Properties

Label 3042.2.b.n.1351.3
Level $3042$
Weight $2$
Character 3042.1351
Analytic conductor $24.290$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3042,2,Mod(1351,3042)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3042.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,0,-4,0,0,0,8,0,6,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 338)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.3
Root \(1.24698i\) of defining polynomial
Character \(\chi\) \(=\) 3042.1351
Dual form 3042.2.b.n.1351.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +2.49396i q^{5} -1.60388i q^{7} +1.00000i q^{8} +2.49396 q^{10} -2.04892i q^{11} -1.60388 q^{14} +1.00000 q^{16} -4.54288 q^{17} +4.85086i q^{19} -2.49396i q^{20} -2.04892 q^{22} +2.71379 q^{23} -1.21983 q^{25} +1.60388i q^{28} +9.20775 q^{29} -5.10992i q^{31} -1.00000i q^{32} +4.54288i q^{34} +4.00000 q^{35} +7.60388i q^{37} +4.85086 q^{38} -2.49396 q^{40} -3.46681i q^{41} -11.3448 q^{43} +2.04892i q^{44} -2.71379i q^{46} -0.219833i q^{47} +4.42758 q^{49} +1.21983i q^{50} +2.71379 q^{53} +5.10992 q^{55} +1.60388 q^{56} -9.20775i q^{58} +4.07606i q^{59} +10.4155 q^{61} -5.10992 q^{62} -1.00000 q^{64} +12.0761i q^{67} +4.54288 q^{68} -4.00000i q^{70} +1.28621i q^{71} +3.62565i q^{73} +7.60388 q^{74} -4.85086i q^{76} -3.28621 q^{77} -5.32975 q^{79} +2.49396i q^{80} -3.46681 q^{82} +4.85086i q^{83} -11.3297i q^{85} +11.3448i q^{86} +2.04892 q^{88} +16.5700i q^{89} -2.71379 q^{92} -0.219833 q^{94} -12.0978 q^{95} -4.64071i q^{97} -4.42758i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 4 q^{10} + 8 q^{14} + 6 q^{16} + 10 q^{17} + 6 q^{22} - 10 q^{25} + 20 q^{29} + 24 q^{35} + 2 q^{38} + 4 q^{40} - 22 q^{43} - 6 q^{49} + 32 q^{55} - 8 q^{56} - 8 q^{61} - 32 q^{62} - 6 q^{64}+ \cdots - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.49396i 1.11533i 0.830065 + 0.557666i \(0.188303\pi\)
−0.830065 + 0.557666i \(0.811697\pi\)
\(6\) 0 0
\(7\) − 1.60388i − 0.606208i −0.952957 0.303104i \(-0.901977\pi\)
0.952957 0.303104i \(-0.0980229\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.49396 0.788659
\(11\) − 2.04892i − 0.617772i −0.951099 0.308886i \(-0.900044\pi\)
0.951099 0.308886i \(-0.0999561\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −1.60388 −0.428654
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.54288 −1.10181 −0.550905 0.834568i \(-0.685717\pi\)
−0.550905 + 0.834568i \(0.685717\pi\)
\(18\) 0 0
\(19\) 4.85086i 1.11286i 0.830894 + 0.556431i \(0.187830\pi\)
−0.830894 + 0.556431i \(0.812170\pi\)
\(20\) − 2.49396i − 0.557666i
\(21\) 0 0
\(22\) −2.04892 −0.436831
\(23\) 2.71379 0.565865 0.282932 0.959140i \(-0.408693\pi\)
0.282932 + 0.959140i \(0.408693\pi\)
\(24\) 0 0
\(25\) −1.21983 −0.243967
\(26\) 0 0
\(27\) 0 0
\(28\) 1.60388i 0.303104i
\(29\) 9.20775 1.70984 0.854918 0.518763i \(-0.173607\pi\)
0.854918 + 0.518763i \(0.173607\pi\)
\(30\) 0 0
\(31\) − 5.10992i − 0.917768i −0.888496 0.458884i \(-0.848249\pi\)
0.888496 0.458884i \(-0.151751\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) 4.54288i 0.779097i
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 7.60388i 1.25007i 0.780597 + 0.625035i \(0.214915\pi\)
−0.780597 + 0.625035i \(0.785085\pi\)
\(38\) 4.85086 0.786913
\(39\) 0 0
\(40\) −2.49396 −0.394330
\(41\) − 3.46681i − 0.541425i −0.962660 0.270713i \(-0.912741\pi\)
0.962660 0.270713i \(-0.0872593\pi\)
\(42\) 0 0
\(43\) −11.3448 −1.73007 −0.865034 0.501713i \(-0.832703\pi\)
−0.865034 + 0.501713i \(0.832703\pi\)
\(44\) 2.04892i 0.308886i
\(45\) 0 0
\(46\) − 2.71379i − 0.400127i
\(47\) − 0.219833i − 0.0320659i −0.999871 0.0160329i \(-0.994896\pi\)
0.999871 0.0160329i \(-0.00510366\pi\)
\(48\) 0 0
\(49\) 4.42758 0.632512
\(50\) 1.21983i 0.172510i
\(51\) 0 0
\(52\) 0 0
\(53\) 2.71379 0.372768 0.186384 0.982477i \(-0.440323\pi\)
0.186384 + 0.982477i \(0.440323\pi\)
\(54\) 0 0
\(55\) 5.10992 0.689021
\(56\) 1.60388 0.214327
\(57\) 0 0
\(58\) − 9.20775i − 1.20904i
\(59\) 4.07606i 0.530658i 0.964158 + 0.265329i \(0.0854806\pi\)
−0.964158 + 0.265329i \(0.914519\pi\)
\(60\) 0 0
\(61\) 10.4155 1.33357 0.666784 0.745251i \(-0.267670\pi\)
0.666784 + 0.745251i \(0.267670\pi\)
\(62\) −5.10992 −0.648960
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0761i 1.47533i 0.675169 + 0.737663i \(0.264071\pi\)
−0.675169 + 0.737663i \(0.735929\pi\)
\(68\) 4.54288 0.550905
\(69\) 0 0
\(70\) − 4.00000i − 0.478091i
\(71\) 1.28621i 0.152645i 0.997083 + 0.0763224i \(0.0243178\pi\)
−0.997083 + 0.0763224i \(0.975682\pi\)
\(72\) 0 0
\(73\) 3.62565i 0.424350i 0.977232 + 0.212175i \(0.0680546\pi\)
−0.977232 + 0.212175i \(0.931945\pi\)
\(74\) 7.60388 0.883933
\(75\) 0 0
