Properties

Label 338.2.b.d.337.6
Level $338$
Weight $2$
Character 338.337
Analytic conductor $2.699$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,2,Mod(337,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.69894358832\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.6
Root \(1.24698i\) of defining polynomial
Character \(\chi\) \(=\) 338.337
Dual form 338.2.b.d.337.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.69202 q^{3} -1.00000 q^{4} -2.49396i q^{5} +2.69202i q^{6} -1.60388i q^{7} -1.00000i q^{8} +4.24698 q^{9} +2.49396 q^{10} +2.04892i q^{11} -2.69202 q^{12} +1.60388 q^{14} -6.71379i q^{15} +1.00000 q^{16} +4.54288 q^{17} +4.24698i q^{18} +4.85086i q^{19} +2.49396i q^{20} -4.31767i q^{21} -2.04892 q^{22} -2.71379 q^{23} -2.69202i q^{24} -1.21983 q^{25} +3.35690 q^{27} +1.60388i q^{28} -9.20775 q^{29} +6.71379 q^{30} -5.10992i q^{31} +1.00000i q^{32} +5.51573i q^{33} +4.54288i q^{34} -4.00000 q^{35} -4.24698 q^{36} +7.60388i q^{37} -4.85086 q^{38} -2.49396 q^{40} +3.46681i q^{41} +4.31767 q^{42} -11.3448 q^{43} -2.04892i q^{44} -10.5918i q^{45} -2.71379i q^{46} +0.219833i q^{47} +2.69202 q^{48} +4.42758 q^{49} -1.21983i q^{50} +12.2295 q^{51} -2.71379 q^{53} +3.35690i q^{54} +5.10992 q^{55} -1.60388 q^{56} +13.0586i q^{57} -9.20775i q^{58} -4.07606i q^{59} +6.71379i q^{60} +10.4155 q^{61} +5.10992 q^{62} -6.81163i q^{63} -1.00000 q^{64} -5.51573 q^{66} +12.0761i q^{67} -4.54288 q^{68} -7.30559 q^{69} -4.00000i q^{70} -1.28621i q^{71} -4.24698i q^{72} +3.62565i q^{73} -7.60388 q^{74} -3.28382 q^{75} -4.85086i q^{76} +3.28621 q^{77} -5.32975 q^{79} -2.49396i q^{80} -3.70410 q^{81} -3.46681 q^{82} -4.85086i q^{83} +4.31767i q^{84} -11.3297i q^{85} -11.3448i q^{86} -24.7875 q^{87} +2.04892 q^{88} -16.5700i q^{89} +10.5918 q^{90} +2.71379 q^{92} -13.7560i q^{93} -0.219833 q^{94} +12.0978 q^{95} +2.69202i q^{96} -4.64071i q^{97} +4.42758i q^{98} +8.70171i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 6 q^{4} + 16 q^{9} - 4 q^{10} - 6 q^{12} - 8 q^{14} + 6 q^{16} - 10 q^{17} + 6 q^{22} - 10 q^{25} + 12 q^{27} - 20 q^{29} + 24 q^{30} - 24 q^{35} - 16 q^{36} - 2 q^{38} + 4 q^{40} - 8 q^{42}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.69202 1.55424 0.777120 0.629353i \(-0.216680\pi\)
0.777120 + 0.629353i \(0.216680\pi\)
\(4\) −1.00000 −0.500000
\(5\) − 2.49396i − 1.11533i −0.830065 0.557666i \(-0.811697\pi\)
0.830065 0.557666i \(-0.188303\pi\)
\(6\) 2.69202i 1.09901i
\(7\) − 1.60388i − 0.606208i −0.952957 0.303104i \(-0.901977\pi\)
0.952957 0.303104i \(-0.0980229\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 4.24698 1.41566
\(10\) 2.49396 0.788659
\(11\) 2.04892i 0.617772i 0.951099 + 0.308886i \(0.0999561\pi\)
−0.951099 + 0.308886i \(0.900044\pi\)
\(12\) −2.69202 −0.777120
\(13\) 0 0
\(14\) 1.60388 0.428654
\(15\) − 6.71379i − 1.73349i
\(16\) 1.00000 0.250000
\(17\) 4.54288 1.10181 0.550905 0.834568i \(-0.314283\pi\)
0.550905 + 0.834568i \(0.314283\pi\)
\(18\) 4.24698i 1.00102i
\(19\) 4.85086i 1.11286i 0.830894 + 0.556431i \(0.187830\pi\)
−0.830894 + 0.556431i \(0.812170\pi\)
\(20\) 2.49396i 0.557666i
\(21\) − 4.31767i − 0.942192i
\(22\) −2.04892 −0.436831
\(23\) −2.71379 −0.565865 −0.282932 0.959140i \(-0.591307\pi\)
−0.282932 + 0.959140i \(0.591307\pi\)
\(24\) − 2.69202i − 0.549507i
\(25\) −1.21983 −0.243967
\(26\) 0 0
\(27\) 3.35690 0.646035
\(28\) 1.60388i 0.303104i
\(29\) −9.20775 −1.70984 −0.854918 0.518763i \(-0.826393\pi\)
−0.854918 + 0.518763i \(0.826393\pi\)
\(30\) 6.71379 1.22577
\(31\) − 5.10992i − 0.917768i −0.888496 0.458884i \(-0.848249\pi\)
0.888496 0.458884i \(-0.151751\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 5.51573i 0.960165i
\(34\) 4.54288i 0.779097i
\(35\) −4.00000 −0.676123
\(36\) −4.24698 −0.707830
\(37\) 7.60388i 1.25007i 0.780597 + 0.625035i \(0.214915\pi\)
−0.780597 + 0.625035i \(0.785085\pi\)
\(38\) −4.85086 −0.786913
\(39\) 0 0
\(40\) −2.49396 −0.394330
\(41\) 3.46681i 0.541425i 0.962660 + 0.270713i \(0.0872593\pi\)
−0.962660 + 0.270713i \(0.912741\pi\)
\(42\) 4.31767 0.666231
\(43\) −11.3448 −1.73007 −0.865034 0.501713i \(-0.832703\pi\)
−0.865034 + 0.501713i \(0.832703\pi\)
\(44\) − 2.04892i − 0.308886i
\(45\) − 10.5918i − 1.57893i
\(46\) − 2.71379i − 0.400127i
\(47\) 0.219833i 0.0320659i 0.999871 + 0.0160329i \(0.00510366\pi\)
−0.999871 + 0.0160329i \(0.994896\pi\)
\(48\) 2.69202 0.388560
\(49\) 4.42758 0.632512
\(50\) − 1.21983i − 0.172510i
\(51\) 12.2295 1.71248
\(52\) 0 0
\(53\) −2.71379 −0.372768 −0.186384 0.982477i \(-0.559677\pi\)
−0.186384 + 0.982477i \(0.559677\pi\)
\(54\) 3.35690i 0.456816i
\(55\) 5.10992 0.689021
\(56\) −1.60388 −0.214327
\(57\) 13.0586i 1.72965i
\(58\) − 9.20775i − 1.20904i
\(59\) − 4.07606i − 0.530658i −0.964158 0.265329i \(-0.914519\pi\)
0.964158 0.265329i \(-0.0854806\pi\)
\(60\) 6.71379i 0.866747i
\(61\) 10.4155 1.33357 0.666784 0.745251i \(-0.267670\pi\)
0.666784 + 0.745251i \(0.267670\pi\)
\(62\) 5.10992 0.648960
\(63\) − 6.81163i − 0.858184i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −5.51573 −0.678939
\(67\) 12.0761i 1.47533i 0.675169 + 0.737663i \(0.264071\pi\)
−0.675169 + 0.737663i \(0.735929\pi\)
\(68\) −4.54288 −0.550905
\(69\) −7.30559 −0.879489
\(70\) − 4.00000i − 0.478091i
\(71\) − 1.28621i − 0.152645i −0.997083 0.0763224i \(-0.975682\pi\)
