0.471111i −0.697377 0.716705i \(-0.745649\pi\)
0.969373 + 0.245593i \(0.0789828\pi\)
\(762\) 16.6789 0.604212
\(763\) −2.71379 + 4.70043i −0.0982459 + 0.170167i
\(764\) −1.80194 3.12105i −0.0651918 0.112916i
\(765\) 24.0586 + 41.6707i 0.869841 + 1.50661i
\(766\) −32.8310 −1.18623
\(767\) 0 0
\(768\) 2.69202 0.0971400
\(769\) −11.1320 19.2812i −0.401430 0.695296i 0.592469 0.805593i \(-0.298153\pi\)
−0.993899 + 0.110297i \(0.964820\pi\)
\(770\) −4.09783 7.09766i −0.147676 0.255782i
\(771\) −14.0397 + 24.3174i −0.505626 + 0.875770i
\(772\) −11.2228 −0.403918
\(773\) 5.86831 10.1642i 0.211069 0.365581i −0.740981 0.671526i \(-0.765639\pi\)
0.952049 + 0.305945i \(0.0989723\pi\)
\(774\) 24.0906 41.7261i 0.865919 1.49982i
\(775\) 6.23324 0.223905
\(776\) 2.32036 4.01897i 0.0832959 0.144273i
\(777\) 16.4155 + 28.4325i 0.588903 + 1.02001i
\(778\) 4.45473 + 7.71582i 0.159710 + 0.276626i
\(779\) 16.8170 0.602532
\(780\) 0 0
\(781\) 2.63533 0.0942997
\(782\) −6.16421 10.6767i −0.220432 0.381799i
\(783\) 15.4547 + 26.7684i 0.552307 + 0.956624i
\(784\) 2.21379 3.83440i 0.0790640 0.136943i
\(785\) 53.8792 1.92303
\(786\) −5.56853 + 9.64498i −0.198623 + 0.344025i
\(787\) 7.47488 12.9469i 0.266451 0.461506i −0.701492 0.712677i \(-0.747482\pi\)
0.967943 + 0.251171i \(0.0808157\pi\)
\(788\) 23.1051 0.823086
\(789\) 9.57002 16.5758i 0.340702 0.590113i
\(790\) −6.64609 11.5114i −0.236457 0.409556i
\(791\) −4.37004 7.56914i −0.155381 0.269127i
\(792\) −8.70171 −0.309202
\(793\) 0 0
\(794\) −11.7888 −0.418369
\(795\) 9.10992 + 15.7788i 0.323095 + 0.559618i
\(796\) −10.6310 18.4135i −0.376807 0.652648i
\(797\) −17.5864 + 30.4606i −0.622943 + 1.07897i 0.365992 + 0.930618i \(0.380730\pi\)
−0.988935 + 0.148351i \(0.952604\pi\)
\(798\) −20.9444 −0.741423
\(799\) 0.499336 0.864875i 0.0176652 0.0305971i
\(800\) 0.609916 1.05641i 0.0215638 0.0373496i
\(801\) −70.3726 −2.48649
\(802\) 1.60656 2.78265i 0.0567297 0.0982588i
\(803\) −3.71432 6.43340i −0.131076 0.227030i
\(804\) 16.2545 + 28.1536i 0.573252 + 0.992902i
\(805\) −10.8552 −0.382594
\(806\) 0 0
\(807\) 5.44909 0.191817
\(808\) 3.71379 + 6.43248i 0.130651 + 0.226294i
\(809\) −21.4743 37.1947i −0.754998 1.30769i −0.945375 0.325984i \(-0.894305\pi\)
0.190378 0.981711i \(-0.439029\pi\)
\(810\) −4.61894 + 8.00024i −0.162293 + 0.281100i
\(811\) −20.4644 −0.718603 −0.359301 0.933222i \(-0.616985\pi\)
−0.359301 + 0.933222i \(0.616985\pi\)
\(812\) −7.38404 + 12.7895i −0.259129 + 0.448825i
\(813\) 21.4892 37.2203i 0.753658 1.30537i
\(814\) −15.5797 −0.546069
\(815\) −16.9705 + 29.3937i −0.594449 + 1.02962i
\(816\) 6.11476 + 10.5911i 0.214059 + 0.370762i