\(76\) − 4.85086i − 0.556431i
\(77\) −3.28621 −0.374498
\(78\) 0 0
\(79\) −5.32975 −0.599644 −0.299822 0.953995i \(-0.596927\pi\)
−0.299822 + 0.953995i \(0.596927\pi\)
\(80\) 2.49396i 0.278833i
\(81\) 0 0
\(82\) −3.46681 −0.382845
\(83\) 4.85086i 0.532451i 0.963911 + 0.266225i \(0.0857765\pi\)
−0.963911 + 0.266225i \(0.914223\pi\)
\(84\) 0 0
\(85\) − 11.3297i − 1.22888i
\(86\) 11.3448i 1.22334i
\(87\) 0 0
\(88\) 2.04892 0.218415
\(89\) 16.5700i 1.75642i 0.478276 + 0.878209i \(0.341262\pi\)
−0.478276 + 0.878209i \(0.658738\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.71379 −0.282932
\(93\) 0 0
\(94\) −0.219833 −0.0226740
\(95\) −12.0978 −1.24121
\(96\) 0 0
\(97\) − 4.64071i − 0.471193i −0.971851 0.235596i \(-0.924296\pi\)
0.971851 0.235596i \(-0.0757043\pi\)
\(98\) − 4.42758i − 0.447253i
\(99\) 0 0
\(100\) 1.21983 0.121983
\(101\) 7.42758 0.739072 0.369536 0.929216i \(-0.379517\pi\)
0.369536 + 0.929216i \(0.379517\pi\)
\(102\) 0 0
\(103\) −0.518122 −0.0510521 −0.0255261 0.999674i \(-0.508126\pi\)
−0.0255261 + 0.999674i \(0.508126\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) − 2.71379i − 0.263587i
\(107\) −3.51035 −0.339359 −0.169679 0.985499i \(-0.554273\pi\)
−0.169679 + 0.985499i \(0.554273\pi\)
\(108\) 0 0
\(109\) 3.38404i 0.324133i 0.986780 + 0.162066i \(0.0518158\pi\)
−0.986780 + 0.162066i \(0.948184\pi\)
\(110\) − 5.10992i − 0.487211i
\(111\) 0 0
\(112\) − 1.60388i − 0.151552i
\(113\) 5.44935 0.512632 0.256316 0.966593i \(-0.417491\pi\)
0.256316 + 0.966593i \(0.417491\pi\)
\(114\) 0 0
\(115\) 6.76809i 0.631127i
\(116\) −9.20775 −0.854918
\(117\) 0 0
\(118\) 4.07606 0.375232
\(119\) 7.28621i 0.667926i
\(120\) 0 0
\(121\) 6.80194 0.618358
\(122\) − 10.4155i − 0.942975i
\(123\) 0 0
\(124\) 5.10992i 0.458884i
\(125\) 9.42758i 0.843229i
\(126\) 0 0
\(127\) 6.19567 0.549777 0.274888 0.961476i \(-0.411359\pi\)
0.274888 + 0.961476i \(0.411359\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 4.13706 0.361457 0.180728 0.983533i \(-0.442154\pi\)
0.180728 + 0.983533i \(0.442154\pi\)
\(132\) 0 0
\(133\) 7.78017 0.674626
\(134\) 12.0761 1.04321
\(135\) 0 0
\(136\) − 4.54288i − 0.389548i
\(137\) 19.3817i 1.65589i 0.560812 + 0.827943i \(0.310489\pi\)
−0.560812 + 0.827943i \(0.689511\pi\)
\(138\) 0 0
\(139\) 18.5864 1.57648 0.788240 0.615368i \(-0.210993\pi\)
0.788240 + 0.615368i \(0.210993\pi\)
\(140\) −4.00000 −0.338062
\(141\) 0 0
\(142\) 1.28621 0.107936
\(143\) 0 0
\(144\) 0 0
\(145\) 22.9638i 1.90704i
\(146\) 3.62565 0.300061
\(147\) 0 0
\(148\) − 7.60388i − 0.625035i
\(149\) − 3.65817i − 0.299689i −0.988710 0.149844i \(-0.952123\pi\)
0.988710 0.149844i \(-0.0478773\pi\)
\(150\) 0 0
\(151\) 14.5918i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(152\) −4.85086 −0.393456
\(153\) 0 0
\(154\) 3.28621i 0.264810i
\(155\) 12.7439 1.02362
\(156\) 0 0
\(157\) 21.6039 1.72418 0.862088 0.506758i \(-0.169156\pi\)
0.862088 + 0.506758i \(0.169156\pi\)
\(158\) 5.32975i 0.424012i
\(159\) 0 0
\(160\) 2.49396 0.197165
\(161\) − 4.35258i − 0.343032i
\(162\) 0 0
\(163\) 13.6093i 1.06596i 0.846128 + 0.532979i \(0.178928\pi\)
−0.846128 + 0.532979i \(0.821072\pi\)
\(164\) 3.46681i 0.270713i
\(165\) 0 0
\(166\) 4.85086 0.376499
\(167\) − 14.0000i − 1.08335i −0.840587 0.541676i \(-0.817790\pi\)
0.840587 0.541676i \(-0.182210\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −11.3297 −0.868952
\(171\) 0 0
\(172\) 11.3448 0.865034
\(173\) −4.21983 −0.320828 −0.160414 0.987050i \(-0.551283\pi\)
−0.160414 + 0.987050i \(0.551283\pi\)
\(174\) 0 0
\(175\) 1.95646i 0.147894i
\(176\) − 2.04892i − 0.154443i
\(177\) 0 0
\(178\) 16.5700 1.24198
\(179\) 15.8291 1.18312 0.591561 0.806260i \(-0.298512\pi\)
0.591561 + 0.806260i \(0.298512\pi\)
\(180\) 0 0
\(181\) 15.3056 1.13766 0.568828 0.822457i \(-0.307397\pi\)
0.568828 + 0.822457i \(0.307397\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.71379i 0.200063i
\(185\) −18.9638 −1.39424
\(186\) 0 0
\(187\) 9.30798i 0.680667i
\(188\) 0.219833i 0.0160329i
\(189\) 0 0
\(190\) 12.0978i 0.877669i
\(191\) −3.60388 −0.260767 −0.130384 0.991464i \(-0.541621\pi\)
−0.130384 + 0.991464i \(0.541621\pi\)
\(192\) 0 0
\(193\) − 11.2228i − 0.807836i −0.914795 0.403918i \(-0.867648\pi\)
0.914795 0.403918i \(-0.132352\pi\)
\(194\) −4.64071 −0.333184
\(195\) 0 0
\(196\) −4.42758 −0.316256
\(197\) 23.1051i 1.64617i 0.567916 + 0.823086i \(0.307750\pi\)
−0.567916 + 0.823086i \(0.692250\pi\)
\(198\) 0 0
\(199\) −21.2620 −1.50723 −0.753613 0.657318i \(-0.771691\pi\)
−0.753613 + 0.657318i \(0.771691\pi\)
\(200\) − 1.21983i − 0.0862552i
\(201\) 0 0
\(202\) − 7.42758i − 0.522603i
\(203\) − 14.7681i − 1.03652i
\(204\) 0 0