0.997083 0.0763224i \(-0.0243178\pi\)
\(72\) − 4.24698i − 0.500511i
\(73\) 3.62565i 0.424350i 0.977232 + 0.212175i \(0.0680546\pi\)
−0.977232 + 0.212175i \(0.931945\pi\)
\(74\) −7.60388 −0.883933
\(75\) −3.28382 −0.379182
\(76\) − 4.85086i − 0.556431i
\(77\) 3.28621 0.374498
\(78\) 0 0
\(79\) −5.32975 −0.599644 −0.299822 0.953995i \(-0.596927\pi\)
−0.299822 + 0.953995i \(0.596927\pi\)
\(80\) − 2.49396i − 0.278833i
\(81\) −3.70410 −0.411567
\(82\) −3.46681 −0.382845
\(83\) − 4.85086i − 0.532451i −0.963911 0.266225i \(-0.914223\pi\)
0.963911 0.266225i \(-0.0857765\pi\)
\(84\) 4.31767i 0.471096i
\(85\) − 11.3297i − 1.22888i
\(86\) − 11.3448i − 1.22334i
\(87\) −24.7875 −2.65750
\(88\) 2.04892 0.218415
\(89\) − 16.5700i − 1.75642i −0.478276 0.878209i \(-0.658738\pi\)
0.478276 0.878209i \(-0.341262\pi\)
\(90\) 10.5918 1.11647
\(91\) 0 0
\(92\) 2.71379 0.282932
\(93\) − 13.7560i − 1.42643i
\(94\) −0.219833 −0.0226740
\(95\) 12.0978 1.24121
\(96\) 2.69202i 0.274753i
\(97\) − 4.64071i − 0.471193i −0.971851 0.235596i \(-0.924296\pi\)
0.971851 0.235596i \(-0.0757043\pi\)
\(98\) 4.42758i 0.447253i
\(99\) 8.70171i 0.874555i
\(100\) 1.21983 0.121983
\(101\) −7.42758 −0.739072 −0.369536 0.929216i \(-0.620483\pi\)
−0.369536 + 0.929216i \(0.620483\pi\)
\(102\) 12.2295i 1.21090i
\(103\) −0.518122 −0.0510521 −0.0255261 0.999674i \(-0.508126\pi\)
−0.0255261 + 0.999674i \(0.508126\pi\)
\(104\) 0 0
\(105\) −10.7681 −1.05086
\(106\) − 2.71379i − 0.263587i
\(107\) 3.51035 0.339359 0.169679 0.985499i \(-0.445727\pi\)
0.169679 + 0.985499i \(0.445727\pi\)
\(108\) −3.35690 −0.323017
\(109\) 3.38404i 0.324133i 0.986780 + 0.162066i \(0.0518158\pi\)
−0.986780 + 0.162066i \(0.948184\pi\)
\(110\) 5.10992i 0.487211i
\(111\) 20.4698i 1.94291i
\(112\) − 1.60388i − 0.151552i
\(113\) −5.44935 −0.512632 −0.256316 0.966593i \(-0.582509\pi\)
−0.256316 + 0.966593i \(0.582509\pi\)
\(114\) −13.0586 −1.22305
\(115\) 6.76809i 0.631127i
\(116\) 9.20775 0.854918
\(117\) 0 0
\(118\) 4.07606 0.375232
\(119\) − 7.28621i − 0.667926i
\(120\) −6.71379 −0.612883
\(121\) 6.80194 0.618358
\(122\) 10.4155i 0.942975i
\(123\) 9.33273i 0.841504i
\(124\) 5.10992i 0.458884i
\(125\) − 9.42758i − 0.843229i
\(126\) 6.81163 0.606828
\(127\) 6.19567 0.549777 0.274888 0.961476i \(-0.411359\pi\)
0.274888 + 0.961476i \(0.411359\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −30.5405 −2.68894
\(130\) 0 0
\(131\) −4.13706 −0.361457 −0.180728 0.983533i \(-0.557846\pi\)
−0.180728 + 0.983533i \(0.557846\pi\)
\(132\) − 5.51573i − 0.480083i
\(133\) 7.78017 0.674626
\(134\) −12.0761 −1.04321
\(135\) − 8.37196i − 0.720544i
\(136\) − 4.54288i − 0.389548i
\(137\) − 19.3817i − 1.65589i −0.560812 0.827943i \(-0.689511\pi\)
0.560812 0.827943i \(-0.310489\pi\)
\(138\) − 7.30559i − 0.621893i
\(139\) 18.5864 1.57648 0.788240 0.615368i \(-0.210993\pi\)
0.788240 + 0.615368i \(0.210993\pi\)
\(140\) 4.00000 0.338062
\(141\) 0.591794i 0.0498380i
\(142\) 1.28621 0.107936
\(143\) 0 0
\(144\) 4.24698 0.353915
\(145\) 22.9638i 1.90704i
\(146\) −3.62565 −0.300061
\(147\) 11.9191 0.983075
\(148\) − 7.60388i − 0.625035i
\(149\) 3.65817i 0.299689i 0.988710 + 0.149844i \(0.0478773\pi\)
−0.988710 + 0.149844i \(0.952123\pi\)
\(150\) − 3.28382i − 0.268122i
\(151\) 14.5918i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(152\) 4.85086 0.393456
\(153\) 19.2935 1.55979
\(154\) 3.28621i 0.264810i
\(155\) −12.7439 −1.02362
\(156\) 0 0
\(157\) 21.6039 1.72418 0.862088 0.506758i \(-0.169156\pi\)
0.862088 + 0.506758i \(0.169156\pi\)
\(158\) − 5.32975i − 0.424012i
\(159\) −7.30559 −0.579371
\(160\) 2.49396 0.197165
\(161\) 4.35258i 0.343032i
\(162\) − 3.70410i − 0.291022i
\(163\) 13.6093i 1.06596i 0.846128 + 0.532979i \(0.178928\pi\)
−0.846128 + 0.532979i \(0.821072\pi\)
\(164\) − 3.46681i − 0.270713i
\(165\) 13.7560 1.07090
\(166\) 4.85086 0.376499
\(167\) 14.0000i 1.08335i 0.840587 + 0.541676i \(0.182210\pi\)
−0.840587 + 0.541676i \(0.817790\pi\)
\(168\) −4.31767 −0.333115
\(169\) 0 0
\(170\) 11.3297 0.868952
\(171\) 20.6015i 1.57543i
\(172\) 11.3448 0.865034
\(173\) 4.21983 0.320828 0.160414 0.987050i \(-0.448717\pi\)
0.160414 + 0.987050i \(0.448717\pi\)
\(174\) − 24.7875i − 1.87913i
\(175\) 1.95646i 0.147894i
\(176\) 2.04892i 0.154443i
\(177\) − 10.9729i − 0.824770i
\(178\) 16.5700 1.24198
\(179\) −15.8291 −1.18312 −0.591561 0.806260i \(-0.701488\pi\)
−0.591561 + 0.806260i \(0.701488\pi\)
\(180\) 10.5918i 0.789466i
\(181\) 15.3056 1.13766 0.568828 0.822457i \(-0.307397\pi\)
0.568828 + 0.822457i \(0.307397\pi\)
\(182\) 0 0
\(183\) 28.0388 2.07268
\(184\) 2.71379i 0.200063i
\(185\) 18.9638 1.39424
\(186\) 13.7560 1.00864
\(187\) 9.30798i 0.680667i
\(188\) − 0.219833i − 0.0160329i
\(189\) − 5.38404i − 0.391631i
\(190\) 12.0978i 0.877669i
\(191\) 3.60388 0.260767 0.130384 0.991464i \(-0.458379\pi\)
0.130384 + 0.991464i \(0.458379\pi\)
\(192\) −2.69202 −0.194280
\(193\) − 11.2228i − 0.807836i −0.914795 0.403918i \(-0.867648\pi\)
0.914795 0.403918i \(-0.132352\pi\)
\(194\) 4.64071 0.333184
\(195\) 0 0
\(196\) −4.42758 −0.316256
\(197\) − 23.1051i − 1.64617i −0.567916 0.823086i \(-0.692250\pi\)
0.567916 0.823086i \(-0.307750\pi\)
\(198\) −8.70171 −0.618404
\(199\) −21.2620 −1.50723 −0.753613 0.657318i \(-0.771691\pi\)