\(817\) 27.5160 + 47.6592i 0.962664 + 1.66738i
\(818\) −12.0218 −0.420331
\(819\) 0 0
\(820\) −8.64609 −0.301934
\(821\) 18.4993 + 32.0418i 0.645631 + 1.11827i 0.984155 + 0.177308i \(0.0567390\pi\)
−0.338524 + 0.940958i \(0.609928\pi\)
\(822\) −26.0879 45.1856i −0.909920 1.57603i
\(823\) −4.63773 + 8.03278i −0.161661 + 0.280005i −0.935465 0.353421i \(-0.885018\pi\)
0.773804 + 0.633426i \(0.218352\pi\)
\(824\) −0.518122 −0.0180496
\(825\) −3.36413 + 5.82685i −0.117124 + 0.202865i
\(826\) 3.26875 5.66164i 0.113734 0.196994i
\(827\) 6.05669 0.210612 0.105306 0.994440i \(-0.466418\pi\)
0.105306 + 0.994440i \(0.466418\pi\)
\(828\) −5.76271 + 9.98130i −0.200268 + 0.346874i
\(829\) −4.97046 8.60909i −0.172631 0.299006i 0.766708 0.641996i \(-0.221894\pi\)
−0.939339 + 0.342990i \(0.888560\pi\)
\(830\) 6.04892 + 10.4770i 0.209961 + 0.363663i
\(831\) 36.8853 1.27954
\(832\) 0 0
\(833\) 20.1140 0.696908
\(834\) 25.0175 + 43.3316i 0.866286 + 1.50045i
\(835\) −17.4577 30.2376i −0.604149 1.04642i
\(836\) 4.96950 8.60743i 0.171874 0.297694i
\(837\) 17.1535 0.592910
\(838\) −1.78017 + 3.08334i −0.0614949 + 0.106512i
\(839\) −17.2349 + 29.8517i −0.595015 + 1.03060i 0.398530 + 0.917155i \(0.369520\pi\)
−0.993545 + 0.113441i \(0.963813\pi\)
\(840\) 10.7681 0.371534
\(841\) −27.8913 + 48.3092i −0.961770 + 1.66584i
\(842\) −0.643104 1.11389i −0.0221628 0.0383872i
\(843\) −20.4626 35.4422i −0.704768 1.22069i
\(844\) 1.70709 0.0587604
\(845\) 0 0
\(846\) −0.933624 −0.0320987
\(847\) −5.45473 9.44787i −0.187427 0.324633i
\(848\) 1.35690 + 2.35021i 0.0465960 + 0.0807066i
\(849\) −27.7371 + 48.0420i −0.951933 + 1.64880i
\(850\) 5.54155 0.190074
\(851\) −10.3177 + 17.8707i −0.353685 + 0.612601i
\(852\) −1.73125 + 2.99861i −0.0593117 + 0.102731i
\(853\) 22.1521 0.758474 0.379237 0.925299i \(-0.376186\pi\)
0.379237 + 0.925299i \(0.376186\pi\)
\(854\) −8.35258 + 14.4671i −0.285820 + 0.495054i
\(855\) 25.6896 + 44.4957i 0.878567 + 1.52172i
\(856\) 1.75518 + 3.04005i 0.0599907 + 0.103907i
\(857\) −30.5187 −1.04250 −0.521250 0.853404i \(-0.674534\pi\)
−0.521250 + 0.853404i \(0.674534\pi\)
\(858\) 0 0
\(859\) −20.9071 −0.713340 −0.356670 0.934230i \(-0.616088\pi\)
−0.356670 + 0.934230i \(0.616088\pi\)
\(860\) −14.1468 24.5029i −0.482400 0.835542i
\(861\) −7.48427 12.9631i −0.255063 0.441783i
\(862\) 13.4940 23.3722i 0.459606 0.796061i
\(863\) −55.6969 −1.89595 −0.947973 0.318352i \(-0.896871\pi\)
−0.947973 + 0.318352i \(0.896871\pi\)
\(864\) 1.67845 2.90716i 0.0571020 0.0989035i
\(865\) 5.26205 9.11413i 0.178915 0.309890i
\(866\) 16.0170 0.544279
\(867\) −4.89642 + 8.48085i −0.166291 + 0.288025i