\(205\) 8.64609 0.603869
\(206\) 0.518122i 0.0360993i
\(207\) 0 0
\(208\) 0 0
\(209\) 9.93900 0.687495
\(210\) 0 0
\(211\) 1.70709 0.117521 0.0587604 0.998272i \(-0.481285\pi\)
0.0587604 + 0.998272i \(0.481285\pi\)
\(212\) −2.71379 −0.186384
\(213\) 0 0
\(214\) 3.51035i 0.239963i
\(215\) − 28.2935i − 1.92960i
\(216\) 0 0
\(217\) −8.19567 −0.556358
\(218\) 3.38404 0.229196
\(219\) 0 0
\(220\) −5.10992 −0.344510
\(221\) 0 0
\(222\) 0 0
\(223\) − 6.21983i − 0.416511i −0.978074 0.208255i \(-0.933221\pi\)
0.978074 0.208255i \(-0.0667785\pi\)
\(224\) −1.60388 −0.107163
\(225\) 0 0
\(226\) − 5.44935i − 0.362486i
\(227\) − 0.955395i − 0.0634118i −0.999497 0.0317059i \(-0.989906\pi\)
0.999497 0.0317059i \(-0.0100940\pi\)
\(228\) 0 0
\(229\) − 22.4155i − 1.48126i −0.671914 0.740629i \(-0.734528\pi\)
0.671914 0.740629i \(-0.265472\pi\)
\(230\) 6.76809 0.446274
\(231\) 0 0
\(232\) 9.20775i 0.604518i
\(233\) 2.99031 0.195902 0.0979509 0.995191i \(-0.468771\pi\)
0.0979509 + 0.995191i \(0.468771\pi\)
\(234\) 0 0
\(235\) 0.548253 0.0357641
\(236\) − 4.07606i − 0.265329i
\(237\) 0 0
\(238\) 7.28621 0.472295
\(239\) − 11.1293i − 0.719894i −0.932973 0.359947i \(-0.882795\pi\)
0.932973 0.359947i \(-0.117205\pi\)
\(240\) 0 0
\(241\) 5.20775i 0.335461i 0.985833 + 0.167730i \(0.0536438\pi\)
−0.985833 + 0.167730i \(0.946356\pi\)
\(242\) − 6.80194i − 0.437245i
\(243\) 0 0
\(244\) −10.4155 −0.666784
\(245\) 11.0422i 0.705461i
\(246\) 0 0
\(247\) 0 0
\(248\) 5.10992 0.324480
\(249\) 0 0
\(250\) 9.42758 0.596253
\(251\) −22.6950 −1.43250 −0.716248 0.697846i \(-0.754142\pi\)
−0.716248 + 0.697846i \(0.754142\pi\)
\(252\) 0 0
\(253\) − 5.56033i − 0.349575i
\(254\) − 6.19567i − 0.388751i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 10.4306 0.650641 0.325320 0.945604i \(-0.394528\pi\)
0.325320 + 0.945604i \(0.394528\pi\)
\(258\) 0 0
\(259\) 12.1957 0.757802
\(260\) 0 0
\(261\) 0 0
\(262\) − 4.13706i − 0.255589i
\(263\) 7.10992 0.438416 0.219208 0.975678i \(-0.429653\pi\)
0.219208 + 0.975678i \(0.429653\pi\)
\(264\) 0 0
\(265\) 6.76809i 0.415760i
\(266\) − 7.78017i − 0.477033i
\(267\) 0 0
\(268\) − 12.0761i − 0.737663i
\(269\) −2.02416 −0.123415 −0.0617077 0.998094i \(-0.519655\pi\)
−0.0617077 + 0.998094i \(0.519655\pi\)
\(270\) 0 0
\(271\) − 15.9651i − 0.969810i −0.874567 0.484905i \(-0.838854\pi\)
0.874567 0.484905i \(-0.161146\pi\)
\(272\) −4.54288 −0.275452
\(273\) 0 0
\(274\) 19.3817 1.17089
\(275\) 2.49934i 0.150716i
\(276\) 0 0
\(277\) −13.7017 −0.823256 −0.411628 0.911352i \(-0.635040\pi\)
−0.411628 + 0.911352i \(0.635040\pi\)
\(278\) − 18.5864i − 1.11474i
\(279\) 0 0
\(280\) 4.00000i 0.239046i
\(281\) − 15.2024i − 0.906898i −0.891282 0.453449i \(-0.850193\pi\)
0.891282 0.453449i \(-0.149807\pi\)
\(282\) 0 0
\(283\) −20.6069 −1.22495 −0.612475 0.790490i \(-0.709826\pi\)
−0.612475 + 0.790490i \(0.709826\pi\)
\(284\) − 1.28621i − 0.0763224i
\(285\) 0 0
\(286\) 0 0
\(287\) −5.56033 −0.328216
\(288\) 0 0
\(289\) 3.63773 0.213984
\(290\) 22.9638 1.34848
\(291\) 0 0
\(292\) − 3.62565i − 0.212175i
\(293\) − 2.17629i − 0.127140i −0.997977 0.0635702i \(-0.979751\pi\)
0.997977 0.0635702i \(-0.0202487\pi\)
\(294\) 0 0
\(295\) −10.1655 −0.591861
\(296\) −7.60388 −0.441966
\(297\) 0 0
\(298\) −3.65817 −0.211912
\(299\) 0 0
\(300\) 0 0
\(301\) 18.1957i 1.04878i
\(302\) 14.5918 0.839663
\(303\) 0 0
\(304\) 4.85086i 0.278216i
\(305\) 25.9758i 1.48737i
\(306\) 0 0
\(307\) 17.0127i 0.970965i 0.874247 + 0.485482i \(0.161356\pi\)
−0.874247 + 0.485482i \(0.838644\pi\)
\(308\) 3.28621 0.187249
\(309\) 0 0
\(310\) − 12.7439i − 0.723806i
\(311\) −4.71379 −0.267295 −0.133647 0.991029i \(-0.542669\pi\)
−0.133647 + 0.991029i \(0.542669\pi\)
\(312\) 0 0
\(313\) 1.67696 0.0947872 0.0473936 0.998876i \(-0.484909\pi\)
0.0473936 + 0.998876i \(0.484909\pi\)
\(314\) − 21.6039i − 1.21918i
\(315\) 0 0
\(316\) 5.32975 0.299822
\(317\) 29.1400i 1.63667i 0.574743 + 0.818334i \(0.305102\pi\)
−0.574743 + 0.818334i \(0.694898\pi\)
\(318\) 0 0
\(319\) − 18.8659i − 1.05629i
\(320\) − 2.49396i − 0.139417i
\(321\) 0 0
\(322\) −4.35258 −0.242560
\(323\) − 22.0368i − 1.22616i
\(324\) 0 0
\(325\) 0 0
\(326\) 13.6093 0.753747
\(327\) 0 0
\(328\) 3.46681 0.191423
\(329\) −0.352584 −0.0194386
\(330\) 0 0
\(331\) − 8.74392i − 0.480609i −0.970698 0.240305i \(-0.922753\pi\)
0.970698 0.240305i \(-0.0772474\pi\)
\(332\) − 4.85086i − 0.266225i
\(333\) 0 0
\(334\) −14.0000 −0.766046
\(335\) −30.1172 −1.64548
\(336\) 0 0
\(337\) 3.10560 0.169173 0.0845865 0.996416i \(-0.473043\pi\)
0.0845865 + 0.996416i \(0.473043\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 11.3297i 0.614442i
\(341\) −10.4698 −0.566971
\(342\) 0 0