−0.753613 + 0.657318i \(0.771691\pi\)
\(200\) 1.21983i 0.0862552i
\(201\) 32.5090i 2.29301i
\(202\) − 7.42758i − 0.522603i
\(203\) 14.7681i 1.03652i
\(204\) −12.2295 −0.856238
\(205\) 8.64609 0.603869
\(206\) − 0.518122i − 0.0360993i
\(207\) −11.5254 −0.801072
\(208\) 0 0
\(209\) −9.93900 −0.687495
\(210\) − 10.7681i − 0.743069i
\(211\) 1.70709 0.117521 0.0587604 0.998272i \(-0.481285\pi\)
0.0587604 + 0.998272i \(0.481285\pi\)
\(212\) 2.71379 0.186384
\(213\) − 3.46250i − 0.237247i
\(214\) 3.51035i 0.239963i
\(215\) 28.2935i 1.92960i
\(216\) − 3.35690i − 0.228408i
\(217\) −8.19567 −0.556358
\(218\) −3.38404 −0.229196
\(219\) 9.76032i 0.659541i
\(220\) −5.10992 −0.344510
\(221\) 0 0
\(222\) −20.4698 −1.37384
\(223\) − 6.21983i − 0.416511i −0.978074 0.208255i \(-0.933221\pi\)
0.978074 0.208255i \(-0.0667785\pi\)
\(224\) 1.60388 0.107163
\(225\) −5.18060 −0.345374
\(226\) − 5.44935i − 0.362486i
\(227\) 0.955395i 0.0634118i 0.999497 + 0.0317059i \(0.0100940\pi\)
−0.999497 + 0.0317059i \(0.989906\pi\)
\(228\) − 13.0586i − 0.864827i
\(229\) − 22.4155i − 1.48126i −0.671914 0.740629i \(-0.734528\pi\)
0.671914 0.740629i \(-0.265472\pi\)
\(230\) −6.76809 −0.446274
\(231\) 8.84654 0.582060
\(232\) 9.20775i 0.604518i
\(233\) −2.99031 −0.195902 −0.0979509 0.995191i \(-0.531229\pi\)
−0.0979509 + 0.995191i \(0.531229\pi\)
\(234\) 0 0
\(235\) 0.548253 0.0357641
\(236\) 4.07606i 0.265329i
\(237\) −14.3478 −0.931990
\(238\) 7.28621 0.472295
\(239\) 11.1293i 0.719894i 0.932973 + 0.359947i \(0.117205\pi\)
−0.932973 + 0.359947i \(0.882795\pi\)
\(240\) − 6.71379i − 0.433373i
\(241\) 5.20775i 0.335461i 0.985833 + 0.167730i \(0.0536438\pi\)
−0.985833 + 0.167730i \(0.946356\pi\)
\(242\) 6.80194i 0.437245i
\(243\) −20.0422 −1.28571
\(244\) −10.4155 −0.666784
\(245\) − 11.0422i − 0.705461i
\(246\) −9.33273 −0.595033
\(247\) 0 0
\(248\) −5.10992 −0.324480
\(249\) − 13.0586i − 0.827556i
\(250\) 9.42758 0.596253
\(251\) 22.6950 1.43250 0.716248 0.697846i \(-0.245858\pi\)
0.716248 + 0.697846i \(0.245858\pi\)
\(252\) 6.81163i 0.429092i
\(253\) − 5.56033i − 0.349575i
\(254\) 6.19567i 0.388751i
\(255\) − 30.4999i − 1.90998i
\(256\) 1.00000 0.0625000
\(257\) −10.4306 −0.650641 −0.325320 0.945604i \(-0.605472\pi\)
−0.325320 + 0.945604i \(0.605472\pi\)
\(258\) − 30.5405i − 1.90137i
\(259\) 12.1957 0.757802
\(260\) 0 0
\(261\) −39.1051 −2.42055
\(262\) − 4.13706i − 0.255589i
\(263\) −7.10992 −0.438416 −0.219208 0.975678i \(-0.570347\pi\)
−0.219208 + 0.975678i \(0.570347\pi\)
\(264\) 5.51573 0.339470
\(265\) 6.76809i 0.415760i
\(266\) 7.78017i 0.477033i
\(267\) − 44.6069i − 2.72990i
\(268\) − 12.0761i − 0.737663i
\(269\) 2.02416 0.123415 0.0617077 0.998094i \(-0.480345\pi\)
0.0617077 + 0.998094i \(0.480345\pi\)
\(270\) 8.37196 0.509501
\(271\) − 15.9651i − 0.969810i −0.874567 0.484905i \(-0.838854\pi\)
0.874567 0.484905i \(-0.161146\pi\)
\(272\) 4.54288 0.275452
\(273\) 0 0
\(274\) 19.3817 1.17089
\(275\) − 2.49934i − 0.150716i
\(276\) 7.30559 0.439745
\(277\) −13.7017 −0.823256 −0.411628 0.911352i \(-0.635040\pi\)
−0.411628 + 0.911352i \(0.635040\pi\)
\(278\) 18.5864i 1.11474i
\(279\) − 21.7017i − 1.29925i
\(280\) 4.00000i 0.239046i
\(281\) 15.2024i 0.906898i 0.891282 + 0.453449i \(0.149807\pi\)
−0.891282 + 0.453449i \(0.850193\pi\)
\(282\) −0.591794 −0.0352408
\(283\) −20.6069 −1.22495 −0.612475 0.790490i \(-0.709826\pi\)
−0.612475 + 0.790490i \(0.709826\pi\)
\(284\) 1.28621i 0.0763224i
\(285\) 32.5676 1.92914
\(286\) 0 0
\(287\) 5.56033 0.328216
\(288\) 4.24698i 0.250256i
\(289\) 3.63773 0.213984
\(290\) −22.9638 −1.34848
\(291\) − 12.4929i − 0.732346i
\(292\) − 3.62565i − 0.212175i
\(293\) 2.17629i 0.127140i 0.997977 + 0.0635702i \(0.0202487\pi\)
−0.997977 + 0.0635702i \(0.979751\pi\)
\(294\) 11.9191i 0.695139i
\(295\) −10.1655 −0.591861
\(296\) 7.60388 0.441966
\(297\) 6.87800i 0.399102i
\(298\) −3.65817 −0.211912
\(299\) 0 0
\(300\) 3.28382 0.189591
\(301\) 18.1957i 1.04878i
\(302\) −14.5918 −0.839663
\(303\) −19.9952 −1.14870
\(304\) 4.85086i 0.278216i
\(305\) − 25.9758i − 1.48737i
\(306\) 19.2935i 1.10294i
\(307\) 17.0127i 0.970965i 0.874247 + 0.485482i \(0.161356\pi\)
−0.874247 + 0.485482i \(0.838644\pi\)
\(308\) −3.28621 −0.187249
\(309\) −1.39480 −0.0793472
\(310\) − 12.7439i − 0.723806i
\(311\) 4.71379 0.267295 0.133647 0.991029i \(-0.457331\pi\)
0.133647 + 0.991029i \(0.457331\pi\)
\(312\) 0 0
\(313\) 1.67696 0.0947872 0.0473936 0.998876i \(-0.484909\pi\)
0.0473936 + 0.998876i \(0.484909\pi\)
\(314\) 21.6039i 1.21918i
\(315\) −16.9879 −0.957161
\(316\) 5.32975 0.299822
\(317\) − 29.1400i − 1.63667i −0.574743 0.818334i \(-0.694898\pi\)
0.574743 0.818334i \(-0.305102\pi\)
\(318\) − 7.30559i − 0.409677i
\(319\) − 18.8659i − 1.05629i
\(320\) 2.49396i 0.139417i
\(321\) 9.44994 0.527444
\(322\) −4.35258 −0.242560
\(323\) 22.0368i 1.22616i
\(324\) 3.70410 0.205784
\(325\) 0 0
\(326\) −13.6093 −0.753747
\(327\) 9.10992i 0.503780i
\(328\) 3.46681 0.191423
\(329\) 0.352584 0.0194386
\(330\) 13.7560i 0.757243i
\(331\) − 8.74392i − 0.480609i −0.970698 0.240305i \(-0.922753\pi\)
0.970698 0.240305i \(-0.0772474\pi\)
\(332\) 4.85086i 0.266225i
\(333\) 32.2935i 1.76967i
\(334\) −14.0000 −0.766046
\(335\) 30.1172 1.64548
\(336\) − 4.31767i − 0.235548i
\(337\) 3.10560 0.169173 0.0845865 0.996416i \(-0.473043\pi\)
