Properties

Label 338.10.a.m.1.2
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-160,-162,2560,3088] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} - 124193 x^{8} - 182380 x^{7} + 5434866119 x^{6} + 59076086702 x^{5} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10}\cdot 3\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(192.242\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} -208.242 q^{3} +256.000 q^{4} +1666.10 q^{5} +3331.87 q^{6} +11980.1 q^{7} -4096.00 q^{8} +23681.6 q^{9} -26657.6 q^{10} -53713.7 q^{11} -53309.9 q^{12} -191681. q^{14} -346951. q^{15} +65536.0 q^{16} -430839. q^{17} -378905. q^{18} +709630. q^{19} +426521. q^{20} -2.49475e6 q^{21} +859419. q^{22} -776469. q^{23} +852958. q^{24} +822757. q^{25} -832673. q^{27} +3.06690e6 q^{28} +5.13509e6 q^{29} +5.55122e6 q^{30} -3.90910e6 q^{31} -1.04858e6 q^{32} +1.11854e7 q^{33} +6.89343e6 q^{34} +1.99600e7 q^{35} +6.06249e6 q^{36} -6.98795e6 q^{37} -1.13541e7 q^{38} -6.82434e6 q^{40} -6.93003e6 q^{41} +3.99160e7 q^{42} +3.35693e7 q^{43} -1.37507e7 q^{44} +3.94558e7 q^{45} +1.24235e7 q^{46} +5.50056e6 q^{47} -1.36473e7 q^{48} +1.03168e8 q^{49} -1.31641e7 q^{50} +8.97187e7 q^{51} +2.81373e7 q^{53} +1.33228e7 q^{54} -8.94923e7 q^{55} -4.90704e7 q^{56} -1.47775e8 q^{57} -8.21614e7 q^{58} -1.01485e8 q^{59} -8.88194e7 q^{60} +1.42297e6 q^{61} +6.25456e7 q^{62} +2.83707e8 q^{63} +1.67772e7 q^{64} -1.78967e8 q^{66} -5.61602e7 q^{67} -1.10295e8 q^{68} +1.61693e8 q^{69} -3.19359e8 q^{70} -9.50326e7 q^{71} -9.69998e7 q^{72} +2.74408e8 q^{73} +1.11807e8 q^{74} -1.71332e8 q^{75} +1.81665e8 q^{76} -6.43494e8 q^{77} -5.91897e7 q^{79} +1.09189e8 q^{80} -2.92728e8 q^{81} +1.10880e8 q^{82} +1.51961e8 q^{83} -6.38656e8 q^{84} -7.17821e8 q^{85} -5.37108e8 q^{86} -1.06934e9 q^{87} +2.20011e8 q^{88} +6.04142e8 q^{89} -6.31293e8 q^{90} -1.98776e8 q^{92} +8.14038e8 q^{93} -8.80090e7 q^{94} +1.18231e9 q^{95} +2.18357e8 q^{96} +1.45492e9 q^{97} -1.65069e9 q^{98} -1.27203e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 160 q^{2} - 162 q^{3} + 2560 q^{4} + 3088 q^{5} + 2592 q^{6} + 11376 q^{7} - 40960 q^{8} + 54184 q^{9} - 49408 q^{10} - 8784 q^{11} - 41472 q^{12} - 182016 q^{14} + 357296 q^{15} + 655360 q^{16}+ \cdots + 199174752 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) −208.242 −1.48430 −0.742150 0.670233i \(-0.766194\pi\)
−0.742150 + 0.670233i \(0.766194\pi\)
\(4\) 256.000 0.500000
\(5\) 1666.10 1.19216 0.596081 0.802924i \(-0.296724\pi\)
0.596081 + 0.802924i \(0.296724\pi\)
\(6\) 3331.87 1.04956
\(7\) 11980.1 1.88590 0.942949 0.332938i \(-0.108040\pi\)
0.942949 + 0.332938i \(0.108040\pi\)
\(8\) −4096.00 −0.353553
\(9\) 23681.6 1.20315
\(10\) −26657.6 −0.842986
\(11\) −53713.7 −1.10616 −0.553080 0.833128i \(-0.686548\pi\)
−0.553080 + 0.833128i \(0.686548\pi\)
\(12\) −53309.9 −0.742150
\(13\) 0 0
\(14\) −191681. −1.33353
\(15\) −346951. −1.76953
\(16\) 65536.0 0.250000
\(17\) −430839. −1.25111 −0.625555 0.780180i \(-0.715127\pi\)
−0.625555 + 0.780180i \(0.715127\pi\)
\(18\) −378905. −0.850755
\(19\) 709630. 1.24923 0.624613 0.780935i \(-0.285257\pi\)
0.624613 + 0.780935i \(0.285257\pi\)
\(20\) 426521. 0.596081
\(21\) −2.49475e6 −2.79924
\(22\) 859419. 0.782174
\(23\) −776469. −0.578561 −0.289280 0.957244i \(-0.593416\pi\)
−0.289280 + 0.957244i \(0.593416\pi\)
\(24\) 852958. 0.524780
\(25\) 822757. 0.421251
\(26\) 0 0
\(27\) −832673. −0.301535
\(28\) 3.06690e6 0.942949
\(29\) 5.13509e6 1.34821 0.674104 0.738636i \(-0.264530\pi\)
0.674104 + 0.738636i \(0.264530\pi\)
\(30\) 5.55122e6 1.25125
\(31\) −3.90910e6 −0.760237 −0.380119 0.924938i \(-0.624117\pi\)
−0.380119 + 0.924938i \(0.624117\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 1.11854e7 1.64188
\(34\) 6.89343e6 0.884668
\(35\) 1.99600e7 2.24830
\(36\) 6.06249e6 0.601575
\(37\) −6.98795e6 −0.612974 −0.306487 0.951875i \(-0.599154\pi\)
−0.306487 + 0.951875i \(0.599154\pi\)
\(38\) −1.13541e7 −0.883336
\(39\) 0 0
\(40\) −6.82434e6 −0.421493
\(41\) −6.93003e6 −0.383008 −0.191504 0.981492i \(-0.561336\pi\)
−0.191504 + 0.981492i \(0.561336\pi\)
\(42\) 3.99160e7 1.97936
\(43\) 3.35693e7 1.49739 0.748693 0.662917i \(-0.230682\pi\)
0.748693 + 0.662917i \(0.230682\pi\)
\(44\) −1.37507e7 −0.553080
\(45\) 3.94558e7 1.43435
\(46\) 1.24235e7 0.409104
\(47\) 5.50056e6 0.164425 0.0822123 0.996615i \(-0.473801\pi\)
0.0822123 + 0.996615i \(0.473801\pi\)
\(48\) −1.36473e7 −0.371075
\(49\) 1.03168e8 2.55661
\(50\) −1.31641e7 −0.297870
\(51\) 8.97187e7 1.85702
\(52\) 0 0
\(53\) 2.81373e7 0.489826 0.244913 0.969545i \(-0.421241\pi\)
0.244913 + 0.969545i \(0.421241\pi\)
\(54\) 1.33228e7 0.213217
\(55\) −8.94923e7 −1.31872
\(56\) −4.90704e7 −0.666765
\(57\) −1.47775e8 −1.85423
\(58\) −8.21614e7 −0.953327
\(59\) −1.01485e8 −1.09035 −0.545175 0.838322i \(-0.683537\pi\)
−0.545175 + 0.838322i \(0.683537\pi\)
\(60\) −8.88194e7 −0.884764
\(61\) 1.42297e6 0.0131586 0.00657932 0.999978i \(-0.497906\pi\)
0.00657932 + 0.999978i \(0.497906\pi\)
\(62\) 6.25456e7 0.537569
\(63\) 2.83707e8 2.26902
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) −1.78967e8 −1.16098
\(67\) −5.61602e7 −0.340480 −0.170240 0.985403i \(-0.554454\pi\)
−0.170240 + 0.985403i \(0.554454\pi\)
\(68\) −1.10295e8 −0.625555
\(69\) 1.61693e8 0.858758
\(70\) −3.19359e8 −1.58979