\(343\) − 18.3284i − 0.989642i
\(344\) − 11.3448i − 0.611671i
\(345\) 0 0
\(346\) 4.21983i 0.226860i
\(347\) −17.9758 −0.964993 −0.482497 0.875898i \(-0.660270\pi\)
−0.482497 + 0.875898i \(0.660270\pi\)
\(348\) 0 0
\(349\) 15.1642i 0.811722i 0.913935 + 0.405861i \(0.133028\pi\)
−0.913935 + 0.405861i \(0.866972\pi\)
\(350\) 1.95646 0.104577
\(351\) 0 0
\(352\) −2.04892 −0.109208
\(353\) − 3.30021i − 0.175652i −0.996136 0.0878262i \(-0.972008\pi\)
0.996136 0.0878262i \(-0.0279920\pi\)
\(354\) 0 0
\(355\) −3.20775 −0.170250
\(356\) − 16.5700i − 0.878209i
\(357\) 0 0
\(358\) − 15.8291i − 0.836593i
\(359\) − 18.8901i − 0.996980i −0.866895 0.498490i \(-0.833888\pi\)
0.866895 0.498490i \(-0.166112\pi\)
\(360\) 0 0
\(361\) −4.53079 −0.238463
\(362\) − 15.3056i − 0.804444i
\(363\) 0 0
\(364\) 0 0
\(365\) −9.04221 −0.473291
\(366\) 0 0
\(367\) −0.195669 −0.0102139 −0.00510693 0.999987i \(-0.501626\pi\)
−0.00510693 + 0.999987i \(0.501626\pi\)
\(368\) 2.71379 0.141466
\(369\) 0 0
\(370\) 18.9638i 0.985879i
\(371\) − 4.35258i − 0.225975i
\(372\) 0 0
\(373\) −10.7681 −0.557550 −0.278775 0.960356i \(-0.589928\pi\)
−0.278775 + 0.960356i \(0.589928\pi\)
\(374\) 9.30798 0.481304
\(375\) 0 0
\(376\) 0.219833 0.0113370
\(377\) 0 0
\(378\) 0 0
\(379\) − 27.9627i − 1.43635i −0.695864 0.718173i \(-0.744978\pi\)
0.695864 0.718173i \(-0.255022\pi\)
\(380\) 12.0978 0.620606
\(381\) 0 0
\(382\) 3.60388i 0.184390i
\(383\) 32.8310i 1.67759i 0.544451 + 0.838793i \(0.316738\pi\)
−0.544451 + 0.838793i \(0.683262\pi\)
\(384\) 0 0
\(385\) − 8.19567i − 0.417690i
\(386\) −11.2228 −0.571226
\(387\) 0 0
\(388\) 4.64071i 0.235596i
\(389\) 8.90946 0.451728 0.225864 0.974159i \(-0.427480\pi\)
0.225864 + 0.974159i \(0.427480\pi\)
\(390\) 0 0
\(391\) −12.3284 −0.623475
\(392\) 4.42758i 0.223627i
\(393\) 0 0
\(394\) 23.1051 1.16402
\(395\) − 13.2922i − 0.668802i
\(396\) 0 0
\(397\) 11.7888i 0.591662i 0.955240 + 0.295831i \(0.0955966\pi\)
−0.955240 + 0.295831i \(0.904403\pi\)
\(398\) 21.2620i 1.06577i
\(399\) 0 0
\(400\) −1.21983 −0.0609916
\(401\) − 3.21313i − 0.160456i −0.996777 0.0802280i \(-0.974435\pi\)
0.996777 0.0802280i \(-0.0255648\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −7.42758 −0.369536
\(405\) 0 0
\(406\) −14.7681 −0.732928
\(407\) 15.5797 0.772258
\(408\) 0 0
\(409\) − 12.0218i − 0.594438i −0.954809 0.297219i \(-0.903941\pi\)
0.954809 0.297219i \(-0.0960592\pi\)
\(410\) − 8.64609i − 0.427000i
\(411\) 0 0
\(412\) 0.518122 0.0255261
\(413\) 6.53750 0.321689
\(414\) 0 0
\(415\) −12.0978 −0.593859
\(416\) 0 0
\(417\) 0 0
\(418\) − 9.93900i − 0.486132i
\(419\) 3.56033 0.173934 0.0869669 0.996211i \(-0.472283\pi\)
0.0869669 + 0.996211i \(0.472283\pi\)
\(420\) 0 0
\(421\) 1.28621i 0.0626860i 0.999509 + 0.0313430i \(0.00997841\pi\)
−0.999509 + 0.0313430i \(0.990022\pi\)
\(422\) − 1.70709i − 0.0830997i
\(423\) 0 0
\(424\) 2.71379i 0.131793i
\(425\) 5.54155 0.268805
\(426\) 0 0
\(427\) − 16.7052i − 0.808420i
\(428\) 3.51035 0.169679
\(429\) 0 0
\(430\) −28.2935 −1.36443
\(431\) 26.9879i 1.29996i 0.759950 + 0.649981i \(0.225223\pi\)
−0.759950 + 0.649981i \(0.774777\pi\)
\(432\) 0 0
\(433\) 16.0170 0.769727 0.384864 0.922973i \(-0.374248\pi\)
0.384864 + 0.922973i \(0.374248\pi\)
\(434\) 8.19567i 0.393405i
\(435\) 0 0
\(436\) − 3.38404i − 0.162066i
\(437\) 13.1642i 0.629730i
\(438\) 0 0
\(439\) 37.1400 1.77260 0.886299 0.463114i \(-0.153268\pi\)
0.886299 + 0.463114i \(0.153268\pi\)
\(440\) 5.10992i 0.243606i
\(441\) 0 0
\(442\) 0 0
\(443\) 41.2083 1.95787 0.978934 0.204178i \(-0.0654522\pi\)
0.978934 + 0.204178i \(0.0654522\pi\)
\(444\) 0 0
\(445\) −41.3250 −1.95899
\(446\) −6.21983 −0.294518
\(447\) 0 0
\(448\) 1.60388i 0.0757760i
\(449\) 10.1263i 0.477890i 0.971033 + 0.238945i \(0.0768016\pi\)
−0.971033 + 0.238945i \(0.923198\pi\)
\(450\) 0 0
\(451\) −7.10321 −0.334477
\(452\) −5.44935 −0.256316
\(453\) 0 0
\(454\) −0.955395 −0.0448389
\(455\) 0 0
\(456\) 0 0
\(457\) − 21.7560i − 1.01770i −0.860854 0.508851i \(-0.830070\pi\)
0.860854 0.508851i \(-0.169930\pi\)
\(458\) −22.4155 −1.04741
\(459\) 0 0
\(460\) − 6.76809i − 0.315564i
\(461\) − 38.5676i − 1.79627i −0.439716 0.898137i \(-0.644921\pi\)
0.439716 0.898137i \(-0.355079\pi\)
\(462\) 0 0
\(463\) − 33.0073i − 1.53398i −0.641660 0.766990i \(-0.721754\pi\)
0.641660 0.766990i \(-0.278246\pi\)
\(464\) 9.20775 0.427459
\(465\) 0 0
\(466\) − 2.99031i − 0.138523i
\(467\) 6.53989 0.302630 0.151315 0.988486i \(-0.451649\pi\)
0.151315 + 0.988486i \(0.451649\pi\)
\(468\) 0 0
\(469\) 19.3685 0.894354
\(470\) − 0.548253i − 0.0252890i
\(471\) 0 0
\(472\) −4.07606 −0.187616
\(473\) 23.2446i 1.06879i
\(474\) 0 0
\(475\) − 5.91723i − 0.271501i