0.0845865 + 0.996416i \(0.473043\pi\)
\(338\) 0 0
\(339\) −14.6698 −0.796753
\(340\) 11.3297i 0.614442i
\(341\) 10.4698 0.566971
\(342\) −20.6015 −1.11400
\(343\) − 18.3284i − 0.989642i
\(344\) 11.3448i 0.611671i
\(345\) 18.2198i 0.980923i
\(346\) 4.21983i 0.226860i
\(347\) 17.9758 0.964993 0.482497 0.875898i \(-0.339730\pi\)
0.482497 + 0.875898i \(0.339730\pi\)
\(348\) 24.7875 1.32875
\(349\) 15.1642i 0.811722i 0.913935 + 0.405861i \(0.133028\pi\)
−0.913935 + 0.405861i \(0.866972\pi\)
\(350\) −1.95646 −0.104577
\(351\) 0 0
\(352\) −2.04892 −0.109208
\(353\) 3.30021i 0.175652i 0.996136 + 0.0878262i \(0.0279920\pi\)
−0.996136 + 0.0878262i \(0.972008\pi\)
\(354\) 10.9729 0.583201
\(355\) −3.20775 −0.170250
\(356\) 16.5700i 0.878209i
\(357\) − 19.6146i − 1.03812i
\(358\) − 15.8291i − 0.836593i
\(359\) 18.8901i 0.996980i 0.866895 + 0.498490i \(0.166112\pi\)
−0.866895 + 0.498490i \(0.833888\pi\)
\(360\) −10.5918 −0.558237
\(361\) −4.53079 −0.238463
\(362\) 15.3056i 0.804444i
\(363\) 18.3110 0.961076
\(364\) 0 0
\(365\) 9.04221 0.473291
\(366\) 28.0388i 1.46561i
\(367\) −0.195669 −0.0102139 −0.00510693 0.999987i \(-0.501626\pi\)
−0.00510693 + 0.999987i \(0.501626\pi\)
\(368\) −2.71379 −0.141466
\(369\) 14.7235i 0.766474i
\(370\) 18.9638i 0.985879i
\(371\) 4.35258i 0.225975i
\(372\) 13.7560i 0.713216i
\(373\) −10.7681 −0.557550 −0.278775 0.960356i \(-0.589928\pi\)
−0.278775 + 0.960356i \(0.589928\pi\)
\(374\) −9.30798 −0.481304
\(375\) − 25.3793i − 1.31058i
\(376\) 0.219833 0.0113370
\(377\) 0 0
\(378\) 5.38404 0.276925
\(379\) − 27.9627i − 1.43635i −0.695864 0.718173i \(-0.744978\pi\)
0.695864 0.718173i \(-0.255022\pi\)
\(380\) −12.0978 −0.620606
\(381\) 16.6789 0.854485
\(382\) 3.60388i 0.184390i
\(383\) − 32.8310i − 1.67759i −0.544451 0.838793i \(-0.683262\pi\)
0.544451 0.838793i \(-0.316738\pi\)
\(384\) − 2.69202i − 0.137377i
\(385\) − 8.19567i − 0.417690i
\(386\) 11.2228 0.571226
\(387\) −48.1812 −2.44919
\(388\) 4.64071i 0.235596i
\(389\) −8.90946 −0.451728 −0.225864 0.974159i \(-0.572520\pi\)
−0.225864 + 0.974159i \(0.572520\pi\)
\(390\) 0 0
\(391\) −12.3284 −0.623475
\(392\) − 4.42758i − 0.223627i
\(393\) −11.1371 −0.561791
\(394\) 23.1051 1.16402
\(395\) 13.2922i 0.668802i
\(396\) − 8.70171i − 0.437277i
\(397\) 11.7888i 0.591662i 0.955240 + 0.295831i \(0.0955966\pi\)
−0.955240 + 0.295831i \(0.904403\pi\)
\(398\) − 21.2620i − 1.06577i
\(399\) 20.9444 1.04853
\(400\) −1.21983 −0.0609916
\(401\) 3.21313i 0.160456i 0.996777 + 0.0802280i \(0.0255648\pi\)
−0.996777 + 0.0802280i \(0.974435\pi\)
\(402\) −32.5090 −1.62140
\(403\) 0 0
\(404\) 7.42758 0.369536
\(405\) 9.23788i 0.459034i
\(406\) −14.7681 −0.732928
\(407\) −15.5797 −0.772258
\(408\) − 12.2295i − 0.605452i
\(409\) − 12.0218i − 0.594438i −0.954809 0.297219i \(-0.903941\pi\)
0.954809 0.297219i \(-0.0960592\pi\)
\(410\) 8.64609i 0.427000i
\(411\) − 52.1758i − 2.57364i
\(412\) 0.518122 0.0255261
\(413\) −6.53750 −0.321689
\(414\) − 11.5254i − 0.566443i
\(415\) −12.0978 −0.593859
\(416\) 0 0
\(417\) 50.0350 2.45023
\(418\) − 9.93900i − 0.486132i
\(419\) −3.56033 −0.173934 −0.0869669 0.996211i \(-0.527717\pi\)
−0.0869669 + 0.996211i \(0.527717\pi\)
\(420\) 10.7681 0.525429
\(421\) 1.28621i 0.0626860i 0.999509 + 0.0313430i \(0.00997841\pi\)
−0.999509 + 0.0313430i \(0.990022\pi\)
\(422\) 1.70709i 0.0830997i
\(423\) 0.933624i 0.0453944i
\(424\) 2.71379i 0.131793i
\(425\) −5.54155 −0.268805
\(426\) 3.46250 0.167759
\(427\) − 16.7052i − 0.808420i
\(428\) −3.51035 −0.169679
\(429\) 0 0
\(430\) −28.2935 −1.36443
\(431\) − 26.9879i − 1.29996i −0.759950 0.649981i \(-0.774777\pi\)
0.759950 0.649981i \(-0.225223\pi\)
\(432\) 3.35690 0.161509
\(433\) 16.0170 0.769727 0.384864 0.922973i \(-0.374248\pi\)
0.384864 + 0.922973i \(0.374248\pi\)
\(434\) − 8.19567i − 0.393405i
\(435\) 61.8189i 2.96399i
\(436\) − 3.38404i − 0.162066i
\(437\) − 13.1642i − 0.629730i
\(438\) −9.76032 −0.466366
\(439\) 37.1400 1.77260 0.886299 0.463114i \(-0.153268\pi\)
0.886299 + 0.463114i \(0.153268\pi\)
\(440\) − 5.10992i − 0.243606i
\(441\) 18.8039 0.895422
\(442\) 0 0
\(443\) −41.2083 −1.95787 −0.978934 0.204178i \(-0.934548\pi\)
−0.978934 + 0.204178i \(0.934548\pi\)
\(444\) − 20.4698i − 0.971454i
\(445\) −41.3250 −1.95899
\(446\) 6.21983 0.294518
\(447\) 9.84787i 0.465788i
\(448\) 1.60388i 0.0757760i
\(449\) − 10.1263i − 0.477890i −0.971033 0.238945i \(-0.923198\pi\)
0.971033 0.238945i \(-0.0768016\pi\)
\(450\) − 5.18060i − 0.244216i
\(451\) −7.10321 −0.334477
\(452\) 5.44935 0.256316
\(453\) 39.2814i 1.84560i
\(454\) −0.955395 −0.0448389
\(455\) 0 0
\(456\) 13.0586 0.611525
\(457\) − 21.7560i − 1.01770i −0.860854 0.508851i \(-0.830070\pi\)
0.860854 0.508851i \(-0.169930\pi\)
\(458\) 22.4155 1.04741
\(459\) 15.2500 0.711807
\(460\) − 6.76809i − 0.315564i
\(461\) 38.5676i 1.79627i 0.439716 + 0.898137i \(0.355079\pi\)
−0.439716 + 0.898137i \(0.644921\pi\)
\(462\) 8.84654i 0.411578i
\(463\) − 33.0073i − 1.53398i −0.641660 0.766990i \(-0.721754\pi\)
0.641660 0.766990i \(-0.278246\pi\)
\(464\) −9.20775 −0.427459
\(465\) −34.3069 −1.59095
\(466\) − 2.99031i − 0.138523i
\(467\) −6.53989 −0.302630 −0.151315 0.988486i \(-0.548351\pi\)
−0.151315 + 0.988486i \(0.548351\pi\)
\(468\) 0 0
\(469\) 19.3685 0.894354
\(470\) 0.548253i 0.0252890i
\(471\) 58.1581 2.67978