\(71\) −9.50326e7 −0.443823 −0.221912 0.975067i \(-0.571230\pi\)
−0.221912 + 0.975067i \(0.571230\pi\)
\(72\) −9.69998e7 −0.425378
\(73\) 2.74408e8 1.13095 0.565476 0.824765i \(-0.308693\pi\)
0.565476 + 0.824765i \(0.308693\pi\)
\(74\) 1.11807e8 0.433438
\(75\) −1.71332e8 −0.625264
\(76\) 1.81665e8 0.624613
\(77\) −6.43494e8 −2.08611
\(78\) 0 0
\(79\) −5.91897e7 −0.170972 −0.0854859 0.996339i \(-0.527244\pi\)
−0.0854859 + 0.996339i \(0.527244\pi\)
\(80\) 1.09189e8 0.298041
\(81\) −2.92728e8 −0.755581
\(82\) 1.10880e8 0.270827
\(83\) 1.51961e8 0.351465 0.175732 0.984438i \(-0.443771\pi\)
0.175732 + 0.984438i \(0.443771\pi\)
\(84\) −6.38656e8 −1.39962
\(85\) −7.17821e8 −1.49153
\(86\) −5.37108e8 −1.05881
\(87\) −1.06934e9 −2.00115
\(88\) 2.20011e8 0.391087
\(89\) 6.04142e8 1.02067 0.510333 0.859977i \(-0.329522\pi\)
0.510333 + 0.859977i \(0.329522\pi\)
\(90\) −6.31293e8 −1.01424
\(91\) 0 0
\(92\) −1.98776e8 −0.289280
\(93\) 8.14038e8 1.12842
\(94\) −8.80090e7 −0.116266
\(95\) 1.18231e9 1.48928
\(96\) 2.18357e8 0.262390
\(97\) 1.45492e9 1.66866 0.834328 0.551269i \(-0.185856\pi\)
0.834328 + 0.551269i \(0.185856\pi\)
\(98\) −1.65069e9 −1.80780
\(99\) −1.27203e9 −1.33088
\(100\) 2.10626e8 0.210626
\(101\) −1.58851e8 −0.151895 −0.0759473 0.997112i \(-0.524198\pi\)
−0.0759473 + 0.997112i \(0.524198\pi\)
\(102\) −1.43550e9 −1.31311
\(103\) −3.74556e8 −0.327906 −0.163953 0.986468i \(-0.552425\pi\)
−0.163953 + 0.986468i \(0.552425\pi\)
\(104\) 0 0
\(105\) −4.15650e9 −3.33715
\(106\) −4.50197e8 −0.346359
\(107\) −1.75577e9 −1.29491 −0.647456 0.762103i \(-0.724167\pi\)
−0.647456 + 0.762103i \(0.724167\pi\)
\(108\) −2.13164e8 −0.150767
\(109\) −1.96931e8 −0.133627 −0.0668135 0.997765i \(-0.521283\pi\)
−0.0668135 + 0.997765i \(0.521283\pi\)
\(110\) 1.43188e9 0.932478
\(111\) 1.45518e9 0.909838
\(112\) 7.85126e8 0.471474
\(113\) 1.35120e9 0.779588 0.389794 0.920902i \(-0.372546\pi\)
0.389794 + 0.920902i \(0.372546\pi\)
\(114\) 2.36439e9 1.31114
\(115\) −1.29367e9 −0.689738
\(116\) 1.31458e9 0.674104
\(117\) 0 0
\(118\) 1.62375e9 0.770994
\(119\) −5.16148e9 −2.35946
\(120\) 1.42111e9 0.625623
\(121\) 5.27216e8 0.223591
\(122\) −2.27675e7 −0.00930456
\(123\) 1.44312e9 0.568499
\(124\) −1.00073e9 −0.380119
\(125\) −1.88330e9 −0.689962
\(126\) −4.53931e9 −1.60444
\(127\) 2.72382e9 0.929100 0.464550 0.885547i \(-0.346216\pi\)
0.464550 + 0.885547i \(0.346216\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −6.99052e9 −2.22257
\(130\) 0 0
\(131\) 2.76631e9 0.820690 0.410345 0.911930i \(-0.365408\pi\)
0.410345 + 0.911930i \(0.365408\pi\)
\(132\) 2.86347e9 0.820938
\(133\) 8.50142e9 2.35591
\(134\) 8.98564e8 0.240756
\(135\) −1.38731e9 −0.359479
\(136\) 1.76472e9 0.442334
\(137\) −2.58017e9 −0.625758 −0.312879 0.949793i \(-0.601293\pi\)
−0.312879 + 0.949793i \(0.601293\pi\)
\(138\) −2.58709e9 −0.607234
\(139\) 1.47443e9 0.335010 0.167505 0.985871i \(-0.446429\pi\)
0.167505 + 0.985871i \(0.446429\pi\)
\(140\) 5.10975e9 1.12415
\(141\) −1.14545e9 −0.244056
\(142\) 1.52052e9 0.313831
\(143\) 0 0
\(144\) 1.55200e9 0.300787
\(145\) 8.55556e9 1.60728
\(146\) −4.39053e9 −0.799704
\(147\) −2.14840e10 −3.79478
\(148\) −1.78892e9 −0.306487
\(149\) −6.78910e8 −0.112843 −0.0564214 0.998407i \(-0.517969\pi\)
−0.0564214 + 0.998407i \(0.517969\pi\)
\(150\) 2.74132e9 0.442128
\(151\) 1.04399e10 1.63418 0.817089 0.576512i \(-0.195587\pi\)
0.817089 + 0.576512i \(0.195587\pi\)
\(152\) −2.90665e9 −0.441668
\(153\) −1.02030e10 −1.50527
\(154\) 1.02959e10 1.47510
\(155\) −6.51294e9 −0.906326
\(156\) 0 0
\(157\) −1.24661e9 −0.163750 −0.0818749 0.996643i \(-0.526091\pi\)
−0.0818749 + 0.996643i \(0.526091\pi\)
\(158\) 9.47036e8 0.120895
\(159\) −5.85937e9 −0.727049
\(160\) −1.74703e9 −0.210747
\(161\) −9.30215e9 −1.09111
\(162\) 4.68364e9 0.534276
\(163\) 7.33517e9 0.813891 0.406945 0.913453i \(-0.366594\pi\)
0.406945 + 0.913453i \(0.366594\pi\)
\(164\) −1.77409e9 −0.191504
\(165\) 1.86360e10 1.95738
\(166\) −2.43138e9 −0.248523
\(167\) 2.57636e9 0.256320 0.128160 0.991753i \(-0.459093\pi\)
0.128160 + 0.991753i \(0.459093\pi\)
\(168\) 1.02185e10 0.989681
\(169\) 0 0
\(170\) 1.14851e10 1.05467
\(171\) 1.68052e10 1.50301
\(172\) 8.59373e9 0.748693
\(173\) −1.18751e10 −1.00793 −0.503964 0.863725i \(-0.668126\pi\)
−0.503964 + 0.863725i \(0.668126\pi\)
\(174\) 1.71094e10 1.41502
\(175\) 9.85668e9 0.794437
\(176\) −3.52018e9 −0.276540
\(177\) 2.11333e10 1.61841
\(178\) −9.66627e9 −0.721720
\(179\) 8.54356e9 0.622014 0.311007 0.950408i \(-0.399334\pi\)
0.311007 + 0.950408i \(0.399334\pi\)
\(180\) 1.01007e10 0.717175
\(181\) 1.31871e10 0.913265 0.456632 0.889655i \(-0.349055\pi\)
0.456632 + 0.889655i \(0.349055\pi\)
\(182\) 0 0
\(183\) −2.96321e8 −0.0195314
\(184\) 3.18042e9 0.204552
\(185\) −1.16426e10 −0.730765
\(186\) −1.30246e10 −0.797914
\(187\) 2.31420e10 1.38393
\(188\) 1.40814e9 0.0822123
\(189\) −9.97548e9 −0.568664
\(190\) −1.89170e10 −1.05308
\(191\) −2.68121e9 −0.145774 −0.0728872 0.997340i \(-0.523221\pi\)
−0.0728872 + 0.997340i \(0.523221\pi\)
\(192\) −3.49372e9 −0.185538
\(193\) −2.94629e10 −1.52851 −0.764253 0.644916i \(-0.776892\pi\)
−0.764253 + 0.644916i \(0.776892\pi\)
\(194\) −2.32787e10 −1.17992
\(195\) 0 0
\(196\) 2.64111e10 1.27830
\(197\) −1.50666e9 −0.0712718 −0.0356359 0.999365i \(-0.511346\pi\)