\(476\) − 7.28621i − 0.333963i
\(477\) 0 0
\(478\) −11.1293 −0.509042
\(479\) − 8.30691i − 0.379553i −0.981827 0.189776i \(-0.939224\pi\)
0.981827 0.189776i \(-0.0607763\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 5.20775 0.237207
\(483\) 0 0
\(484\) −6.80194 −0.309179
\(485\) 11.5737 0.525537
\(486\) 0 0
\(487\) 31.6534i 1.43435i 0.696892 + 0.717176i \(0.254566\pi\)
−0.696892 + 0.717176i \(0.745434\pi\)
\(488\) 10.4155i 0.471488i
\(489\) 0 0
\(490\) 11.0422 0.498836
\(491\) −36.6631 −1.65458 −0.827291 0.561774i \(-0.810119\pi\)
−0.827291 + 0.561774i \(0.810119\pi\)
\(492\) 0 0
\(493\) −41.8297 −1.88391
\(494\) 0 0
\(495\) 0 0
\(496\) − 5.10992i − 0.229442i
\(497\) 2.06292 0.0925345
\(498\) 0 0
\(499\) 29.8920i 1.33815i 0.743195 + 0.669075i \(0.233309\pi\)
−0.743195 + 0.669075i \(0.766691\pi\)
\(500\) − 9.42758i − 0.421614i
\(501\) 0 0
\(502\) 22.6950i 1.01293i
\(503\) −15.5905 −0.695145 −0.347572 0.937653i \(-0.612994\pi\)
−0.347572 + 0.937653i \(0.612994\pi\)
\(504\) 0 0
\(505\) 18.5241i 0.824311i
\(506\) −5.56033 −0.247187
\(507\) 0 0
\(508\) −6.19567 −0.274888
\(509\) − 17.1642i − 0.760790i −0.924824 0.380395i \(-0.875788\pi\)
0.924824 0.380395i \(-0.124212\pi\)
\(510\) 0 0
\(511\) 5.81508 0.257244
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) − 10.4306i − 0.460073i
\(515\) − 1.29218i − 0.0569401i
\(516\) 0 0
\(517\) −0.450419 −0.0198094
\(518\) − 12.1957i − 0.535847i
\(519\) 0 0
\(520\) 0 0
\(521\) −6.15452 −0.269634 −0.134817 0.990870i \(-0.543045\pi\)
−0.134817 + 0.990870i \(0.543045\pi\)
\(522\) 0 0
\(523\) 6.93900 0.303421 0.151711 0.988425i \(-0.451522\pi\)
0.151711 + 0.988425i \(0.451522\pi\)
\(524\) −4.13706 −0.180728
\(525\) 0 0
\(526\) − 7.10992i − 0.310007i
\(527\) 23.2137i 1.01121i
\(528\) 0 0
\(529\) −15.6353 −0.679797
\(530\) 6.76809 0.293987
\(531\) 0 0
\(532\) −7.78017 −0.337313
\(533\) 0 0
\(534\) 0 0
\(535\) − 8.75468i − 0.378498i
\(536\) −12.0761 −0.521607
\(537\) 0 0
\(538\) 2.02416i 0.0872679i
\(539\) − 9.07175i − 0.390748i
\(540\) 0 0
\(541\) − 0.426256i − 0.0183262i −0.999958 0.00916308i \(-0.997083\pi\)
0.999958 0.00916308i \(-0.00291674\pi\)
\(542\) −15.9651 −0.685759
\(543\) 0 0
\(544\) 4.54288i 0.194774i
\(545\) −8.43967 −0.361516
\(546\) 0 0
\(547\) 3.72348 0.159205 0.0796023 0.996827i \(-0.474635\pi\)
0.0796023 + 0.996827i \(0.474635\pi\)
\(548\) − 19.3817i − 0.827943i
\(549\) 0 0
\(550\) 2.49934 0.106572
\(551\) 44.6655i 1.90281i
\(552\) 0 0
\(553\) 8.54825i 0.363509i
\(554\) 13.7017i 0.582130i
\(555\) 0 0
\(556\) −18.5864 −0.788240
\(557\) 42.7961i 1.81333i 0.421853 + 0.906664i \(0.361380\pi\)
−0.421853 + 0.906664i \(0.638620\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) −15.2024 −0.641273
\(563\) 2.92500 0.123274 0.0616370 0.998099i \(-0.480368\pi\)
0.0616370 + 0.998099i \(0.480368\pi\)
\(564\) 0 0
\(565\) 13.5905i 0.571755i
\(566\) 20.6069i 0.866171i
\(567\) 0 0
\(568\) −1.28621 −0.0539681
\(569\) −26.5894 −1.11469 −0.557343 0.830282i \(-0.688179\pi\)
−0.557343 + 0.830282i \(0.688179\pi\)
\(570\) 0 0
\(571\) 2.34422 0.0981027 0.0490513 0.998796i \(-0.484380\pi\)
0.0490513 + 0.998796i \(0.484380\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 5.56033i 0.232084i
\(575\) −3.31037 −0.138052
\(576\) 0 0
\(577\) − 40.4064i − 1.68214i −0.540926 0.841070i \(-0.681926\pi\)
0.540926 0.841070i \(-0.318074\pi\)
\(578\) − 3.63773i − 0.151310i
\(579\) 0 0
\(580\) − 22.9638i − 0.953518i
\(581\) 7.78017 0.322776
\(582\) 0 0
\(583\) − 5.56033i − 0.230286i
\(584\) −3.62565 −0.150030
\(585\) 0 0
\(586\) −2.17629 −0.0899018
\(587\) − 43.2180i − 1.78380i −0.452234 0.891900i \(-0.649373\pi\)
0.452234 0.891900i \(-0.350627\pi\)
\(588\) 0 0
\(589\) 24.7875 1.02135
\(590\) 10.1655i 0.418509i
\(591\) 0 0
\(592\) 7.60388i 0.312517i
\(593\) 7.01746i 0.288172i 0.989565 + 0.144086i \(0.0460243\pi\)
−0.989565 + 0.144086i \(0.953976\pi\)
\(594\) 0 0
\(595\) −18.1715 −0.744959
\(596\) 3.65817i 0.149844i
\(597\) 0 0
\(598\) 0 0
\(599\) −14.9772 −0.611950 −0.305975 0.952039i \(-0.598982\pi\)
−0.305975 + 0.952039i \(0.598982\pi\)
\(600\) 0 0
\(601\) −37.2771 −1.52057 −0.760283 0.649593i \(-0.774940\pi\)
−0.760283 + 0.649593i \(0.774940\pi\)
\(602\) 18.1957 0.741600
\(603\) 0 0
\(604\) − 14.5918i − 0.593732i
\(605\) 16.9638i 0.689675i
\(606\) 0 0
\(607\) 0.803003 0.0325929 0.0162964 0.999867i \(-0.494812\pi\)
0.0162964 + 0.999867i \(0.494812\pi\)
\(608\) 4.85086 0.196728
\(609\) 0 0
\(610\) 25.9758 1.05173
\(611\) 0 0
\(612\) 0 0
\(613\) − 4.87071i − 0.196726i −0.995151 0.0983630i \(-0.968639\pi\)
0.995151 0.0983630i \(-0.0313606\pi\)
\(614\) 17.0127 0.686576
\(615\) 0 0
\(616\) − 3.28621i − 0.132405i