\(472\) −4.07606 −0.187616
\(473\) − 23.2446i − 1.06879i
\(474\) − 14.3478i − 0.659016i
\(475\) − 5.91723i − 0.271501i
\(476\) 7.28621i 0.333963i
\(477\) −11.5254 −0.527713
\(478\) −11.1293 −0.509042
\(479\) 8.30691i 0.379553i 0.981827 + 0.189776i \(0.0607763\pi\)
−0.981827 + 0.189776i \(0.939224\pi\)
\(480\) 6.71379 0.306441
\(481\) 0 0
\(482\) −5.20775 −0.237207
\(483\) 11.7172i 0.533153i
\(484\) −6.80194 −0.309179
\(485\) −11.5737 −0.525537
\(486\) − 20.0422i − 0.909133i
\(487\) 31.6534i 1.43435i 0.696892 + 0.717176i \(0.254566\pi\)
−0.696892 + 0.717176i \(0.745434\pi\)
\(488\) − 10.4155i − 0.471488i
\(489\) 36.6364i 1.65676i
\(490\) 11.0422 0.498836
\(491\) 36.6631 1.65458 0.827291 0.561774i \(-0.189881\pi\)
0.827291 + 0.561774i \(0.189881\pi\)
\(492\) − 9.33273i − 0.420752i
\(493\) −41.8297 −1.88391
\(494\) 0 0
\(495\) 21.7017 0.975419
\(496\) − 5.10992i − 0.229442i
\(497\) −2.06292 −0.0925345
\(498\) 13.0586 0.585170
\(499\) 29.8920i 1.33815i 0.743195 + 0.669075i \(0.233309\pi\)
−0.743195 + 0.669075i \(0.766691\pi\)
\(500\) 9.42758i 0.421614i
\(501\) 37.6883i 1.68379i
\(502\) 22.6950i 1.01293i
\(503\) 15.5905 0.695145 0.347572 0.937653i \(-0.387006\pi\)
0.347572 + 0.937653i \(0.387006\pi\)
\(504\) −6.81163 −0.303414
\(505\) 18.5241i 0.824311i
\(506\) 5.56033 0.247187
\(507\) 0 0
\(508\) −6.19567 −0.274888
\(509\) 17.1642i 0.760790i 0.924824 + 0.380395i \(0.124212\pi\)
−0.924824 + 0.380395i \(0.875788\pi\)
\(510\) 30.4999 1.35056
\(511\) 5.81508 0.257244
\(512\) 1.00000i 0.0441942i
\(513\) 16.2838i 0.718948i
\(514\) − 10.4306i − 0.460073i
\(515\) 1.29218i 0.0569401i
\(516\) 30.5405 1.34447
\(517\) −0.450419 −0.0198094
\(518\) 12.1957i 0.535847i
\(519\) 11.3599 0.498643
\(520\) 0 0
\(521\) 6.15452 0.269634 0.134817 0.990870i \(-0.456955\pi\)
0.134817 + 0.990870i \(0.456955\pi\)
\(522\) − 39.1051i − 1.71159i
\(523\) 6.93900 0.303421 0.151711 0.988425i \(-0.451522\pi\)
0.151711 + 0.988425i \(0.451522\pi\)
\(524\) 4.13706 0.180728
\(525\) 5.26683i 0.229863i
\(526\) − 7.10992i − 0.310007i
\(527\) − 23.2137i − 1.01121i
\(528\) 5.51573i 0.240041i
\(529\) −15.6353 −0.679797
\(530\) −6.76809 −0.293987
\(531\) − 17.3110i − 0.751232i
\(532\) −7.78017 −0.337313
\(533\) 0 0
\(534\) 44.6069 1.93033
\(535\) − 8.75468i − 0.378498i
\(536\) 12.0761 0.521607
\(537\) −42.6122 −1.83885
\(538\) 2.02416i 0.0872679i
\(539\) 9.07175i 0.390748i
\(540\) 8.37196i 0.360272i
\(541\) − 0.426256i − 0.0183262i −0.999958 0.00916308i \(-0.997083\pi\)
0.999958 0.00916308i \(-0.00291674\pi\)
\(542\) 15.9651 0.685759
\(543\) 41.2030 1.76819
\(544\) 4.54288i 0.194774i
\(545\) 8.43967 0.361516
\(546\) 0 0
\(547\) 3.72348 0.159205 0.0796023 0.996827i \(-0.474635\pi\)
0.0796023 + 0.996827i \(0.474635\pi\)
\(548\) 19.3817i 0.827943i
\(549\) 44.2344 1.88788
\(550\) 2.49934 0.106572
\(551\) − 44.6655i − 1.90281i
\(552\) 7.30559i 0.310946i
\(553\) 8.54825i 0.363509i
\(554\) − 13.7017i − 0.582130i
\(555\) 51.0508 2.16699
\(556\) −18.5864 −0.788240
\(557\) − 42.7961i − 1.81333i −0.421853 0.906664i \(-0.638620\pi\)
0.421853 0.906664i \(-0.361380\pi\)
\(558\) 21.7017 0.918707
\(559\) 0 0
\(560\) −4.00000 −0.169031
\(561\) 25.0573i 1.05792i
\(562\) −15.2024 −0.641273
\(563\) −2.92500 −0.123274 −0.0616370 0.998099i \(-0.519632\pi\)
−0.0616370 + 0.998099i \(0.519632\pi\)
\(564\) − 0.591794i − 0.0249190i
\(565\) 13.5905i 0.571755i
\(566\) − 20.6069i − 0.866171i
\(567\) 5.94092i 0.249495i
\(568\) −1.28621 −0.0539681
\(569\) 26.5894 1.11469 0.557343 0.830282i \(-0.311821\pi\)
0.557343 + 0.830282i \(0.311821\pi\)
\(570\) 32.5676i 1.36411i
\(571\) 2.34422 0.0981027 0.0490513 0.998796i \(-0.484380\pi\)
0.0490513 + 0.998796i \(0.484380\pi\)
\(572\) 0 0
\(573\) 9.70171 0.405295
\(574\) 5.56033i 0.232084i
\(575\) 3.31037 0.138052
\(576\) −4.24698 −0.176957
\(577\) − 40.4064i − 1.68214i −0.540926 0.841070i \(-0.681926\pi\)
0.540926 0.841070i \(-0.318074\pi\)
\(578\) 3.63773i 0.151310i
\(579\) − 30.2121i − 1.25557i
\(580\) − 22.9638i − 0.953518i
\(581\) −7.78017 −0.322776
\(582\) 12.4929 0.517847
\(583\) − 5.56033i − 0.230286i
\(584\) 3.62565 0.150030
\(585\) 0 0
\(586\) −2.17629 −0.0899018
\(587\) 43.2180i 1.78380i 0.452234 + 0.891900i \(0.350627\pi\)
−0.452234 + 0.891900i \(0.649373\pi\)
\(588\) −11.9191 −0.491537
\(589\) 24.7875 1.02135
\(590\) − 10.1655i − 0.418509i
\(591\) − 62.1995i − 2.55855i
\(592\) 7.60388i 0.312517i
\(593\) − 7.01746i − 0.288172i −0.989565 0.144086i \(-0.953976\pi\)
0.989565 0.144086i \(-0.0460243\pi\)
\(594\) −6.87800 −0.282208
\(595\) −18.1715 −0.744959
\(596\) − 3.65817i − 0.149844i
\(597\) −57.2379 −2.34259
\(598\) 0 0
\(599\) 14.9772 0.611950 0.305975 0.952039i \(-0.401018\pi\)
0.305975 + 0.952039i \(0.401018\pi\)
\(600\) 3.28382i 0.134061i
\(601\) −37.2771 −1.52057 −0.760283 0.649593i \(-0.774940\pi\)
−0.760283 + 0.649593i \(0.774940\pi\)
\(602\) −18.1957 −0.741600
\(603\) 51.2868i 2.08856i
\(604\) − 14.5918i − 0.593732i
\(605\) − 16.9638i − 0.689675i
\(606\) − 19.9952i − 0.812250i
\(607\) 0.803003 0.0325929 0.0162964 0.999867i \(-0.494812\pi\)
0.0162964 + 0.999867i \(0.494812\pi\)
\(608\) −4.85086 −0.196728
\(609\) 39.7560i 1.61099i
\(610\) 25.9758 1.05173
\(611\) 0 0
\(612\) −19.2935 −0.779894
\(613\) − 4.87071i − 0.196726i −0.995151 0.0983630i \(-0.968639\pi\)