−0.0356359 + 0.999365i \(0.511346\pi\)
\(198\) 2.03524e10 0.941072
\(199\) −1.94000e10 −0.876928 −0.438464 0.898749i \(-0.644477\pi\)
−0.438464 + 0.898749i \(0.644477\pi\)
\(200\) −3.37001e9 −0.148935
\(201\) 1.16949e10 0.505376
\(202\) 2.54161e9 0.107406
\(203\) 6.15187e10 2.54258
\(204\) 2.29680e10 0.928511
\(205\) −1.15461e10 −0.456608
\(206\) 5.99290e9 0.231864
\(207\) −1.83880e10 −0.696095
\(208\) 0 0
\(209\) −3.81169e10 −1.38184
\(210\) 6.65039e10 2.35972
\(211\) 3.99058e10 1.38600 0.693002 0.720936i \(-0.256288\pi\)
0.693002 + 0.720936i \(0.256288\pi\)
\(212\) 7.20316e9 0.244913
\(213\) 1.97898e10 0.658768
\(214\) 2.80923e10 0.915641
\(215\) 5.59297e10 1.78513
\(216\) 3.41063e9 0.106609
\(217\) −4.68313e10 −1.43373
\(218\) 3.15089e9 0.0944886
\(219\) −5.71432e10 −1.67867
\(220\) −2.29100e10 −0.659361
\(221\) 0 0
\(222\) −2.32829e10 −0.643353
\(223\) −3.03167e10 −0.820936 −0.410468 0.911875i \(-0.634635\pi\)
−0.410468 + 0.911875i \(0.634635\pi\)
\(224\) −1.25620e10 −0.333383
\(225\) 1.94842e10 0.506828
\(226\) −2.16191e10 −0.551252
\(227\) −1.19536e9 −0.0298802 −0.0149401 0.999888i \(-0.504756\pi\)
−0.0149401 + 0.999888i \(0.504756\pi\)
\(228\) −3.78303e10 −0.927113
\(229\) −2.38819e10 −0.573865 −0.286932 0.957951i \(-0.592636\pi\)
−0.286932 + 0.957951i \(0.592636\pi\)
\(230\) 2.06988e10 0.487719
\(231\) 1.34002e11 3.09641
\(232\) −2.10333e10 −0.476663
\(233\) −7.69294e10 −1.70998 −0.854989 0.518646i \(-0.826436\pi\)
−0.854989 + 0.518646i \(0.826436\pi\)
\(234\) 0 0
\(235\) 9.16448e9 0.196021
\(236\) −2.59801e10 −0.545175
\(237\) 1.23258e10 0.253774
\(238\) 8.25838e10 1.66839
\(239\) 3.25919e10 0.646129 0.323064 0.946377i \(-0.395287\pi\)
0.323064 + 0.946377i \(0.395287\pi\)
\(240\) −2.27378e10 −0.442382
\(241\) −7.51023e10 −1.43409 −0.717045 0.697027i \(-0.754506\pi\)
−0.717045 + 0.697027i \(0.754506\pi\)
\(242\) −8.43545e9 −0.158103
\(243\) 7.73476e10 1.42304
\(244\) 3.64280e8 0.00657932
\(245\) 1.71889e11 3.04789
\(246\) −2.30899e10 −0.401989
\(247\) 0 0
\(248\) 1.60117e10 0.268784
\(249\) −3.16447e10 −0.521679
\(250\) 3.01329e10 0.487877
\(251\) 4.28794e10 0.681895 0.340947 0.940082i \(-0.389252\pi\)
0.340947 + 0.940082i \(0.389252\pi\)
\(252\) 7.26290e10 1.13451
\(253\) 4.17070e10 0.639981
\(254\) −4.35812e10 −0.656973
\(255\) 1.49480e11 2.21387
\(256\) 4.29497e9 0.0625000
\(257\) −1.24210e11 −1.77605 −0.888027 0.459791i \(-0.847924\pi\)
−0.888027 + 0.459791i \(0.847924\pi\)
\(258\) 1.11848e11 1.57159
\(259\) −8.37162e10 −1.15601
\(260\) 0 0
\(261\) 1.21607e11 1.62210
\(262\) −4.42609e10 −0.580316
\(263\) 4.93843e10 0.636485 0.318243 0.948009i \(-0.396907\pi\)
0.318243 + 0.948009i \(0.396907\pi\)
\(264\) −4.58155e10 −0.580490
\(265\) 4.68796e10 0.583952
\(266\) −1.36023e11 −1.66588
\(267\) −1.25808e11 −1.51498
\(268\) −1.43770e10 −0.170240
\(269\) 1.66947e10 0.194399 0.0971996 0.995265i \(-0.469011\pi\)
0.0971996 + 0.995265i \(0.469011\pi\)
\(270\) 2.21970e10 0.254190
\(271\) 7.23487e10 0.814834 0.407417 0.913242i \(-0.366430\pi\)
0.407417 + 0.913242i \(0.366430\pi\)
\(272\) −2.82355e10 −0.312777
\(273\) 0 0
\(274\) 4.12828e10 0.442478
\(275\) −4.41933e10 −0.465972
\(276\) 4.13935e10 0.429379
\(277\) 2.14905e10 0.219325 0.109663 0.993969i \(-0.465023\pi\)
0.109663 + 0.993969i \(0.465023\pi\)
\(278\) −2.35909e10 −0.236888
\(279\) −9.25737e10 −0.914679
\(280\) −8.17560e10 −0.794893
\(281\) 1.18358e11 1.13245 0.566224 0.824251i \(-0.308404\pi\)
0.566224 + 0.824251i \(0.308404\pi\)
\(282\) 1.83271e10 0.172573
\(283\) 1.57858e11 1.46294 0.731471 0.681873i \(-0.238834\pi\)
0.731471 + 0.681873i \(0.238834\pi\)
\(284\) −2.43284e10 −0.221912
\(285\) −2.46207e11 −2.21054
\(286\) 0 0
\(287\) −8.30222e10 −0.722313
\(288\) −2.48319e10 −0.212689
\(289\) 6.70347e10 0.565275
\(290\) −1.36889e11 −1.13652
\(291\) −3.02975e11 −2.47679
\(292\) 7.02485e10 0.565476
\(293\) −4.39162e9 −0.0348113 −0.0174057 0.999849i \(-0.505541\pi\)
−0.0174057 + 0.999849i \(0.505541\pi\)
\(294\) 3.43743e11 2.68331
\(295\) −1.69083e11 −1.29988
\(296\) 2.86227e10 0.216719
\(297\) 4.47260e10 0.333546
\(298\) 1.08626e10 0.0797919
\(299\) 0 0
\(300\) −4.38610e10 −0.312632
\(301\) 4.02162e11 2.82392
\(302\) −1.67038e11 −1.15554
\(303\) 3.30793e10 0.225457
\(304\) 4.65063e10 0.312306
\(305\) 2.37080e9 0.0156872
\(306\) 1.63247e11 1.06439
\(307\) −3.04196e11 −1.95448 −0.977239 0.212140i \(-0.931957\pi\)
−0.977239 + 0.212140i \(0.931957\pi\)
\(308\) −1.64734e11 −1.04305
\(309\) 7.79982e10 0.486711
\(310\) 1.04207e11 0.640870
\(311\) 2.34858e11 1.42359 0.711794 0.702389i \(-0.247883\pi\)
0.711794 + 0.702389i \(0.247883\pi\)
\(312\) 0 0
\(313\) 1.72269e11 1.01452 0.507258 0.861794i \(-0.330659\pi\)
0.507258 + 0.861794i \(0.330659\pi\)
\(314\) 1.99457e10 0.115789
\(315\) 4.72684e11 2.70504
\(316\) −1.51526e10 −0.0854859
\(317\) 2.91539e11 1.62155 0.810775 0.585358i \(-0.199046\pi\)
0.810775 + 0.585358i \(0.199046\pi\)
\(318\) 9.37499e10 0.514101
\(319\) −2.75825e11 −1.49133
\(320\) 2.79525e10 0.149020
\(321\) 3.65624e11 1.92204
\(322\) 1.48834e11 0.771528
\(323\) −3.05737e11 −1.56292
\(324\) −7.49382e10 −0.377790
\(325\) 0 0
\(326\) −1.17363e11 −0.575508
\(327\) 4.10092e10 0.198343
\(328\) 2.83854e10 0.135414
\(329\) 6.58971e10 0.310088
\(330\) −2.98176e11 −1.38408