\(617\) 3.34290i 0.134580i 0.997733 + 0.0672899i \(0.0214353\pi\)
−0.997733 + 0.0672899i \(0.978565\pi\)
\(618\) 0 0
\(619\) − 34.1715i − 1.37347i −0.726908 0.686734i \(-0.759044\pi\)
0.726908 0.686734i \(-0.240956\pi\)
\(620\) −12.7439 −0.511808
\(621\) 0 0
\(622\) 4.71379i 0.189006i
\(623\) 26.5763 1.06476
\(624\) 0 0
\(625\) −29.6112 −1.18445
\(626\) − 1.67696i − 0.0670246i
\(627\) 0 0
\(628\) −21.6039 −0.862088
\(629\) − 34.5435i − 1.37734i
\(630\) 0 0
\(631\) 39.8297i 1.58559i 0.609486 + 0.792797i \(0.291376\pi\)
−0.609486 + 0.792797i \(0.708624\pi\)
\(632\) − 5.32975i − 0.212006i
\(633\) 0 0
\(634\) 29.1400 1.15730
\(635\) 15.4517i 0.613184i
\(636\) 0 0
\(637\) 0 0
\(638\) −18.8659 −0.746909
\(639\) 0 0
\(640\) −2.49396 −0.0985824
\(641\) −13.4910 −0.532861 −0.266431 0.963854i \(-0.585844\pi\)
−0.266431 + 0.963854i \(0.585844\pi\)
\(642\) 0 0
\(643\) 16.6638i 0.657156i 0.944477 + 0.328578i \(0.106569\pi\)
−0.944477 + 0.328578i \(0.893431\pi\)
\(644\) 4.35258i 0.171516i
\(645\) 0 0
\(646\) −22.0368 −0.867028
\(647\) 48.7332 1.91590 0.957949 0.286938i \(-0.0926372\pi\)
0.957949 + 0.286938i \(0.0926372\pi\)
\(648\) 0 0
\(649\) 8.35152 0.327826
\(650\) 0 0
\(651\) 0 0
\(652\) − 13.6093i − 0.532979i
\(653\) −47.0702 −1.84200 −0.921000 0.389563i \(-0.872626\pi\)
−0.921000 + 0.389563i \(0.872626\pi\)
\(654\) 0 0
\(655\) 10.3177i 0.403145i
\(656\) − 3.46681i − 0.135356i
\(657\) 0 0
\(658\) 0.352584i 0.0137452i
\(659\) 22.2524 0.866829 0.433414 0.901195i \(-0.357309\pi\)
0.433414 + 0.901195i \(0.357309\pi\)
\(660\) 0 0
\(661\) − 2.57242i − 0.100055i −0.998748 0.0500277i \(-0.984069\pi\)
0.998748 0.0500277i \(-0.0159310\pi\)
\(662\) −8.74392 −0.339842
\(663\) 0 0
\(664\) −4.85086 −0.188250
\(665\) 19.4034i 0.752432i
\(666\) 0 0
\(667\) 24.9879 0.967536
\(668\) 14.0000i 0.541676i
\(669\) 0 0
\(670\) 30.1172i 1.16353i
\(671\) − 21.3405i − 0.823841i
\(672\) 0 0
\(673\) −24.1691 −0.931651 −0.465825 0.884877i \(-0.654243\pi\)
−0.465825 + 0.884877i \(0.654243\pi\)
\(674\) − 3.10560i − 0.119623i
\(675\) 0 0
\(676\) 0 0
\(677\) 4.91425 0.188870 0.0944349 0.995531i \(-0.469896\pi\)
0.0944349 + 0.995531i \(0.469896\pi\)
\(678\) 0 0
\(679\) −7.44312 −0.285641
\(680\) 11.3297 0.434476
\(681\) 0 0
\(682\) 10.4698i 0.400909i
\(683\) 1.96556i 0.0752100i 0.999293 + 0.0376050i \(0.0119729\pi\)
−0.999293 + 0.0376050i \(0.988027\pi\)
\(684\) 0 0
\(685\) −48.3370 −1.84686
\(686\) −18.3284 −0.699782
\(687\) 0 0
\(688\) −11.3448 −0.432517
\(689\) 0 0
\(690\) 0 0
\(691\) − 25.5077i − 0.970359i −0.874415 0.485179i \(-0.838754\pi\)
0.874415 0.485179i \(-0.161246\pi\)
\(692\) 4.21983 0.160414
\(693\) 0 0
\(694\) 17.9758i 0.682353i
\(695\) 46.3538i 1.75830i
\(696\) 0 0
\(697\) 15.7493i 0.596547i
\(698\) 15.1642 0.573974
\(699\) 0 0
\(700\) − 1.95646i − 0.0739472i
\(701\) −41.8491 −1.58062 −0.790308 0.612709i \(-0.790080\pi\)
−0.790308 + 0.612709i \(0.790080\pi\)
\(702\) 0 0
\(703\) −36.8853 −1.39116
\(704\) 2.04892i 0.0772215i
\(705\) 0 0
\(706\) −3.30021 −0.124205
\(707\) − 11.9129i − 0.448031i
\(708\) 0 0
\(709\) 33.3056i 1.25082i 0.780297 + 0.625409i \(0.215068\pi\)
−0.780297 + 0.625409i \(0.784932\pi\)
\(710\) 3.20775i 0.120385i
\(711\) 0 0
\(712\) −16.5700 −0.620988
\(713\) − 13.8672i − 0.519333i
\(714\) 0 0
\(715\) 0 0
\(716\) −15.8291 −0.591561
\(717\) 0 0
\(718\) −18.8901 −0.704972
\(719\) 6.37196 0.237634 0.118817 0.992916i \(-0.462090\pi\)
0.118817 + 0.992916i \(0.462090\pi\)
\(720\) 0 0
\(721\) 0.831004i 0.0309482i
\(722\) 4.53079i 0.168619i
\(723\) 0 0
\(724\) −15.3056 −0.568828
\(725\) −11.2319 −0.417143
\(726\) 0 0
\(727\) −23.7995 −0.882676 −0.441338 0.897341i \(-0.645496\pi\)
−0.441338 + 0.897341i \(0.645496\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 9.04221i 0.334667i
\(731\) 51.5381 1.90621
\(732\) 0 0
\(733\) 27.4142i 1.01257i 0.862368 + 0.506283i \(0.168981\pi\)
−0.862368 + 0.506283i \(0.831019\pi\)
\(734\) 0.195669i 0.00722229i
\(735\) 0 0
\(736\) − 2.71379i − 0.100032i
\(737\) 24.7429 0.911415
\(738\) 0 0
\(739\) 35.3274i 1.29954i 0.760132 + 0.649769i \(0.225134\pi\)
−0.760132 + 0.649769i \(0.774866\pi\)
\(740\) 18.9638 0.697122
\(741\) 0 0
\(742\) −4.35258 −0.159788
\(743\) − 23.9758i − 0.879588i −0.898099 0.439794i \(-0.855051\pi\)
0.898099 0.439794i \(-0.144949\pi\)
\(744\) 0 0
\(745\) 9.12333 0.334253
\(746\) 10.7681i 0.394248i
\(747\) 0 0
\(748\) − 9.30798i − 0.340333i
\(749\) 5.63017i 0.205722i
\(750\) 0 0
\(751\) 24.8659 0.907370 0.453685 0.891162i \(-0.350109\pi\)
0.453685 + 0.891162i \(0.350109\pi\)
\(752\) − 0.219833i − 0.00801647i
\(753\) 0 0
\(754\) 0 0
\(755\) −36.3913 −1.32442
\(756\) 0 0
\(757\) 4.93362 0.179316 0.0896578 0.995973i \(-0.471423\pi\)