0.995151 0.0983630i \(-0.0313606\pi\)
\(614\) −17.0127 −0.686576
\(615\) 23.2755 0.938557
\(616\) − 3.28621i − 0.132405i
\(617\) − 3.34290i − 0.134580i −0.997733 0.0672899i \(-0.978565\pi\)
0.997733 0.0672899i \(-0.0214353\pi\)
\(618\) − 1.39480i − 0.0561069i
\(619\) − 34.1715i − 1.37347i −0.726908 0.686734i \(-0.759044\pi\)
0.726908 0.686734i \(-0.240956\pi\)
\(620\) 12.7439 0.511808
\(621\) −9.10992 −0.365568
\(622\) 4.71379i 0.189006i
\(623\) −26.5763 −1.06476
\(624\) 0 0
\(625\) −29.6112 −1.18445
\(626\) 1.67696i 0.0670246i
\(627\) −26.7560 −1.06853
\(628\) −21.6039 −0.862088
\(629\) 34.5435i 1.37734i
\(630\) − 16.9879i − 0.676815i
\(631\) 39.8297i 1.58559i 0.609486 + 0.792797i \(0.291376\pi\)
−0.609486 + 0.792797i \(0.708624\pi\)
\(632\) 5.32975i 0.212006i
\(633\) 4.59551 0.182655
\(634\) 29.1400 1.15730
\(635\) − 15.4517i − 0.613184i
\(636\) 7.30559 0.289685
\(637\) 0 0
\(638\) 18.8659 0.746909
\(639\) − 5.46250i − 0.216093i
\(640\) −2.49396 −0.0985824
\(641\) 13.4910 0.532861 0.266431 0.963854i \(-0.414156\pi\)
0.266431 + 0.963854i \(0.414156\pi\)
\(642\) 9.44994i 0.372960i
\(643\) 16.6638i 0.657156i 0.944477 + 0.328578i \(0.106569\pi\)
−0.944477 + 0.328578i \(0.893431\pi\)
\(644\) − 4.35258i − 0.171516i
\(645\) 76.1667i 2.99906i
\(646\) −22.0368 −0.867028
\(647\) −48.7332 −1.91590 −0.957949 0.286938i \(-0.907363\pi\)
−0.957949 + 0.286938i \(0.907363\pi\)
\(648\) 3.70410i 0.145511i
\(649\) 8.35152 0.327826
\(650\) 0 0
\(651\) −22.0629 −0.864714
\(652\) − 13.6093i − 0.532979i
\(653\) 47.0702 1.84200 0.921000 0.389563i \(-0.127374\pi\)
0.921000 + 0.389563i \(0.127374\pi\)
\(654\) −9.10992 −0.356226
\(655\) 10.3177i 0.403145i
\(656\) 3.46681i 0.135356i
\(657\) 15.3980i 0.600735i
\(658\) 0.352584i 0.0137452i
\(659\) −22.2524 −0.866829 −0.433414 0.901195i \(-0.642691\pi\)
−0.433414 + 0.901195i \(0.642691\pi\)
\(660\) −13.7560 −0.535452
\(661\) − 2.57242i − 0.100055i −0.998748 0.0500277i \(-0.984069\pi\)
0.998748 0.0500277i \(-0.0159310\pi\)
\(662\) 8.74392 0.339842
\(663\) 0 0
\(664\) −4.85086 −0.188250
\(665\) − 19.4034i − 0.752432i
\(666\) −32.2935 −1.25135
\(667\) 24.9879 0.967536
\(668\) − 14.0000i − 0.541676i
\(669\) − 16.7439i − 0.647357i
\(670\) 30.1172i 1.16353i
\(671\) 21.3405i 0.823841i
\(672\) 4.31767 0.166558
\(673\) −24.1691 −0.931651 −0.465825 0.884877i \(-0.654243\pi\)
−0.465825 + 0.884877i \(0.654243\pi\)
\(674\) 3.10560i 0.119623i
\(675\) −4.09485 −0.157611
\(676\) 0 0
\(677\) −4.91425 −0.188870 −0.0944349 0.995531i \(-0.530104\pi\)
−0.0944349 + 0.995531i \(0.530104\pi\)
\(678\) − 14.6698i − 0.563389i
\(679\) −7.44312 −0.285641
\(680\) −11.3297 −0.434476
\(681\) 2.57194i 0.0985571i
\(682\) 10.4698i 0.400909i
\(683\) − 1.96556i − 0.0752100i −0.999293 0.0376050i \(-0.988027\pi\)
0.999293 0.0376050i \(-0.0119729\pi\)
\(684\) − 20.6015i − 0.787717i
\(685\) −48.3370 −1.84686
\(686\) 18.3284 0.699782
\(687\) − 60.3430i − 2.30223i
\(688\) −11.3448 −0.432517
\(689\) 0 0
\(690\) −18.2198 −0.693617
\(691\) − 25.5077i − 0.970359i −0.874415 0.485179i \(-0.838754\pi\)
0.874415 0.485179i \(-0.161246\pi\)
\(692\) −4.21983 −0.160414
\(693\) 13.9565 0.530162
\(694\) 17.9758i 0.682353i
\(695\) − 46.3538i − 1.75830i
\(696\) 24.7875i 0.939566i
\(697\) 15.7493i 0.596547i
\(698\) −15.1642 −0.573974
\(699\) −8.04998 −0.304478
\(700\) − 1.95646i − 0.0739472i
\(701\) 41.8491 1.58062 0.790308 0.612709i \(-0.209920\pi\)
0.790308 + 0.612709i \(0.209920\pi\)
\(702\) 0 0
\(703\) −36.8853 −1.39116
\(704\) − 2.04892i − 0.0772215i
\(705\) 1.47591 0.0555860
\(706\) −3.30021 −0.124205
\(707\) 11.9129i 0.448031i
\(708\) 10.9729i 0.412385i
\(709\) 33.3056i 1.25082i 0.780297 + 0.625409i \(0.215068\pi\)
−0.780297 + 0.625409i \(0.784932\pi\)
\(710\) − 3.20775i − 0.120385i
\(711\) −22.6353 −0.848891
\(712\) −16.5700 −0.620988
\(713\) 13.8672i 0.519333i
\(714\) 19.6146 0.734059
\(715\) 0 0
\(716\) 15.8291 0.591561
\(717\) 29.9603i 1.11889i
\(718\) −18.8901 −0.704972
\(719\) −6.37196 −0.237634 −0.118817 0.992916i \(-0.537910\pi\)
−0.118817 + 0.992916i \(0.537910\pi\)
\(720\) − 10.5918i − 0.394733i
\(721\) 0.831004i 0.0309482i
\(722\) − 4.53079i − 0.168619i
\(723\) 14.0194i 0.521386i
\(724\) −15.3056 −0.568828
\(725\) 11.2319 0.417143
\(726\) 18.3110i 0.679584i
\(727\) −23.7995 −0.882676 −0.441338 0.897341i \(-0.645496\pi\)
−0.441338 + 0.897341i \(0.645496\pi\)
\(728\) 0 0
\(729\) −42.8418 −1.58673
\(730\) 9.04221i 0.334667i
\(731\) −51.5381 −1.90621
\(732\) −28.0388 −1.03634
\(733\) 27.4142i 1.01257i 0.862368 + 0.506283i \(0.168981\pi\)
−0.862368 + 0.506283i \(0.831019\pi\)
\(734\) − 0.195669i − 0.00722229i
\(735\) − 29.7259i − 1.09646i
\(736\) − 2.71379i − 0.100032i
\(737\) −24.7429 −0.911415
\(738\) −14.7235 −0.541979
\(739\) 35.3274i 1.29954i 0.760132 + 0.649769i \(0.225134\pi\)
−0.760132 + 0.649769i \(0.774866\pi\)
\(740\) −18.9638 −0.697122
\(741\) 0 0
\(742\) −4.35258 −0.159788
\(743\) 23.9758i 0.879588i 0.898099 + 0.439794i \(0.144949\pi\)
−0.898099 + 0.439794i \(0.855051\pi\)
\(744\) −13.7560 −0.504320
\(745\) 9.12333 0.334253
\(746\) − 10.7681i − 0.394248i
\(747\) − 20.6015i − 0.753769i
\(748\) − 9.30798i − 0.340333i
\(749\) − 5.63017i − 0.205722i
\(750\) 25.3793 0.926719
\(751\) 24.8659 0.907370 0.453685 0.891162i \(-0.350109\pi\)
0.453685 + 0.891162i \(0.350109\pi\)