\(331\) −2.19848e11 −1.00669 −0.503346 0.864085i \(-0.667898\pi\)
−0.503346 + 0.864085i \(0.667898\pi\)
\(332\) 3.89021e10 0.175732
\(333\) −1.65486e11 −0.737500
\(334\) −4.12218e10 −0.181246
\(335\) −9.35684e10 −0.405908
\(336\) −1.63496e11 −0.699810
\(337\) 3.17624e10 0.134146 0.0670732 0.997748i \(-0.478634\pi\)
0.0670732 + 0.997748i \(0.478634\pi\)
\(338\) 0 0
\(339\) −2.81375e11 −1.15714
\(340\) −1.83762e11 −0.745763
\(341\) 2.09972e11 0.840944
\(342\) −2.68883e11 −1.06279
\(343\) 7.52525e11 2.93560
\(344\) −1.37500e11 −0.529406
\(345\) 2.69397e11 1.02378
\(346\) 1.90001e11 0.712713
\(347\) 2.95477e11 1.09406 0.547030 0.837113i \(-0.315758\pi\)
0.547030 + 0.837113i \(0.315758\pi\)
\(348\) −2.73751e11 −1.00057
\(349\) 5.13586e10 0.185310 0.0926550 0.995698i \(-0.470465\pi\)
0.0926550 + 0.995698i \(0.470465\pi\)
\(350\) −1.57707e11 −0.561752
\(351\) 0 0
\(352\) 5.63229e10 0.195543
\(353\) 3.81104e11 1.30634 0.653172 0.757209i \(-0.273438\pi\)
0.653172 + 0.757209i \(0.273438\pi\)
\(354\) −3.38133e11 −1.14439
\(355\) −1.58334e11 −0.529110
\(356\) 1.54660e11 0.510333
\(357\) 1.07484e12 3.50215
\(358\) −1.36697e11 −0.439831
\(359\) 5.69015e11 1.80800 0.904001 0.427530i \(-0.140616\pi\)
0.904001 + 0.427530i \(0.140616\pi\)
\(360\) −1.61611e11 −0.507119
\(361\) 1.80887e11 0.560565
\(362\) −2.10994e11 −0.645776
\(363\) −1.09788e11 −0.331876
\(364\) 0 0
\(365\) 4.57191e11 1.34828
\(366\) 4.74114e9 0.0138108
\(367\) −1.39298e11 −0.400817 −0.200409 0.979712i \(-0.564227\pi\)
−0.200409 + 0.979712i \(0.564227\pi\)
\(368\) −5.08867e10 −0.144640
\(369\) −1.64114e11 −0.460816
\(370\) 1.86282e11 0.516729
\(371\) 3.37087e11 0.923761
\(372\) 2.08394e11 0.564211
\(373\) 3.73405e11 0.998827 0.499414 0.866364i \(-0.333549\pi\)
0.499414 + 0.866364i \(0.333549\pi\)
\(374\) −3.70272e11 −0.978585
\(375\) 3.92182e11 1.02411
\(376\) −2.25303e10 −0.0581329
\(377\) 0 0
\(378\) 1.59608e11 0.402106
\(379\) 5.33114e11 1.32722 0.663611 0.748078i \(-0.269023\pi\)
0.663611 + 0.748078i \(0.269023\pi\)
\(380\) 3.02672e11 0.744640
\(381\) −5.67214e11 −1.37906
\(382\) 4.28994e10 0.103078
\(383\) 7.34355e11 1.74386 0.871929 0.489632i \(-0.162869\pi\)
0.871929 + 0.489632i \(0.162869\pi\)
\(384\) 5.58994e10 0.131195
\(385\) −1.07212e12 −2.48698
\(386\) 4.71406e11 1.08082
\(387\) 7.94973e11 1.80158
\(388\) 3.72460e11 0.834328
\(389\) −5.51944e11 −1.22214 −0.611072 0.791575i \(-0.709261\pi\)
−0.611072 + 0.791575i \(0.709261\pi\)
\(390\) 0 0
\(391\) 3.34533e11 0.723842
\(392\) −4.22578e11 −0.903898
\(393\) −5.76060e11 −1.21815
\(394\) 2.41066e10 0.0503968
\(395\) −9.86159e10 −0.203826
\(396\) −3.25639e11 −0.665438
\(397\) 2.52178e11 0.509506 0.254753 0.967006i \(-0.418006\pi\)
0.254753 + 0.967006i \(0.418006\pi\)
\(398\) 3.10401e11 0.620082
\(399\) −1.77035e12 −3.49688
\(400\) 5.39202e10 0.105313
\(401\) −7.26470e11 −1.40303 −0.701517 0.712653i \(-0.747494\pi\)
−0.701517 + 0.712653i \(0.747494\pi\)
\(402\) −1.87118e11 −0.357354
\(403\) 0 0
\(404\) −4.06657e10 −0.0759473
\(405\) −4.87713e11 −0.900775
\(406\) −9.84299e11 −1.79788
\(407\) 3.75349e11 0.678048
\(408\) −3.67488e11 −0.656557
\(409\) 4.76686e11 0.842320 0.421160 0.906986i \(-0.361623\pi\)
0.421160 + 0.906986i \(0.361623\pi\)
\(410\) 1.84738e11 0.322870
\(411\) 5.37300e11 0.928813
\(412\) −9.58863e10 −0.163953
\(413\) −1.21579e12 −2.05629
\(414\) 2.94208e11 0.492213
\(415\) 2.53182e11 0.419003
\(416\) 0 0
\(417\) −3.07038e11 −0.497256
\(418\) 6.09870e11 0.977111
\(419\) 7.22556e10 0.114527 0.0572636 0.998359i \(-0.481762\pi\)
0.0572636 + 0.998359i \(0.481762\pi\)
\(420\) −1.06406e12 −1.66857
\(421\) −8.42735e11 −1.30744 −0.653719 0.756737i \(-0.726792\pi\)
−0.653719 + 0.756737i \(0.726792\pi\)
\(422\) −6.38492e11 −0.980053
\(423\) 1.30262e11 0.197827
\(424\) −1.15251e11 −0.173180
\(425\) −3.54476e11 −0.527032
\(426\) −3.16636e11 −0.465819
\(427\) 1.70473e10 0.0248158
\(428\) −4.49477e11 −0.647456
\(429\) 0 0
\(430\) −8.94875e11 −1.26228
\(431\) −1.08748e12 −1.51801 −0.759004 0.651086i \(-0.774314\pi\)
−0.759004 + 0.651086i \(0.774314\pi\)
\(432\) −5.45701e10 −0.0753837
\(433\) −3.73018e11 −0.509958 −0.254979 0.966947i \(-0.582069\pi\)
−0.254979 + 0.966947i \(0.582069\pi\)
\(434\) 7.49301e11 1.01380
\(435\) −1.78162e12 −2.38569
\(436\) −5.04143e10 −0.0668135
\(437\) −5.51006e11 −0.722753
\(438\) 9.14291e11 1.18700
\(439\) 7.46105e11 0.958759 0.479379 0.877608i \(-0.340862\pi\)
0.479379 + 0.877608i \(0.340862\pi\)
\(440\) 3.66560e11 0.466239
\(441\) 2.44319e12 3.07598
\(442\) 0 0
\(443\) −6.23115e11 −0.768691 −0.384345 0.923189i \(-0.625573\pi\)
−0.384345 + 0.923189i \(0.625573\pi\)
\(444\) 3.72527e11 0.454919
\(445\) 1.00656e12 1.21680
\(446\) 4.85067e11 0.580490
\(447\) 1.41377e11 0.167493
\(448\) 2.00992e11 0.235737
\(449\) −1.88104e11 −0.218419 −0.109209 0.994019i \(-0.534832\pi\)
−0.109209 + 0.994019i \(0.534832\pi\)
\(450\) −3.11747e11 −0.358382
\(451\) 3.72238e11 0.423668
\(452\) 3.45906e11 0.389794
\(453\) −2.17402e12 −2.42561
\(454\) 1.91258e10 0.0211285
\(455\) 0 0
\(456\) 6.05285e11 0.655568
\(457\) −1.38987e11 −0.149057 −0.0745286 0.997219i \(-0.523745\pi\)
−0.0745286 + 0.997219i \(0.523745\pi\)
\(458\) 3.82111e11 0.405784
\(459\) 3.58748e11 0.377253
\(460\) −3.31180e11 −0.344869
\(461\) 2.01094e11 0.207369 0.103685 0.994610i \(-0.466937\pi\)