0.0896578 + 0.995973i \(0.471423\pi\)
\(758\) −27.9627 −1.01565
\(759\) 0 0
\(760\) − 12.0978i − 0.438835i
\(761\) 15.0067i 0.543993i 0.962298 + 0.271996i \(0.0876839\pi\)
−0.962298 + 0.271996i \(0.912316\pi\)
\(762\) 0 0
\(763\) 5.42758 0.196492
\(764\) 3.60388 0.130384
\(765\) 0 0
\(766\) 32.8310 1.18623
\(767\) 0 0
\(768\) 0 0
\(769\) − 22.2640i − 0.802859i −0.915890 0.401430i \(-0.868513\pi\)
0.915890 0.401430i \(-0.131487\pi\)
\(770\) −8.19567 −0.295351
\(771\) 0 0
\(772\) 11.2228i 0.403918i
\(773\) − 11.7366i − 0.422137i −0.977471 0.211069i \(-0.932306\pi\)
0.977471 0.211069i \(-0.0676943\pi\)
\(774\) 0 0
\(775\) 6.23324i 0.223905i
\(776\) 4.64071 0.166592
\(777\) 0 0
\(778\) − 8.90946i − 0.319420i
\(779\) 16.8170 0.602532
\(780\) 0 0
\(781\) 2.63533 0.0942997
\(782\) 12.3284i 0.440863i
\(783\) 0 0
\(784\) 4.42758 0.158128
\(785\) 53.8792i 1.92303i
\(786\) 0 0
\(787\) − 14.9498i − 0.532901i −0.963849 0.266451i \(-0.914149\pi\)
0.963849 0.266451i \(-0.0858509\pi\)
\(788\) − 23.1051i − 0.823086i
\(789\) 0 0
\(790\) −13.2922 −0.472914
\(791\) − 8.74008i − 0.310762i
\(792\) 0 0
\(793\) 0 0
\(794\) 11.7888 0.418369
\(795\) 0 0
\(796\) 21.2620 0.753613
\(797\) 35.1728 1.24589 0.622943 0.782267i \(-0.285937\pi\)
0.622943 + 0.782267i \(0.285937\pi\)
\(798\) 0 0
\(799\) 0.998672i 0.0353305i
\(800\) 1.21983i 0.0431276i
\(801\) 0 0
\(802\) −3.21313 −0.113459
\(803\) 7.42865 0.262151
\(804\) 0 0
\(805\) 10.8552 0.382594
\(806\) 0 0
\(807\) 0 0
\(808\) 7.42758i 0.261301i
\(809\) −42.9487 −1.51000 −0.754998 0.655727i \(-0.772362\pi\)
−0.754998 + 0.655727i \(0.772362\pi\)
\(810\) 0 0
\(811\) 20.4644i 0.718603i 0.933222 + 0.359301i \(0.116985\pi\)
−0.933222 + 0.359301i \(0.883015\pi\)
\(812\) 14.7681i 0.518258i
\(813\) 0 0
\(814\) − 15.5797i − 0.546069i
\(815\) −33.9409 −1.18890
\(816\) 0 0
\(817\) − 55.0320i − 1.92533i
\(818\) −12.0218 −0.420331
\(819\) 0 0
\(820\) −8.64609 −0.301934
\(821\) − 36.9987i − 1.29126i −0.763649 0.645631i \(-0.776594\pi\)
0.763649 0.645631i \(-0.223406\pi\)
\(822\) 0 0
\(823\) −9.27545 −0.323322 −0.161661 0.986846i \(-0.551685\pi\)
−0.161661 + 0.986846i \(0.551685\pi\)
\(824\) − 0.518122i − 0.0180496i
\(825\) 0 0
\(826\) − 6.53750i − 0.227469i
\(827\) − 6.05669i − 0.210612i −0.994440 0.105306i \(-0.966418\pi\)
0.994440 0.105306i \(-0.0335821\pi\)
\(828\) 0 0
\(829\) −9.94092 −0.345262 −0.172631 0.984987i \(-0.555227\pi\)
−0.172631 + 0.984987i \(0.555227\pi\)
\(830\) 12.0978i 0.419922i
\(831\) 0 0
\(832\) 0 0
\(833\) −20.1140 −0.696908
\(834\) 0 0
\(835\) 34.9154 1.20830
\(836\) −9.93900 −0.343748
\(837\) 0 0
\(838\) − 3.56033i − 0.122990i
\(839\) − 34.4698i − 1.19003i −0.803715 0.595015i \(-0.797146\pi\)
0.803715 0.595015i \(-0.202854\pi\)
\(840\) 0 0
\(841\) 55.7827 1.92354
\(842\) 1.28621 0.0443257
\(843\) 0 0
\(844\) −1.70709 −0.0587604
\(845\) 0 0
\(846\) 0 0
\(847\) − 10.9095i − 0.374854i
\(848\) 2.71379 0.0931920
\(849\) 0 0
\(850\) − 5.54155i − 0.190074i
\(851\) 20.6353i 0.707370i
\(852\) 0 0
\(853\) 22.1521i 0.758474i 0.925299 + 0.379237i \(0.123814\pi\)
−0.925299 + 0.379237i \(0.876186\pi\)
\(854\) −16.7052 −0.571639
\(855\) 0 0
\(856\) − 3.51035i − 0.119981i
\(857\) −30.5187 −1.04250 −0.521250 0.853404i \(-0.674534\pi\)
−0.521250 + 0.853404i \(0.674534\pi\)
\(858\) 0 0
\(859\) −20.9071 −0.713340 −0.356670 0.934230i \(-0.616088\pi\)
−0.356670 + 0.934230i \(0.616088\pi\)
\(860\) 28.2935i 0.964800i
\(861\) 0 0
\(862\) 26.9879 0.919212
\(863\) − 55.6969i − 1.89595i −0.318352 0.947973i \(-0.603129\pi\)
0.318352 0.947973i \(-0.396871\pi\)
\(864\) 0 0
\(865\) − 10.5241i − 0.357830i
\(866\) − 16.0170i − 0.544279i
\(867\) 0 0
\(868\) 8.19567 0.278179
\(869\) 10.9202i 0.370443i
\(870\) 0 0
\(871\) 0 0
\(872\) −3.38404 −0.114598
\(873\) 0 0
\(874\) 13.1642 0.445286
\(875\) 15.1207 0.511172
\(876\) 0 0
\(877\) 32.7922i 1.10732i 0.832744 + 0.553658i \(0.186768\pi\)
−0.832744 + 0.553658i \(0.813232\pi\)
\(878\) − 37.1400i − 1.25342i
\(879\) 0 0
\(880\) 5.10992 0.172255
\(881\) 22.4101 0.755016 0.377508 0.926006i \(-0.376781\pi\)
0.377508 + 0.926006i \(0.376781\pi\)
\(882\) 0 0
\(883\) 38.9670 1.31134 0.655672 0.755046i \(-0.272385\pi\)
0.655672 + 0.755046i \(0.272385\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) − 41.2083i − 1.38442i
\(887\) 34.8745 1.17097 0.585486 0.810682i \(-0.300904\pi\)
0.585486 + 0.810682i \(0.300904\pi\)
\(888\) 0 0
\(889\) − 9.93708i − 0.333279i
\(890\) 41.3250i 1.38522i
\(891\) 0 0
\(892\) 6.21983i 0.208255i
\(893\) 1.06638 0.0356849
\(894\) 0 0
\(895\) 39.4771i 1.31957i
\(896\) 1.60388 0.0535817
\(897\) 0 0
\(898\) 10.1263 0.337919
\(899\) − 47.0508i − 1.56923i
\(900\) 0 0