\(868\) 4.09783 + 7.09766i 0.139090 + 0.240910i
\(869\) 5.46011 + 9.45718i 0.185221 + 0.320813i
\(870\) 61.8189 2.09586
\(871\) 0 0
\(872\) 3.38404 0.114598
\(873\) −9.85450 17.0685i −0.333524 0.577681i
\(874\) −6.58211 11.4005i −0.222643 0.385629i
\(875\) −7.56033 + 13.0949i −0.255586 + 0.442688i
\(876\) 9.76032 0.329771
\(877\) 16.3961 28.3989i 0.553658 0.958963i −0.444349 0.895854i \(-0.646565\pi\)
0.998007 0.0631096i \(-0.0201018\pi\)
\(878\) −18.5700 + 32.1642i −0.626708 + 1.08549i
\(879\) 5.85862 0.197607
\(880\) −2.55496 + 4.42532i −0.0861276 + 0.149177i
\(881\) −11.2051 19.4077i −0.377508 0.653863i 0.613191 0.789935i \(-0.289886\pi\)
−0.990699 + 0.136071i \(0.956552\pi\)
\(882\) −9.40193 16.2846i −0.316579 0.548332i
\(883\) −38.9670 −1.31134 −0.655672 0.755046i \(-0.727615\pi\)
−0.655672 + 0.755046i \(0.727615\pi\)
\(884\) 0 0
\(885\) −27.3658 −0.919893
\(886\) −20.6042 35.6875i −0.692211 1.19894i
\(887\) 17.4373 + 30.2022i 0.585486 + 1.01409i 0.994815 + 0.101705i \(0.0324297\pi\)
−0.409328 + 0.912387i \(0.634237\pi\)
\(888\) 10.2349 17.7274i 0.343461 0.594891i
\(889\) 9.93708 0.333279
\(890\) −20.6625 + 35.7885i −0.692608 + 1.19963i
\(891\) 3.79470 6.57261i 0.127127 0.220191i
\(892\) 6.21983 0.208255
\(893\) 0.533188 0.923508i 0.0178425 0.0309040i
\(894\) −4.92394 8.52851i −0.164681 0.285236i
\(895\) −19.7385 34.1882i −0.659787 1.14278i
\(896\) 1.60388 0.0535817
\(897\) 0 0
\(898\) 10.1263 0.337919
\(899\) 23.5254 + 40.7472i 0.784617 + 1.35900i
\(900\) −2.59030 4.48653i −0.0863434 0.149551i
\(901\) −6.16421 + 10.6767i −0.205360 + 0.355693i
\(902\) 7.10321 0.236511
\(903\) 24.4916 42.4206i 0.815028 1.41167i
\(904\) −2.72468 + 4.71928i −0.0906214 + 0.156961i
\(905\) −38.1715 −1.26886
\(906\) 19.6407 34.0187i 0.652519 1.13020i
\(907\) −7.56584 13.1044i −0.251220 0.435125i 0.712642 0.701528i \(-0.247498\pi\)
−0.963862 + 0.266402i \(0.914165\pi\)
\(908\) 0.477697 + 0.827396i 0.0158529 + 0.0274581i
\(909\) 31.5448 1.04627
\(910\) 0 0
\(911\) 23.0810 0.764707 0.382353 0.924016i \(-0.375114\pi\)
0.382353 + 0.924016i \(0.375114\pi\)
\(912\) 6.52930 + 11.3091i 0.216207 + 0.374481i
\(913\) −4.96950 8.60743i −0.164466 0.284864i
\(914\) 10.8780 18.8413i 0.359812 0.623213i
\(915\) 69.9275 2.31173
\(916\) 11.2078 19.4124i 0.370315 0.641404i
\(917\) −3.31767 + 5.74637i −0.109559 + 0.189762i
\(918\) 15.2500 0.503324
\(919\) 19.9638 34.5782i 0.658544 1.14063i −0.322449 0.946587i \(-0.604506\pi\)
0.980993 0.194044i \(-0.0621605\pi\)
\(920\) 3.38404 + 5.86133i 0.111569 + 0.193242i
\(921\) −22.8992 39.6626i −0.754556 1.30693i
\(922\) 38.5676 1.27016