0.103685 + 0.994610i \(0.466937\pi\)
\(462\) −2.14404e12 −2.18949
\(463\) −9.58309e11 −0.969151 −0.484575 0.874750i \(-0.661026\pi\)
−0.484575 + 0.874750i \(0.661026\pi\)
\(464\) 3.36533e11 0.337052
\(465\) 1.35627e12 1.34526
\(466\) 1.23087e12 1.20914
\(467\) 1.72451e12 1.67780 0.838902 0.544283i \(-0.183198\pi\)
0.838902 + 0.544283i \(0.183198\pi\)
\(468\) 0 0
\(469\) −6.72803e11 −0.642111
\(470\) −1.46632e11 −0.138608
\(471\) 2.59595e11 0.243054
\(472\) 4.15681e11 0.385497
\(473\) −1.80313e12 −1.65635
\(474\) −1.97212e11 −0.179445
\(475\) 5.83853e11 0.526238
\(476\) −1.32134e12 −1.17973
\(477\) 6.66337e11 0.589334
\(478\) −5.21470e11 −0.456882
\(479\) −3.72242e11 −0.323084 −0.161542 0.986866i \(-0.551647\pi\)
−0.161542 + 0.986866i \(0.551647\pi\)
\(480\) 3.63804e11 0.312811
\(481\) 0 0
\(482\) 1.20164e12 1.01406
\(483\) 1.93710e12 1.61953
\(484\) 1.34967e11 0.111795
\(485\) 2.42404e12 1.98931
\(486\) −1.23756e12 −1.00624
\(487\) 8.51374e11 0.685867 0.342934 0.939360i \(-0.388579\pi\)
0.342934 + 0.939360i \(0.388579\pi\)
\(488\) −5.82848e9 −0.00465228
\(489\) −1.52749e12 −1.20806
\(490\) −2.75022e12 −2.15519
\(491\) −9.31183e11 −0.723050 −0.361525 0.932362i \(-0.617744\pi\)
−0.361525 + 0.932362i \(0.617744\pi\)
\(492\) 3.69439e11 0.284249
\(493\) −2.21240e12 −1.68676
\(494\) 0 0
\(495\) −2.11932e12 −1.58662
\(496\) −2.56187e11 −0.190059
\(497\) −1.13850e12 −0.837006
\(498\) 5.06315e11 0.368883
\(499\) 1.50725e12 1.08826 0.544129 0.839002i \(-0.316860\pi\)
0.544129 + 0.839002i \(0.316860\pi\)
\(500\) −4.82126e11 −0.344981
\(501\) −5.36506e11 −0.380456
\(502\) −6.86071e11 −0.482172
\(503\) 1.81828e12 1.26650 0.633250 0.773947i \(-0.281720\pi\)
0.633250 + 0.773947i \(0.281720\pi\)
\(504\) −1.16206e12 −0.802218
\(505\) −2.64660e11 −0.181083
\(506\) −6.67312e11 −0.452535
\(507\) 0 0
\(508\) 6.97299e11 0.464550
\(509\) −2.23212e12 −1.47397 −0.736984 0.675910i \(-0.763751\pi\)
−0.736984 + 0.675910i \(0.763751\pi\)
\(510\) −2.39168e12 −1.56544
\(511\) 3.28743e12 2.13286
\(512\) −6.87195e10 −0.0441942
\(513\) −5.90890e11 −0.376685
\(514\) 1.98735e12 1.25586
\(515\) −6.24047e11 −0.390917
\(516\) −1.78957e12 −1.11129
\(517\) −2.95456e11 −0.181880
\(518\) 1.33946e12 0.817420
\(519\) 2.47289e12 1.49607
\(520\) 0 0
\(521\) −1.52179e12 −0.904865 −0.452433 0.891799i \(-0.649444\pi\)
−0.452433 + 0.891799i \(0.649444\pi\)
\(522\) −1.94571e12 −1.14699
\(523\) 3.35095e11 0.195844 0.0979221 0.995194i \(-0.468780\pi\)
0.0979221 + 0.995194i \(0.468780\pi\)
\(524\) 7.08174e11 0.410345
\(525\) −2.05257e12 −1.17918
\(526\) −7.90149e11 −0.450063
\(527\) 1.68419e12 0.951140
\(528\) 7.33049e11 0.410469
\(529\) −1.19825e12 −0.665268
\(530\) −7.50073e11 −0.412916
\(531\) −2.40332e12 −1.31185
\(532\) 2.17636e12 1.17796
\(533\) 0 0
\(534\) 2.01292e12 1.07125
\(535\) −2.92528e12 −1.54375
\(536\) 2.30032e11 0.120378
\(537\) −1.77913e12 −0.923257
\(538\) −2.67116e11 −0.137461
\(539\) −5.54156e12 −2.82802
\(540\) −3.55153e11 −0.179739
\(541\) 1.84448e12 0.925734 0.462867 0.886428i \(-0.346821\pi\)
0.462867 + 0.886428i \(0.346821\pi\)
\(542\) −1.15758e12 −0.576174
\(543\) −2.74611e12 −1.35556
\(544\) 4.51768e11 0.221167
\(545\) −3.28106e11 −0.159305
\(546\) 0 0
\(547\) −1.90323e12 −0.908966 −0.454483 0.890755i \(-0.650176\pi\)
−0.454483 + 0.890755i \(0.650176\pi\)
\(548\) −6.60524e11 −0.312879
\(549\) 3.36982e10 0.0158318
\(550\) 7.07093e11 0.329492
\(551\) 3.64401e12 1.68422
\(552\) −6.62295e11 −0.303617
\(553\) −7.09097e11 −0.322435
\(554\) −3.43849e11 −0.155086
\(555\) 2.42448e12 1.08468
\(556\) 3.77454e11 0.167505
\(557\) 1.73780e12 0.764982 0.382491 0.923959i \(-0.375066\pi\)
0.382491 + 0.923959i \(0.375066\pi\)
\(558\) 1.48118e12 0.646776
\(559\) 0 0
\(560\) 1.30810e12 0.562074
\(561\) −4.81913e12 −2.05417
\(562\) −1.89372e12 −0.800762
\(563\) 4.07227e12 1.70824 0.854121 0.520075i \(-0.174096\pi\)
0.854121 + 0.520075i \(0.174096\pi\)
\(564\) −2.93234e11 −0.122028
\(565\) 2.25122e12 0.929396
\(566\) −2.52573e12 −1.03446
\(567\) −3.50690e12 −1.42495
\(568\) 3.89254e11 0.156915
\(569\) 2.37343e12 0.949231 0.474615 0.880193i \(-0.342587\pi\)
0.474615 + 0.880193i \(0.342587\pi\)
\(570\) 3.93931e12 1.56309
\(571\) −2.38248e12 −0.937924 −0.468962 0.883218i \(-0.655372\pi\)
−0.468962 + 0.883218i \(0.655372\pi\)
\(572\) 0 0
\(573\) 5.58340e11 0.216373
\(574\) 1.32836e12 0.510753
\(575\) −6.38845e11 −0.243719
\(576\) 3.97311e11 0.150394
\(577\) −2.45216e12 −0.920998 −0.460499 0.887660i \(-0.652329\pi\)
−0.460499 + 0.887660i \(0.652329\pi\)
\(578\) −1.07256e12 −0.399709
\(579\) 6.13540e12 2.26876
\(580\) 2.19022e12 0.803641
\(581\) 1.82051e12 0.662826
\(582\) 4.84760e12 1.75135
\(583\) −1.51136e12 −0.541826
\(584\) −1.12398e12 −0.399852
\(585\) 0 0
\(586\) 7.02660e10 0.0246153
\(587\) 2.54616e12 0.885146 0.442573 0.896732i \(-0.354066\pi\)
0.442573 + 0.896732i \(0.354066\pi\)
\(588\) −5.49989e12 −1.89739
\(589\) −2.77402e12 −0.949708
\(590\) 2.70533e12 0.919151
\(591\) 3.13750e11 0.105789
\(592\) −4.57963e11 −0.153244
\(593\) 2.24693e12 0.746180 0.373090 0.927795i \(-0.378298\pi\)
0.373090 + 0.927795i \(0.378298\pi\)
\(594\) −7.15615e11 −0.235853
\(595\) −8.59954e12 −2.81286
\(596\) −1.73801e11 −0.0564214
\(597\) 4.03990e12 1.30163
\(598\) 0 0
\(599\) 3.22395e12 1.02322 0.511608 0.859219i \(-0.329050\pi\)