\(901\) −12.3284 −0.410719
\(902\) 7.10321i 0.236511i
\(903\) 0 0
\(904\) 5.44935i 0.181243i
\(905\) 38.1715i 1.26886i
\(906\) 0 0
\(907\) −15.1317 −0.502439 −0.251220 0.967930i \(-0.580832\pi\)
−0.251220 + 0.967930i \(0.580832\pi\)
\(908\) 0.955395i 0.0317059i
\(909\) 0 0
\(910\) 0 0
\(911\) −23.0810 −0.764707 −0.382353 0.924016i \(-0.624886\pi\)
−0.382353 + 0.924016i \(0.624886\pi\)
\(912\) 0 0
\(913\) 9.93900 0.328933
\(914\) −21.7560 −0.719625
\(915\) 0 0
\(916\) 22.4155i 0.740629i
\(917\) − 6.63533i − 0.219118i
\(918\) 0 0
\(919\) −39.9275 −1.31709 −0.658544 0.752543i \(-0.728827\pi\)
−0.658544 + 0.752543i \(0.728827\pi\)
\(920\) −6.76809 −0.223137
\(921\) 0 0
\(922\) −38.5676 −1.27016
\(923\) 0 0
\(924\) 0 0
\(925\) − 9.27545i − 0.304975i
\(926\) −33.0073 −1.08469
\(927\) 0 0
\(928\) − 9.20775i − 0.302259i
\(929\) − 45.1771i − 1.48221i −0.671387 0.741107i \(-0.734301\pi\)
0.671387 0.741107i \(-0.265699\pi\)
\(930\) 0 0
\(931\) 21.4776i 0.703899i
\(932\) −2.99031 −0.0979509
\(933\) 0 0
\(934\) − 6.53989i − 0.213992i
\(935\) −23.2137 −0.759170
\(936\) 0 0
\(937\) 29.0901 0.950331 0.475165 0.879896i \(-0.342388\pi\)
0.475165 + 0.879896i \(0.342388\pi\)
\(938\) − 19.3685i − 0.632404i
\(939\) 0 0
\(940\) −0.548253 −0.0178821
\(941\) − 26.1220i − 0.851553i −0.904828 0.425776i \(-0.860001\pi\)
0.904828 0.425776i \(-0.139999\pi\)
\(942\) 0 0
\(943\) − 9.40821i − 0.306373i
\(944\) 4.07606i 0.132665i
\(945\) 0 0
\(946\) 23.2446 0.755747
\(947\) − 42.6698i − 1.38658i −0.720658 0.693291i \(-0.756160\pi\)
0.720658 0.693291i \(-0.243840\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −5.91723 −0.191980
\(951\) 0 0
\(952\) −7.28621 −0.236147
\(953\) −29.9038 −0.968680 −0.484340 0.874880i \(-0.660940\pi\)
−0.484340 + 0.874880i \(0.660940\pi\)
\(954\) 0 0
\(955\) − 8.98792i − 0.290842i
\(956\) 11.1293i 0.359947i
\(957\) 0 0
\(958\) −8.30691 −0.268384
\(959\) 31.0858 1.00381
\(960\) 0 0
\(961\) 4.88876 0.157702
\(962\) 0 0
\(963\) 0 0
\(964\) − 5.20775i − 0.167730i
\(965\) 27.9892 0.901006
\(966\) 0 0
\(967\) 5.16900i 0.166224i 0.996540 + 0.0831119i \(0.0264859\pi\)
−0.996540 + 0.0831119i \(0.973514\pi\)
\(968\) 6.80194i 0.218623i
\(969\) 0 0
\(970\) − 11.5737i − 0.371611i
\(971\) −35.9715 −1.15438 −0.577191 0.816609i \(-0.695851\pi\)
−0.577191 + 0.816609i \(0.695851\pi\)
\(972\) 0 0
\(973\) − 29.8103i − 0.955674i
\(974\) 31.6534 1.01424
\(975\) 0 0
\(976\) 10.4155 0.333392
\(977\) 34.2435i 1.09555i 0.836627 + 0.547774i \(0.184525\pi\)
−0.836627 + 0.547774i \(0.815475\pi\)
\(978\) 0 0
\(979\) 33.9506 1.08507
\(980\) − 11.0422i − 0.352731i
\(981\) 0 0
\(982\) 36.6631i 1.16997i
\(983\) 54.8939i 1.75084i 0.483359 + 0.875422i \(0.339416\pi\)
−0.483359 + 0.875422i \(0.660584\pi\)
\(984\) 0 0
\(985\) −57.6233 −1.83603
\(986\) 41.8297i 1.33213i
\(987\) 0 0
\(988\) 0 0
\(989\) −30.7875 −0.978984
\(990\) 0 0
\(991\) −16.6655 −0.529396 −0.264698 0.964331i \(-0.585272\pi\)
−0.264698 + 0.964331i \(0.585272\pi\)
\(992\) −5.10992 −0.162240
\(993\) 0 0
\(994\) − 2.06292i − 0.0654318i
\(995\) − 53.0267i − 1.68106i
\(996\) 0 0
\(997\) 16.3961 0.519270 0.259635 0.965707i \(-0.416398\pi\)
0.259635 + 0.965707i \(0.416398\pi\)
\(998\) 29.8920 0.946215
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.b.n.1351.3 6
3.2 odd 2 338.2.b.d.337.6 6
12.11 even 2 2704.2.f.m.337.1 6
13.5 odd 4 3042.2.a.z.1.3 3
13.8 odd 4 3042.2.a.bi.1.1 3
13.12 even 2 inner 3042.2.b.n.1351.4 6
39.2 even 12 338.2.c.h.191.1 6
39.5 even 4 338.2.a.h.1.3 yes 3
39.8 even 4 338.2.a.g.1.3 3
39.11 even 12 338.2.c.i.191.1 6
39.17 odd 6 338.2.e.e.23.1 12
39.20 even 12 338.2.c.i.315.1 6
39.23 odd 6 338.2.e.e.147.4 12
39.29 odd 6 338.2.e.e.147.1 12
39.32 even 12 338.2.c.h.315.1 6
39.35 odd 6 338.2.e.e.23.4 12
39.38 odd 2 338.2.b.d.337.3 6
156.47 odd 4 2704.2.a.v.1.1 3
156.83 odd 4 2704.2.a.w.1.1 3
156.155 even 2 2704.2.f.m.337.2 6
195.44 even 4 8450.2.a.bn.1.1 3
195.164 even 4 8450.2.a.bx.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.3 3 39.8 even 4
338.2.a.h.1.3 yes 3 39.5 even 4
338.2.b.d.337.3 6 39.38 odd 2
338.2.b.d.337.6 6 3.2 odd 2
338.2.c.h.191.1 6 39.2 even 12
338.2.c.h.315.1 6 39.32 even 12
338.2.c.i.191.1 6 39.11 even 12
338.2.c.i.315.1 6 39.20 even 12
338.2.e.e.23.1 12 39.17 odd 6
338.2.e.e.23.4 12 39.35 odd 6
338.2.e.e.147.1 12 39.29 odd 6
338.2.e.e.147.4 12 39.23 odd 6
2704.2.a.v.1.1 3 156.47 odd 4
2704.2.a.w.1.1 3 156.83 odd 4
2704.2.f.m.337.1 6 12.11 even 2
2704.2.f.m.337.2 6 156.155 even 2
3042.2.a.z.1.3 3 13.5 odd 4
3042.2.a.bi.1.1 3 13.8 odd 4
3042.2.b.n.1351.3 6 1.1 even 1 trivial
3042.2.b.n.1351.4 6 13.12 even 2 inner
8450.2.a.bn.1.1 3 195.44 even 4
8450.2.a.bx.1.1 3 195.164 even 4