\(923\) 0 0
\(924\) −8.84654 −0.291030
\(925\) −4.63773 8.03278i −0.152488 0.264116i
\(926\) −16.5036 28.5852i −0.542344 0.939367i
\(927\) −1.10023 + 1.90565i −0.0361362 + 0.0625898i
\(928\) 9.20775 0.302259
\(929\) 22.5886 39.1246i 0.741107 1.28364i −0.210885 0.977511i \(-0.567634\pi\)
0.951992 0.306124i \(-0.0990322\pi\)
\(930\) 17.1535 29.7107i 0.562484 0.974251i
\(931\) 21.4776 0.703899
\(932\) −1.49516 + 2.58969i −0.0489755 + 0.0848280i
\(933\) 6.34481 + 10.9895i 0.207720 + 0.359781i
\(934\) 3.26995 + 5.66371i 0.106996 + 0.185322i
\(935\) −23.2137 −0.759170
\(936\) 0 0
\(937\) 29.0901 0.950331 0.475165 0.879896i \(-0.342388\pi\)
0.475165 + 0.879896i \(0.342388\pi\)
\(938\) 9.68425 + 16.7736i 0.316202 + 0.547678i
\(939\) −2.25720 3.90959i −0.0736610 0.127585i
\(940\) −0.274127 + 0.474801i −0.00894103 + 0.0154863i
\(941\) −26.1220 −0.851553 −0.425776 0.904828i \(-0.639999\pi\)
−0.425776 + 0.904828i \(0.639999\pi\)
\(942\) 29.0790 50.3664i 0.947447 1.64103i
\(943\) 4.70410 8.14775i 0.153187 0.265327i
\(944\) −4.07606 −0.132665
\(945\) 6.71379 11.6286i 0.218400 0.378279i
\(946\) 11.6223 + 20.1304i 0.377873 + 0.654496i
\(947\) −21.3349 36.9531i −0.693291 1.20081i −0.970754 0.240078i \(-0.922827\pi\)
0.277463 0.960736i \(-0.410506\pi\)
\(948\) −14.3478 −0.465995
\(949\) 0 0
\(950\) 5.91723 0.191980
\(951\) −39.2228 67.9359i −1.27189 2.20297i
\(952\) 3.64310 + 6.31004i 0.118074 + 0.204510i
\(953\) 14.9519 25.8975i 0.484340 0.838901i −0.515498 0.856891i \(-0.672393\pi\)
0.999838 + 0.0179893i \(0.00572648\pi\)
\(954\) 11.5254 0.373149
\(955\) −4.49396 + 7.78377i −0.145421 + 0.251877i
\(956\) 5.56465 9.63825i 0.179974 0.311723i
\(957\) −50.7875 −1.64173
\(958\) 4.15346 7.19400i 0.134192 0.232428i
\(959\) −15.5429 26.9211i −0.501906 0.869326i
\(960\) −3.35690 5.81431i −0.108343 0.187656i
\(961\) −4.88876 −0.157702
\(962\) 0 0
\(963\) 14.9084 0.480416
\(964\) −2.60388 4.51004i −0.0838652 0.145259i
\(965\) 13.9946 + 24.2394i 0.450503 + 0.780294i
\(966\) −5.85862 + 10.1474i −0.188498 + 0.326488i
\(967\) −5.16900 −0.166224 −0.0831119 0.996540i \(-0.526486\pi\)
−0.0831119 + 0.996540i \(0.526486\pi\)
\(968\) −3.40097 + 5.89065i −0.109311 + 0.189333i
\(969\) −29.6618 + 51.3758i −0.952875 + 1.65043i
\(970\) −11.5737 −0.371611
\(971\) −17.9858 + 31.1523i −0.577191 + 0.999723i 0.418609 + 0.908166i \(0.362518\pi\)
−0.995800 + 0.0915570i \(0.970816\pi\)
\(972\) 10.0211 + 17.3571i 0.321427 + 0.556728i
\(973\) 14.9051 + 25.8165i 0.477837 + 0.827638i
\(974\) 31.6534 1.01424
\(975\) 0 0
\(976\) 10.4155 0.333392
\(977\) −17.1218 29.6558i −0.547774 0.948772i −0.998427 0.0560726i \(-0.982142\pi\)