\(752\) 0.219833i 0.00801647i
\(753\) 61.0954 2.22644
\(754\) 0 0
\(755\) 36.3913 1.32442
\(756\) 5.38404i 0.195816i
\(757\) 4.93362 0.179316 0.0896578 0.995973i \(-0.471423\pi\)
0.0896578 + 0.995973i \(0.471423\pi\)
\(758\) 27.9627 1.01565
\(759\) − 14.9685i − 0.543324i
\(760\) − 12.0978i − 0.438835i
\(761\) − 15.0067i − 0.543993i −0.962298 0.271996i \(-0.912316\pi\)
0.962298 0.271996i \(-0.0876839\pi\)
\(762\) 16.6789i 0.604212i
\(763\) 5.42758 0.196492
\(764\) −3.60388 −0.130384
\(765\) − 48.1172i − 1.73968i
\(766\) 32.8310 1.18623
\(767\) 0 0
\(768\) 2.69202 0.0971400
\(769\) − 22.2640i − 0.802859i −0.915890 0.401430i \(-0.868513\pi\)
0.915890 0.401430i \(-0.131487\pi\)
\(770\) 8.19567 0.295351
\(771\) −28.0793 −1.01125
\(772\) 11.2228i 0.403918i
\(773\) 11.7366i 0.422137i 0.977471 + 0.211069i \(0.0676943\pi\)
−0.977471 + 0.211069i \(0.932306\pi\)
\(774\) − 48.1812i − 1.73184i
\(775\) 6.23324i 0.223905i
\(776\) −4.64071 −0.166592
\(777\) 32.8310 1.17781
\(778\) − 8.90946i − 0.319420i
\(779\) −16.8170 −0.602532
\(780\) 0 0
\(781\) 2.63533 0.0942997
\(782\) − 12.3284i − 0.440863i
\(783\) −30.9095 −1.10461
\(784\) 4.42758 0.158128
\(785\) − 53.8792i − 1.92303i
\(786\) − 11.1371i − 0.397246i
\(787\) − 14.9498i − 0.532901i −0.963849 0.266451i \(-0.914149\pi\)
0.963849 0.266451i \(-0.0858509\pi\)
\(788\) 23.1051i 0.823086i
\(789\) −19.1400 −0.681404
\(790\) −13.2922 −0.472914
\(791\) 8.74008i 0.310762i
\(792\) 8.70171 0.309202
\(793\) 0 0
\(794\) −11.7888 −0.418369
\(795\) 18.2198i 0.646191i
\(796\) 21.2620 0.753613
\(797\) −35.1728 −1.24589 −0.622943 0.782267i \(-0.714063\pi\)
−0.622943 + 0.782267i \(0.714063\pi\)
\(798\) 20.9444i 0.741423i
\(799\) 0.998672i 0.0353305i
\(800\) − 1.21983i − 0.0431276i
\(801\) − 70.3726i − 2.48649i
\(802\) −3.21313 −0.113459
\(803\) −7.42865 −0.262151
\(804\) − 32.5090i − 1.14650i
\(805\) 10.8552 0.382594
\(806\) 0 0
\(807\) 5.44909 0.191817
\(808\) 7.42758i 0.261301i
\(809\) 42.9487 1.51000 0.754998 0.655727i \(-0.227638\pi\)
0.754998 + 0.655727i \(0.227638\pi\)
\(810\) −9.23788 −0.324586
\(811\) 20.4644i 0.718603i 0.933222 + 0.359301i \(0.116985\pi\)
−0.933222 + 0.359301i \(0.883015\pi\)
\(812\) − 14.7681i − 0.518258i
\(813\) − 42.9783i − 1.50732i
\(814\) − 15.5797i − 0.546069i
\(815\) 33.9409 1.18890
\(816\) 12.2295 0.428119
\(817\) − 55.0320i − 1.92533i
\(818\) 12.0218 0.420331
\(819\) 0 0
\(820\) −8.64609 −0.301934
\(821\) 36.9987i 1.29126i 0.763649 + 0.645631i \(0.223406\pi\)
−0.763649 + 0.645631i \(0.776594\pi\)
\(822\) 52.1758 1.81984
\(823\) −9.27545 −0.323322 −0.161661 0.986846i \(-0.551685\pi\)
−0.161661 + 0.986846i \(0.551685\pi\)
\(824\) 0.518122i 0.0180496i
\(825\) − 6.72827i − 0.234248i
\(826\) − 6.53750i − 0.227469i
\(827\) 6.05669i 0.210612i 0.994440 + 0.105306i \(0.0335821\pi\)
−0.994440 + 0.105306i \(0.966418\pi\)
\(828\) 11.5254 0.400536
\(829\) −9.94092 −0.345262 −0.172631 0.984987i \(-0.555227\pi\)
−0.172631 + 0.984987i \(0.555227\pi\)
\(830\) − 12.0978i − 0.419922i
\(831\) −36.8853 −1.27954
\(832\) 0 0
\(833\) 20.1140 0.696908
\(834\) 50.0350i 1.73257i
\(835\) 34.9154 1.20830
\(836\) 9.93900 0.343748
\(837\) − 17.1535i − 0.592910i
\(838\) − 3.56033i − 0.122990i
\(839\) 34.4698i 1.19003i 0.803715 + 0.595015i \(0.202854\pi\)
−0.803715 + 0.595015i \(0.797146\pi\)
\(840\) 10.7681i 0.371534i
\(841\) 55.7827 1.92354
\(842\) −1.28621 −0.0443257
\(843\) 40.9251i 1.40954i
\(844\) −1.70709 −0.0587604
\(845\) 0 0
\(846\) −0.933624 −0.0320987
\(847\) − 10.9095i − 0.374854i
\(848\) −2.71379 −0.0931920
\(849\) −55.4741 −1.90387
\(850\) − 5.54155i − 0.190074i
\(851\) − 20.6353i − 0.707370i
\(852\) 3.46250i 0.118623i
\(853\) 22.1521i 0.758474i 0.925299 + 0.379237i \(0.123814\pi\)
−0.925299 + 0.379237i \(0.876186\pi\)
\(854\) 16.7052 0.571639
\(855\) 51.3793 1.75713
\(856\) − 3.51035i − 0.119981i
\(857\) 30.5187 1.04250 0.521250 0.853404i \(-0.325466\pi\)
0.521250 + 0.853404i \(0.325466\pi\)
\(858\) 0 0
\(859\) −20.9071 −0.713340 −0.356670 0.934230i \(-0.616088\pi\)
−0.356670 + 0.934230i \(0.616088\pi\)
\(860\) − 28.2935i − 0.964800i
\(861\) 14.9685 0.510127
\(862\) 26.9879 0.919212
\(863\) 55.6969i 1.89595i 0.318352 + 0.947973i \(0.396871\pi\)
−0.318352 + 0.947973i \(0.603129\pi\)
\(864\) 3.35690i 0.114204i
\(865\) − 10.5241i − 0.357830i
\(866\) 16.0170i 0.544279i
\(867\) 9.79284 0.332582
\(868\) 8.19567 0.278179
\(869\) − 10.9202i − 0.370443i
\(870\) −61.8189 −2.09586
\(871\) 0 0
\(872\) 3.38404 0.114598
\(873\) − 19.7090i − 0.667049i
\(874\) 13.1642 0.445286
\(875\) −15.1207 −0.511172
\(876\) − 9.76032i − 0.329771i
\(877\) 32.7922i 1.10732i 0.832744 + 0.553658i \(0.186768\pi\)
−0.832744 + 0.553658i \(0.813232\pi\)
\(878\) 37.1400i 1.25342i
\(879\) 5.85862i 0.197607i
\(880\) 5.10992 0.172255
\(881\) −22.4101 −0.755016 −0.377508 0.926006i \(-0.623219\pi\)
−0.377508 + 0.926006i \(0.623219\pi\)
\(882\) 18.8039i 0.633159i
\(883\) 38.9670 1.31134 0.655672 0.755046i \(-0.272385\pi\)
0.655672 + 0.755046i \(0.272385\pi\)
\(884\) 0 0
\(885\) −27.3658 −0.919893
\(886\) − 41.2083i − 1.38442i
\(887\) −34.8745 −1.17097 −0.585486 0.810682i \(-0.699096\pi\)
−0.585486 + 0.810682i \(0.699096\pi\)
\(888\) 20.4698 0.686921
\(889\) − 9.93708i − 0.333279i
\(890\) − 41.3250i − 1.38522i
\(891\) − 7.58940i − 0.254254i
\(892\) 6.21983i 0.208255i
