Defining parameters
| Level: | \( N \) | \(=\) | \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3042.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(1092\) | ||
| Trace bound: | \(17\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(17\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3042, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 602 | 66 | 536 |
| Cusp forms | 490 | 66 | 424 |
| Eisenstein series | 112 | 0 | 112 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3042, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(3042, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3042, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1014, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1521, [\chi])\)\(^{\oplus 2}\)