0.450653 0.892699i \(-0.351191\pi\)
\(978\) 18.3182 + 31.7281i 0.585751 + 1.01455i
\(979\) 16.9753 29.4021i 0.542533 0.939695i
\(980\) −11.0422 −0.352731
\(981\) 7.18598 12.4465i 0.229431 0.397386i
\(982\) −18.3315 + 31.7512i −0.584983 + 1.01322i
\(983\) −54.8939 −1.75084 −0.875422 0.483359i \(-0.839416\pi\)
−0.875422 + 0.483359i \(0.839416\pi\)
\(984\) −4.66637 + 8.08238i −0.148758 + 0.257657i
\(985\) −28.8116 49.9032i −0.918015 1.59005i
\(986\) 20.9148 + 36.2256i 0.666064 + 1.15366i
\(987\) −0.949164 −0.0302122
\(988\) 0 0
\(989\) 30.7875 0.978984
\(990\) 10.8509 + 18.7942i 0.344863 + 0.597320i
\(991\) 8.33273 + 14.4327i 0.264698 + 0.458470i 0.967484 0.252931i \(-0.0813944\pi\)
−0.702786 + 0.711401i \(0.748061\pi\)
\(992\) 2.55496 4.42532i 0.0811200 0.140504i
\(993\) 23.5388 0.746982
\(994\) −1.03146 + 1.78654i −0.0327159 + 0.0566656i
\(995\) −26.5133 + 45.9224i −0.840529 + 1.45584i
\(996\) 13.0586 0.413778
\(997\) −8.19806 + 14.1995i −0.259635 + 0.449701i −0.966144 0.258003i \(-0.916936\pi\)
0.706509 + 0.707704i \(0.250269\pi\)
\(998\) −14.9460 25.8872i −0.473107 0.819446i
\(999\) −12.7627 22.1057i −0.403794 0.699392i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.2.c.i.315.1 6
13.2 odd 12 338.2.b.d.337.6 6
13.3 even 3 338.2.a.g.1.3 3
13.4 even 6 338.2.c.h.191.1 6
13.5 odd 4 338.2.e.e.23.4 12
13.6 odd 12 338.2.e.e.147.1 12
13.7 odd 12 338.2.e.e.147.4 12
13.8 odd 4 338.2.e.e.23.1 12
13.9 even 3 inner 338.2.c.i.191.1 6
13.10 even 6 338.2.a.h.1.3 yes 3
13.11 odd 12 338.2.b.d.337.3 6
13.12 even 2 338.2.c.h.315.1 6
39.2 even 12 3042.2.b.n.1351.3 6
39.11 even 12 3042.2.b.n.1351.4 6
39.23 odd 6 3042.2.a.z.1.3 3
39.29 odd 6 3042.2.a.bi.1.1 3
52.3 odd 6 2704.2.a.v.1.1 3
52.11 even 12 2704.2.f.m.337.2 6
52.15 even 12 2704.2.f.m.337.1 6
52.23 odd 6 2704.2.a.w.1.1 3
65.29 even 6 8450.2.a.bx.1.1 3
65.49 even 6 8450.2.a.bn.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.3 3 13.3 even 3
338.2.a.h.1.3 yes 3 13.10 even 6
338.2.b.d.337.3 6 13.11 odd 12
338.2.b.d.337.6 6 13.2 odd 12
338.2.c.h.191.1 6 13.4 even 6
338.2.c.h.315.1 6 13.12 even 2
338.2.c.i.191.1 6 13.9 even 3 inner
338.2.c.i.315.1 6 1.1 even 1 trivial
338.2.e.e.23.1 12 13.8 odd 4
338.2.e.e.23.4 12 13.5 odd 4
338.2.e.e.147.1 12 13.6 odd 12
338.2.e.e.147.4 12 13.7 odd 12
2704.2.a.v.1.1 3 52.3 odd 6
2704.2.a.w.1.1 3 52.23 odd 6
2704.2.f.m.337.1 6 52.15 even 12
2704.2.f.m.337.2 6 52.11 even 12
3042.2.a.z.1.3 3 39.23 odd 6
3042.2.a.bi.1.1 3 39.29 odd 6
3042.2.b.n.1351.3 6 39.2 even 12
3042.2.b.n.1351.4 6 39.11 even 12
8450.2.a.bn.1.1 3 65.49 even 6
8450.2.a.bx.1.1 3 65.29 even 6