0.511608 + 0.859219i \(0.329050\pi\)
\(600\) 7.01777e11 0.221064
\(601\) −2.70440e12 −0.845542 −0.422771 0.906237i \(-0.638943\pi\)
−0.422771 + 0.906237i \(0.638943\pi\)
\(602\) −6.43459e12 −1.99681
\(603\) −1.32996e12 −0.409649
\(604\) 2.67261e12 0.817089
\(605\) 8.78393e11 0.266557
\(606\) −5.29269e11 −0.159422
\(607\) 5.66961e12 1.69513 0.847566 0.530689i \(-0.178067\pi\)
0.847566 + 0.530689i \(0.178067\pi\)
\(608\) −7.44101e11 −0.220834
\(609\) −1.28108e13 −3.77396
\(610\) −3.79329e10 −0.0110926
\(611\) 0 0
\(612\) −2.61196e12 −0.752636
\(613\) 6.10591e12 1.74654 0.873269 0.487238i \(-0.161996\pi\)
0.873269 + 0.487238i \(0.161996\pi\)
\(614\) 4.86714e12 1.38203
\(615\) 2.40438e12 0.677743
\(616\) 2.63575e12 0.737550
\(617\) 4.76455e12 1.32355 0.661773 0.749705i \(-0.269804\pi\)
0.661773 + 0.749705i \(0.269804\pi\)
\(618\) −1.24797e12 −0.344157
\(619\) 3.87180e12 1.06000 0.530000 0.847998i \(-0.322192\pi\)
0.530000 + 0.847998i \(0.322192\pi\)
\(620\) −1.66731e12 −0.453163
\(621\) 6.46545e11 0.174456
\(622\) −3.75773e12 −1.00663
\(623\) 7.23766e12 1.92487
\(624\) 0 0
\(625\) −4.74472e12 −1.24380
\(626\) −2.75631e12 −0.717371
\(627\) 7.93752e12 2.05107
\(628\) −3.19131e11 −0.0818749
\(629\) 3.01069e12 0.766898
\(630\) −7.56294e12 −1.91275
\(631\) 6.74330e12 1.69333 0.846663 0.532130i \(-0.178608\pi\)
0.846663 + 0.532130i \(0.178608\pi\)
\(632\) 2.42441e11 0.0604477
\(633\) −8.31004e12 −2.05725
\(634\) −4.66463e12 −1.14661
\(635\) 4.53816e12 1.10764
\(636\) −1.50000e12 −0.363524
\(637\) 0 0
\(638\) 4.41319e12 1.05453
\(639\) −2.25052e12 −0.533986
\(640\) −4.47240e11 −0.105373
\(641\) 3.63572e12 0.850609 0.425304 0.905050i \(-0.360167\pi\)
0.425304 + 0.905050i \(0.360167\pi\)
\(642\) −5.84999e12 −1.35909
\(643\) 1.03213e12 0.238113 0.119057 0.992887i \(-0.462013\pi\)
0.119057 + 0.992887i \(0.462013\pi\)
\(644\) −2.38135e12 −0.545553
\(645\) −1.16469e13 −2.64967
\(646\) 4.89179e12 1.10515
\(647\) −6.69734e12 −1.50256 −0.751282 0.659982i \(-0.770564\pi\)
−0.751282 + 0.659982i \(0.770564\pi\)
\(648\) 1.19901e12 0.267138
\(649\) 5.45112e12 1.20610
\(650\) 0 0
\(651\) 9.75222e12 2.12809
\(652\) 1.87780e12 0.406945
\(653\) −4.30745e12 −0.927066 −0.463533 0.886080i \(-0.653418\pi\)
−0.463533 + 0.886080i \(0.653418\pi\)
\(654\) −6.56147e11 −0.140249
\(655\) 4.60894e12 0.978396
\(656\) −4.54166e11 −0.0957519
\(657\) 6.49842e12 1.36070
\(658\) −1.05435e12 −0.219265
\(659\) 9.31298e11 0.192355 0.0961776 0.995364i \(-0.469338\pi\)
0.0961776 + 0.995364i \(0.469338\pi\)
\(660\) 4.77082e12 0.978691
\(661\) 2.47375e12 0.504022 0.252011 0.967724i \(-0.418908\pi\)
0.252011 + 0.967724i \(0.418908\pi\)
\(662\) 3.51757e12 0.711839
\(663\) 0 0
\(664\) −6.22434e11 −0.124262
\(665\) 1.41642e13 2.80863
\(666\) 2.64777e12 0.521491
\(667\) −3.98724e12 −0.780020
\(668\) 6.59549e11 0.128160
\(669\) 6.31319e12 1.21852
\(670\) 1.49709e12 0.287020
\(671\) −7.64329e10 −0.0145556
\(672\) 2.61593e12 0.494840
\(673\) 9.41332e12 1.76878 0.884392 0.466744i \(-0.154573\pi\)
0.884392 + 0.466744i \(0.154573\pi\)
\(674\) −5.08199e11 −0.0948559
\(675\) −6.85087e11 −0.127022
\(676\) 0 0
\(677\) −3.30199e10 −0.00604124 −0.00302062 0.999995i \(-0.500961\pi\)
−0.00302062 + 0.999995i \(0.500961\pi\)
\(678\) 4.50200e12 0.818224
\(679\) 1.74301e13 3.14691
\(680\) 2.94019e12 0.527334
\(681\) 2.48925e11 0.0443512
\(682\) −3.35956e12 −0.594638
\(683\) −1.13606e12 −0.199760 −0.0998799 0.995000i \(-0.531846\pi\)
−0.0998799 + 0.995000i \(0.531846\pi\)
\(684\) 4.30212e12 0.751503
\(685\) −4.29882e12 −0.746005
\(686\) −1.20404e13 −2.07579
\(687\) 4.97321e12 0.851788
\(688\) 2.19999e12 0.374346
\(689\) 0 0
\(690\) −4.31035e12 −0.723921
\(691\) −1.06529e13 −1.77752 −0.888761 0.458371i \(-0.848433\pi\)
−0.888761 + 0.458371i \(0.848433\pi\)
\(692\) −3.04002e12 −0.503964
\(693\) −1.52390e13 −2.50990
\(694\) −4.72764e12 −0.773618
\(695\) 2.45655e12 0.399386
\(696\) 4.38001e12 0.707512
\(697\) 2.98573e12 0.479185
\(698\) −8.21738e11 −0.131034
\(699\) 1.60199e13 2.53812
\(700\) 2.52331e12 0.397218
\(701\) −3.77795e12 −0.590915 −0.295458 0.955356i \(-0.595472\pi\)
−0.295458 + 0.955356i \(0.595472\pi\)
\(702\) 0 0
\(703\) −4.95886e12 −0.765743
\(704\) −9.01167e11 −0.138270
\(705\) −1.90843e12 −0.290954
\(706\) −6.09767e12 −0.923725
\(707\) −1.90304e12 −0.286458
\(708\) 5.41013e12 0.809204
\(709\) −1.07641e13 −1.59981 −0.799906 0.600125i \(-0.795117\pi\)
−0.799906 + 0.600125i \(0.795117\pi\)
\(710\) 2.53334e12 0.374137
\(711\) −1.40171e12 −0.205705
\(712\) −2.47457e12 −0.360860
\(713\) 3.03529e12 0.439843
\(714\) −1.71974e13 −2.47640
\(715\) 0 0
\(716\) 2.18715e12 0.311007
\(717\) −6.78699e12 −0.959049
\(718\) −9.10425e12 −1.27845
\(719\) 5.68657e11 0.0793543 0.0396771 0.999213i \(-0.487367\pi\)
0.0396771 + 0.999213i \(0.487367\pi\)
\(720\) 2.58578e12 0.358587
\(721\) −4.48721e12 −0.618397
\(722\) −2.89420e12 −0.396379
\(723\) 1.56394e13 2.12862
\(724\) 3.37591e12 0.456632
\(725\) 4.22493e12 0.567934
\(726\) 1.75661e12 0.234672
\(727\) −1.19679e13 −1.58897 −0.794483 0.607286i \(-0.792258\pi\)
−0.794483 + 0.607286i \(0.792258\pi\)
\(728\) 0 0
\(729\) −1.03452e13 −1.35665
\(730\) −7.31505e12 −0.953377
\(731\) −1.44630e13 −1.87339
\(732\) −7.58583e10 −0.00976569
\(733\) 2.48128e12 0.317474 0.158737 0.987321i \(-0.449258\pi\)
