Defining parameters
Level: | \( N \) | = | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 32 \) | ||
Sturm bound: | \(14196\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(338))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3777 | 1170 | 2607 |
Cusp forms | 3322 | 1170 | 2152 |
Eisenstein series | 455 | 0 | 455 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(338))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
338.2.a | \(\chi_{338}(1, \cdot)\) | 338.2.a.a | 1 | 1 |
338.2.a.b | 1 | |||
338.2.a.c | 1 | |||
338.2.a.d | 1 | |||
338.2.a.e | 1 | |||
338.2.a.f | 1 | |||
338.2.a.g | 3 | |||
338.2.a.h | 3 | |||
338.2.b | \(\chi_{338}(337, \cdot)\) | 338.2.b.a | 2 | 1 |
338.2.b.b | 2 | |||
338.2.b.c | 2 | |||
338.2.b.d | 6 | |||
338.2.c | \(\chi_{338}(191, \cdot)\) | 338.2.c.a | 2 | 2 |
338.2.c.b | 2 | |||
338.2.c.c | 2 | |||
338.2.c.d | 2 | |||
338.2.c.e | 2 | |||
338.2.c.f | 2 | |||
338.2.c.g | 2 | |||
338.2.c.h | 6 | |||
338.2.c.i | 6 | |||
338.2.e | \(\chi_{338}(23, \cdot)\) | 338.2.e.a | 4 | 2 |
338.2.e.b | 4 | |||
338.2.e.c | 4 | |||
338.2.e.d | 4 | |||
338.2.e.e | 12 | |||
338.2.g | \(\chi_{338}(27, \cdot)\) | 338.2.g.a | 96 | 12 |
338.2.g.b | 108 | |||
338.2.h | \(\chi_{338}(25, \cdot)\) | 338.2.h.a | 192 | 12 |
338.2.i | \(\chi_{338}(3, \cdot)\) | 338.2.i.a | 168 | 24 |
338.2.i.b | 192 | |||
338.2.k | \(\chi_{338}(17, \cdot)\) | 338.2.k.a | 336 | 24 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(338))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(338)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)