Properties

Label 338.2
Level 338
Weight 2
Dimension 1170
Nonzero newspaces 8
Newform subspaces 32
Sturm bound 14196
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 32 \)
Sturm bound: \(14196\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(338))\).

Total New Old
Modular forms 3777 1170 2607
Cusp forms 3322 1170 2152
Eisenstein series 455 0 455

Trace form

\( 1170 q + q^{2} + 4 q^{3} + q^{4} + 6 q^{5} + 4 q^{6} - 5 q^{8} - 19 q^{9} - 24 q^{10} - 12 q^{11} - 4 q^{12} - 24 q^{13} - 16 q^{14} - 24 q^{15} - 7 q^{16} - 12 q^{17} - 17 q^{18} - 36 q^{19} - 24 q^{21}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(338))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
338.2.a \(\chi_{338}(1, \cdot)\) 338.2.a.a 1 1
338.2.a.b 1
338.2.a.c 1
338.2.a.d 1
338.2.a.e 1
338.2.a.f 1
338.2.a.g 3
338.2.a.h 3
338.2.b \(\chi_{338}(337, \cdot)\) 338.2.b.a 2 1
338.2.b.b 2
338.2.b.c 2
338.2.b.d 6
338.2.c \(\chi_{338}(191, \cdot)\) 338.2.c.a 2 2
338.2.c.b 2
338.2.c.c 2
338.2.c.d 2
338.2.c.e 2
338.2.c.f 2
338.2.c.g 2
338.2.c.h 6
338.2.c.i 6
338.2.e \(\chi_{338}(23, \cdot)\) 338.2.e.a 4 2
338.2.e.b 4
338.2.e.c 4
338.2.e.d 4
338.2.e.e 12
338.2.g \(\chi_{338}(27, \cdot)\) 338.2.g.a 96 12
338.2.g.b 108
338.2.h \(\chi_{338}(25, \cdot)\) 338.2.h.a 192 12
338.2.i \(\chi_{338}(3, \cdot)\) 338.2.i.a 168 24
338.2.i.b 192
338.2.k \(\chi_{338}(17, \cdot)\) 338.2.k.a 336 24

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(338))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(338)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)