0.158737 + 0.987321i \(0.449258\pi\)
\(734\) 2.22876e12 0.283421
\(735\) −3.57944e13 −4.52399
\(736\) 8.14187e11 0.102276
\(737\) 3.01657e12 0.376626
\(738\) 2.62583e12 0.325846
\(739\) −2.00191e12 −0.246914 −0.123457 0.992350i \(-0.539398\pi\)
−0.123457 + 0.992350i \(0.539398\pi\)
\(740\) −2.98051e12 −0.365383
\(741\) 0 0
\(742\) −5.39340e12 −0.653198
\(743\) 1.38092e13 1.66234 0.831169 0.556020i \(-0.187672\pi\)
0.831169 + 0.556020i \(0.187672\pi\)
\(744\) −3.33430e12 −0.398957
\(745\) −1.13113e12 −0.134527
\(746\) −5.97448e12 −0.706278
\(747\) 3.59869e12 0.422864
\(748\) 5.92435e12 0.691964
\(749\) −2.10342e13 −2.44207
\(750\) −6.27492e12 −0.724156
\(751\) 9.14851e12 1.04947 0.524736 0.851265i \(-0.324164\pi\)
0.524736 + 0.851265i \(0.324164\pi\)
\(752\) 3.60485e11 0.0411062
\(753\) −8.92928e12 −1.01214
\(754\) 0 0
\(755\) 1.73939e13 1.94821
\(756\) −2.55372e12 −0.284332
\(757\) 8.63064e12 0.955237 0.477619 0.878567i \(-0.341500\pi\)
0.477619 + 0.878567i \(0.341500\pi\)
\(758\) −8.52982e12 −0.938487
\(759\) −8.68514e12 −0.949924
\(760\) −4.84275e12 −0.526540
\(761\) 1.59040e12 0.171900 0.0859498 0.996299i \(-0.472608\pi\)
0.0859498 + 0.996299i \(0.472608\pi\)
\(762\) 9.07542e12 0.975145
\(763\) −2.35924e12 −0.252007
\(764\) −6.86390e11 −0.0728872
\(765\) −1.69991e13 −1.79453
\(766\) −1.17497e13 −1.23309
\(767\) 0 0
\(768\) −8.94391e11 −0.0927688
\(769\) 3.83292e12 0.395241 0.197620 0.980279i \(-0.436679\pi\)
0.197620 + 0.980279i \(0.436679\pi\)
\(770\) 1.71540e13 1.75856
\(771\) 2.58656e13 2.63620
\(772\) −7.54250e12 −0.764253
\(773\) 1.60472e12 0.161656 0.0808281 0.996728i \(-0.474244\pi\)
0.0808281 + 0.996728i \(0.474244\pi\)
\(774\) −1.27196e13 −1.27391
\(775\) −3.21624e12 −0.320251
\(776\) −5.95936e12 −0.589959
\(777\) 1.74332e13 1.71586
\(778\) 8.83111e12 0.864186
\(779\) −4.91776e12 −0.478463
\(780\) 0 0
\(781\) 5.10456e12 0.490940
\(782\) −5.35253e12 −0.511834
\(783\) −4.27585e12 −0.406532
\(784\) 6.76124e12 0.639152
\(785\) −2.07697e12 −0.195216
\(786\) 9.21696e12 0.861363
\(787\) 1.77959e13 1.65361 0.826806 0.562487i \(-0.190155\pi\)
0.826806 + 0.562487i \(0.190155\pi\)
\(788\) −3.85705e11 −0.0356359
\(789\) −1.02839e13 −0.944735
\(790\) 1.57785e12 0.144127
\(791\) 1.61874e13 1.47022
\(792\) 5.21022e12 0.470536
\(793\) 0 0
\(794\) −4.03484e12 −0.360275
\(795\) −9.76228e12 −0.866760
\(796\) −4.96641e12 −0.438464
\(797\) 4.01400e12 0.352383 0.176191 0.984356i \(-0.443622\pi\)
0.176191 + 0.984356i \(0.443622\pi\)
\(798\) 2.83256e13 2.47267
\(799\) −2.36986e12 −0.205713
\(800\) −8.62723e11 −0.0744674
\(801\) 1.43070e13 1.22801
\(802\) 1.16235e13 0.992095
\(803\) −1.47395e13 −1.25101
\(804\) 2.99389e12 0.252688
\(805\) −1.54983e13 −1.30078
\(806\) 0 0
\(807\) −3.47654e12 −0.288547
\(808\) 6.50652e11 0.0537029
\(809\) 9.72226e12 0.797993 0.398996 0.916953i \(-0.369359\pi\)
0.398996 + 0.916953i \(0.369359\pi\)
\(810\) 7.80340e12 0.636944
\(811\) 6.66026e12 0.540626 0.270313 0.962772i \(-0.412873\pi\)
0.270313 + 0.962772i \(0.412873\pi\)
\(812\) 1.57488e13 1.27129
\(813\) −1.50660e13 −1.20946
\(814\) −6.00558e12 −0.479452
\(815\) 1.22211e13 0.970290
\(816\) 5.87981e12 0.464256
\(817\) 2.38218e13 1.87057
\(818\) −7.62697e12 −0.595611
\(819\) 0 0
\(820\) −2.95580e12 −0.228304
\(821\) 1.89842e13 1.45830 0.729151 0.684353i \(-0.239915\pi\)
0.729151 + 0.684353i \(0.239915\pi\)
\(822\) −8.59679e12 −0.656770
\(823\) 6.62799e12 0.503596 0.251798 0.967780i \(-0.418978\pi\)
0.251798 + 0.967780i \(0.418978\pi\)
\(824\) 1.53418e12 0.115932
\(825\) 9.20289e12 0.691642
\(826\) 1.94527e13 1.45402
\(827\) −4.06874e12 −0.302472 −0.151236 0.988498i \(-0.548325\pi\)
−0.151236 + 0.988498i \(0.548325\pi\)
\(828\) −4.70733e12 −0.348047
\(829\) −1.67223e13 −1.22970 −0.614850 0.788644i \(-0.710784\pi\)
−0.614850 + 0.788644i \(0.710784\pi\)
\(830\) −4.05092e12 −0.296280
\(831\) −4.47523e12 −0.325545
\(832\) 0 0
\(833\) −4.44490e13 −3.19860
\(834\) 4.91261e12 0.351613
\(835\) 4.29247e12 0.305575
\(836\) −9.75792e12 −0.690922
\(837\) 3.25500e12 0.229238
\(838\) −1.15609e12 −0.0809829
\(839\) −3.95231e12 −0.275373 −0.137687 0.990476i \(-0.543967\pi\)
−0.137687 + 0.990476i \(0.543967\pi\)
\(840\) 1.70250e13 1.17986
\(841\) 1.18620e13 0.817665
\(842\) 1.34838e13 0.924499
\(843\) −2.46470e13 −1.68089
\(844\) 1.02159e13 0.693002
\(845\) 0 0
\(846\) −2.08419e12 −0.139885
\(847\) 6.31608e12 0.421669
\(848\) 1.84401e12 0.122456
\(849\) −3.28726e13 −2.17145
\(850\) 5.67162e12 0.372668
\(851\) 5.42593e12 0.354643
\(852\) 5.06618e12 0.329384
\(853\) −1.80193e12 −0.116538 −0.0582691 0.998301i \(-0.518558\pi\)
−0.0582691 + 0.998301i \(0.518558\pi\)
\(854\) −2.72756e11 −0.0175475
\(855\) 2.79991e13 1.79183
\(856\) 7.19163e12 0.457821
\(857\) −2.14106e13 −1.35586 −0.677929 0.735127i \(-0.737122\pi\)
−0.677929 + 0.735127i \(0.737122\pi\)
\(858\) 0 0
\(859\) 1.84429e13 1.15574 0.577869 0.816129i \(-0.303884\pi\)
0.577869 + 0.816129i \(0.303884\pi\)
\(860\) 1.43180e13 0.892563
\(861\) 1.72887e13 1.07213
\(862\) 1.73997e13 1.07339
\(863\) −1.24982e13 −0.767005 −0.383503 0.923540i \(-0.625282\pi\)
−0.383503 + 0.923540i \(0.625282\pi\)
\(864\) 8.73121e11 0.0533043
\(865\) −1.97851e13 −1.20161
\(866\) 5.96830e12 0.360595
\(867\) −1.39594e13 −0.839038
\(868\) −1.19888e13 −0.716865