\(893\) −1.06638 −0.0356849
\(894\) −9.84787 −0.329362
\(895\) 39.4771i 1.31957i
\(896\) −1.60388 −0.0535817
\(897\) 0 0
\(898\) 10.1263 0.337919
\(899\) 47.0508i 1.56923i
\(900\) 5.18060 0.172687
\(901\) −12.3284 −0.410719
\(902\) − 7.10321i − 0.236511i
\(903\) 48.9831i 1.63006i
\(904\) 5.44935i 0.181243i
\(905\) − 38.1715i − 1.26886i
\(906\) −39.2814 −1.30504
\(907\) −15.1317 −0.502439 −0.251220 0.967930i \(-0.580832\pi\)
−0.251220 + 0.967930i \(0.580832\pi\)
\(908\) − 0.955395i − 0.0317059i
\(909\) −31.5448 −1.04627
\(910\) 0 0
\(911\) 23.0810 0.764707 0.382353 0.924016i \(-0.375114\pi\)
0.382353 + 0.924016i \(0.375114\pi\)
\(912\) 13.0586i 0.432414i
\(913\) 9.93900 0.328933
\(914\) 21.7560 0.719625
\(915\) − 69.9275i − 2.31173i
\(916\) 22.4155i 0.740629i
\(917\) 6.63533i 0.219118i
\(918\) 15.2500i 0.503324i
\(919\) −39.9275 −1.31709 −0.658544 0.752543i \(-0.728827\pi\)
−0.658544 + 0.752543i \(0.728827\pi\)
\(920\) 6.76809 0.223137
\(921\) 45.7985i 1.50911i
\(922\) −38.5676 −1.27016
\(923\) 0 0
\(924\) −8.84654 −0.291030
\(925\) − 9.27545i − 0.304975i
\(926\) 33.0073 1.08469
\(927\) −2.20046 −0.0722724
\(928\) − 9.20775i − 0.302259i
\(929\) 45.1771i 1.48221i 0.671387 + 0.741107i \(0.265699\pi\)
−0.671387 + 0.741107i \(0.734301\pi\)
\(930\) − 34.3069i − 1.12497i
\(931\) 21.4776i 0.703899i
\(932\) 2.99031 0.0979509
\(933\) 12.6896 0.415440
\(934\) − 6.53989i − 0.213992i
\(935\) 23.2137 0.759170
\(936\) 0 0
\(937\) 29.0901 0.950331 0.475165 0.879896i \(-0.342388\pi\)
0.475165 + 0.879896i \(0.342388\pi\)
\(938\) 19.3685i 0.632404i
\(939\) 4.51440 0.147322
\(940\) −0.548253 −0.0178821
\(941\) 26.1220i 0.851553i 0.904828 + 0.425776i \(0.139999\pi\)
−0.904828 + 0.425776i \(0.860001\pi\)
\(942\) 58.1581i 1.89489i
\(943\) − 9.40821i − 0.306373i
\(944\) − 4.07606i − 0.132665i
\(945\) −13.4276 −0.436799
\(946\) 23.2446 0.755747
\(947\) 42.6698i 1.38658i 0.720658 + 0.693291i \(0.243840\pi\)
−0.720658 + 0.693291i \(0.756160\pi\)
\(948\) 14.3478 0.465995
\(949\) 0 0
\(950\) 5.91723 0.191980
\(951\) − 78.4456i − 2.54377i
\(952\) −7.28621 −0.236147
\(953\) 29.9038 0.968680 0.484340 0.874880i \(-0.339060\pi\)
0.484340 + 0.874880i \(0.339060\pi\)
\(954\) − 11.5254i − 0.373149i
\(955\) − 8.98792i − 0.290842i
\(956\) − 11.1293i − 0.359947i
\(957\) − 50.7875i − 1.64173i
\(958\) −8.30691 −0.268384
\(959\) −31.0858 −1.00381
\(960\) 6.71379i 0.216687i
\(961\) 4.88876 0.157702
\(962\) 0 0
\(963\) 14.9084 0.480416
\(964\) − 5.20775i − 0.167730i
\(965\) −27.9892 −0.901006
\(966\) −11.7172 −0.376996
\(967\) 5.16900i 0.166224i 0.996540 + 0.0831119i \(0.0264859\pi\)
−0.996540 + 0.0831119i \(0.973514\pi\)
\(968\) − 6.80194i − 0.218623i
\(969\) 59.3236i 1.90575i
\(970\) − 11.5737i − 0.371611i
\(971\) 35.9715 1.15438 0.577191 0.816609i \(-0.304149\pi\)
0.577191 + 0.816609i \(0.304149\pi\)
\(972\) 20.0422 0.642854
\(973\) − 29.8103i − 0.955674i
\(974\) −31.6534 −1.01424
\(975\) 0 0
\(976\) 10.4155 0.333392
\(977\) − 34.2435i − 1.09555i −0.836627 0.547774i \(-0.815475\pi\)
0.836627 0.547774i \(-0.184525\pi\)
\(978\) −36.6364 −1.17150
\(979\) 33.9506 1.08507
\(980\) 11.0422i 0.352731i
\(981\) 14.3720i 0.458861i
\(982\) 36.6631i 1.16997i
\(983\) − 54.8939i − 1.75084i −0.483359 0.875422i \(-0.660584\pi\)
0.483359 0.875422i \(-0.339416\pi\)
\(984\) 9.33273 0.297517
\(985\) −57.6233 −1.83603
\(986\) − 41.8297i − 1.33213i
\(987\) 0.949164 0.0302122
\(988\) 0 0
\(989\) 30.7875 0.978984
\(990\) 21.7017i 0.689726i
\(991\) −16.6655 −0.529396 −0.264698 0.964331i \(-0.585272\pi\)
−0.264698 + 0.964331i \(0.585272\pi\)
\(992\) 5.10992 0.162240
\(993\) − 23.5388i − 0.746982i
\(994\) − 2.06292i − 0.0654318i
\(995\) 53.0267i 1.68106i
\(996\) 13.0586i 0.413778i
\(997\) 16.3961 0.519270 0.259635 0.965707i \(-0.416398\pi\)
0.259635 + 0.965707i \(0.416398\pi\)
\(998\) −29.8920 −0.946215
\(999\) 25.5254i 0.807588i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.2.b.d.337.6 6
3.2 odd 2 3042.2.b.n.1351.3 6
4.3 odd 2 2704.2.f.m.337.1 6
13.2 odd 12 338.2.c.h.191.1 6
13.3 even 3 338.2.e.e.147.1 12
13.4 even 6 338.2.e.e.23.1 12
13.5 odd 4 338.2.a.h.1.3 yes 3
13.6 odd 12 338.2.c.h.315.1 6
13.7 odd 12 338.2.c.i.315.1 6
13.8 odd 4 338.2.a.g.1.3 3
13.9 even 3 338.2.e.e.23.4 12
13.10 even 6 338.2.e.e.147.4 12
13.11 odd 12 338.2.c.i.191.1 6
13.12 even 2 inner 338.2.b.d.337.3 6
39.5 even 4 3042.2.a.z.1.3 3
39.8 even 4 3042.2.a.bi.1.1 3
39.38 odd 2 3042.2.b.n.1351.4 6
52.31 even 4 2704.2.a.w.1.1 3
52.47 even 4 2704.2.a.v.1.1 3
52.51 odd 2 2704.2.f.m.337.2 6
65.34 odd 4 8450.2.a.bx.1.1 3
65.44 odd 4 8450.2.a.bn.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.3 3 13.8 odd 4
338.2.a.h.1.3 yes 3 13.5 odd 4
338.2.b.d.337.3 6 13.12 even 2 inner
338.2.b.d.337.6 6 1.1 even 1 trivial
338.2.c.h.191.1 6 13.2 odd 12
338.2.c.h.315.1 6 13.6 odd 12
338.2.c.i.191.1 6 13.11 odd 12
338.2.c.i.315.1 6 13.7 odd 12
338.2.e.e.23.1 12 13.4 even 6
338.2.e.e.23.4 12 13.9 even 3
338.2.e.e.147.1 12 13.3 even 3
338.2.e.e.147.4 12 13.10 even 6
2704.2.a.v.1.1 3 52.47 even 4
2704.2.a.w.1.1 3 52.31 even 4
2704.2.f.m.337.1 6 4.3 odd 2
2704.2.f.m.337.2 6 52.51 odd 2
3042.2.a.z.1.3 3 39.5 even 4
3042.2.a.bi.1.1 3 39.8 even 4
3042.2.b.n.1351.3 6 3.2 odd 2
3042.2.b.n.1351.4 6 39.38 odd 2
8450.2.a.bn.1.1 3 65.44 odd 4
8450.2.a.bx.1.1 3 65.34 odd 4