\(869\) 3.17930e12 0.189122
\(870\) 2.85060e13 1.68694
\(871\) 0 0
\(872\) 8.06628e11 0.0472443
\(873\) 3.44548e13 2.00764
\(874\) 8.81609e12 0.511063
\(875\) −2.25621e13 −1.30120
\(876\) −1.46287e13 −0.839336
\(877\) 2.72954e13 1.55809 0.779043 0.626971i \(-0.215705\pi\)
0.779043 + 0.626971i \(0.215705\pi\)
\(878\) −1.19377e13 −0.677945
\(879\) 9.14519e11 0.0516705
\(880\) −5.86497e12 −0.329681
\(881\) 3.94286e12 0.220505 0.110253 0.993904i \(-0.464834\pi\)
0.110253 + 0.993904i \(0.464834\pi\)
\(882\) −3.90911e13 −2.17505
\(883\) 1.87096e13 1.03572 0.517859 0.855466i \(-0.326729\pi\)
0.517859 + 0.855466i \(0.326729\pi\)
\(884\) 0 0
\(885\) 3.52102e13 1.92941
\(886\) 9.96985e12 0.543546
\(887\) 1.16619e13 0.632576 0.316288 0.948663i \(-0.397563\pi\)
0.316288 + 0.948663i \(0.397563\pi\)
\(888\) −5.96043e12 −0.321676
\(889\) 3.26316e13 1.75219
\(890\) −1.61050e13 −0.860408
\(891\) 1.57235e13 0.835794
\(892\) −7.76106e12 −0.410468
\(893\) 3.90337e12 0.205403
\(894\) −2.26204e12 −0.118435
\(895\) 1.42344e13 0.741542
\(896\) −3.21587e12 −0.166691
\(897\) 0 0
\(898\) 3.00966e12 0.154445
\(899\) −2.00736e13 −1.02496
\(900\) 4.98795e12 0.253414
\(901\) −1.21227e13 −0.612826
\(902\) −5.95580e12 −0.299579
\(903\) −8.37469e13 −4.19154
\(904\) −5.53450e12 −0.275626
\(905\) 2.19711e13 1.08876
\(906\) 3.47843e13 1.71517
\(907\) −1.60523e13 −0.787599 −0.393799 0.919196i \(-0.628840\pi\)
−0.393799 + 0.919196i \(0.628840\pi\)
\(908\) −3.06013e11 −0.0149401
\(909\) −3.76183e12 −0.182752
\(910\) 0 0
\(911\) 2.26003e13 1.08713 0.543564 0.839368i \(-0.317075\pi\)
0.543564 + 0.839368i \(0.317075\pi\)
\(912\) −9.68455e12 −0.463557
\(913\) −8.16241e12 −0.388776
\(914\) 2.22380e12 0.105399
\(915\) −4.93700e11 −0.0232846
\(916\) −6.11377e12 −0.286932
\(917\) 3.31405e13 1.54774
\(918\) −5.73997e12 −0.266758
\(919\) 2.90227e13 1.34220 0.671102 0.741365i \(-0.265821\pi\)
0.671102 + 0.741365i \(0.265821\pi\)
\(920\) 5.29888e12 0.243859
\(921\) 6.33463e13 2.90103
\(922\) −3.21750e12 −0.146632
\(923\) 0 0
\(924\) 3.43046e13 1.54820
\(925\) −5.74939e12 −0.258216
\(926\) 1.53329e13 0.685293
\(927\) −8.87008e12 −0.394520
\(928\) −5.38453e12 −0.238332
\(929\) 1.99051e13 0.876784 0.438392 0.898784i \(-0.355548\pi\)
0.438392 + 0.898784i \(0.355548\pi\)
\(930\) −2.17003e13 −0.951243
\(931\) 7.32114e13 3.19378
\(932\) −1.96939e13 −0.854989
\(933\) −4.89073e13 −2.11303
\(934\) −2.75922e13 −1.18639
\(935\) 3.85568e13 1.64987
\(936\) 0 0
\(937\) 3.43703e13 1.45665 0.728326 0.685231i \(-0.240299\pi\)
0.728326 + 0.685231i \(0.240299\pi\)
\(938\) 1.07649e13 0.454041
\(939\) −3.58737e13 −1.50585
\(940\) 2.34611e12 0.0980105
\(941\) −2.03841e13 −0.847499 −0.423750 0.905779i \(-0.639286\pi\)
−0.423750 + 0.905779i \(0.639286\pi\)
\(942\) −4.15352e12 −0.171865
\(943\) 5.38095e12 0.221593
\(944\) −6.65090e12 −0.272588
\(945\) −1.66201e13 −0.677940
\(946\) 2.88501e13 1.17122
\(947\) −3.69932e13 −1.49467 −0.747337 0.664445i \(-0.768668\pi\)
−0.747337 + 0.664445i \(0.768668\pi\)
\(948\) 3.15540e12 0.126887
\(949\) 0 0
\(950\) −9.34165e12 −0.372106
\(951\) −6.07106e13 −2.40687
\(952\) 2.11414e13 0.834196
\(953\) 1.84856e13 0.725965 0.362982 0.931796i \(-0.381759\pi\)
0.362982 + 0.931796i \(0.381759\pi\)
\(954\) −1.06614e13 −0.416722
\(955\) −4.46716e12 −0.173787
\(956\) 8.34352e12 0.323064
\(957\) 5.74382e13 2.21359
\(958\) 5.95587e12 0.228455
\(959\) −3.09107e13 −1.18012
\(960\) −5.82087e12 −0.221191
\(961\) −1.11586e13 −0.422039
\(962\) 0 0
\(963\) −4.15794e13 −1.55797
\(964\) −1.92262e13 −0.717045
\(965\) −4.90880e13 −1.82223
\(966\) −3.09935e13 −1.14518
\(967\) 1.82143e13 0.669873 0.334937 0.942241i \(-0.391285\pi\)
0.334937 + 0.942241i \(0.391285\pi\)
\(968\) −2.15948e12 −0.0790513
\(969\) 6.36671e13 2.31984
\(970\) −3.87847e13 −1.40665
\(971\) 4.63902e12 0.167471 0.0837355 0.996488i \(-0.473315\pi\)
0.0837355 + 0.996488i \(0.473315\pi\)
\(972\) 1.98010e13 0.711522
\(973\) 1.76638e13 0.631794
\(974\) −1.36220e13 −0.484981
\(975\) 0 0
\(976\) 9.32557e10 0.00328966
\(977\) −7.68621e10 −0.00269890 −0.00134945 0.999999i \(-0.500430\pi\)
−0.00134945 + 0.999999i \(0.500430\pi\)
\(978\) 2.44398e13 0.854226
\(979\) −3.24507e13 −1.12902
\(980\) 4.40035e13 1.52395
\(981\) −4.66363e12 −0.160773
\(982\) 1.48989e13 0.511273
\(983\) −3.19134e13 −1.09014 −0.545069 0.838391i \(-0.683497\pi\)
−0.545069 + 0.838391i \(0.683497\pi\)
\(984\) −5.91102e12 −0.200995
\(985\) −2.51025e12 −0.0849676
\(986\) 3.53984e13 1.19272
\(987\) −1.37225e13 −0.460264
\(988\) 0 0
\(989\) −2.60655e13 −0.866328
\(990\) 3.39091e13 1.12191
\(991\) 1.95782e13 0.644824 0.322412 0.946600i \(-0.395506\pi\)
0.322412 + 0.946600i \(0.395506\pi\)
\(992\) 4.09899e12 0.134392
\(993\) 4.57815e13 1.49423
\(994\) 1.82160e13 0.591852
\(995\) −3.23224e13 −1.04544
\(996\) −8.10104e12 −0.260840
\(997\) 2.52846e12 0.0810452 0.0405226 0.999179i \(-0.487098\pi\)
0.0405226 + 0.999179i \(0.487098\pi\)
\(998\) −2.41159e13 −0.769514
\(999\) 5.81868e12 0.184833
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.m.1.2 10
13.2 odd 12 26.10.e.a.17.5 20
13.7 odd 12 26.10.e.a.23.5 yes 20
13.12 even 2 338.10.a.n.1.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.e.a.17.5 20 13.2 odd 12
26.10.e.a.23.5 yes 20 13.7 odd 12
338.10.a.m.1.2 10 1.1 even 1 trivial
338.10.a.n.1.2 10 13.12 even 2