Properties

Label 338.10
Level 338
Weight 10
Dimension 10522
Nonzero newspaces 8
Sturm bound 70980
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(70980\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(338))\).

Total New Old
Modular forms 32169 10522 21647
Cusp forms 31713 10522 21191
Eisenstein series 456 0 456

Trace form

\( 10522 q + 16 q^{2} - 156 q^{3} + 256 q^{4} + 870 q^{5} - 2496 q^{6} - 9160 q^{7} - 20480 q^{8} + 4653 q^{9} + 320640 q^{10} - 129828 q^{11} - 205824 q^{12} - 216864 q^{13} + 712448 q^{14} + 2251512 q^{15}+ \cdots + 20039913900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(338))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
338.10.a \(\chi_{338}(1, \cdot)\) 338.10.a.a 1 1
338.10.a.b 1
338.10.a.c 1
338.10.a.d 1
338.10.a.e 3
338.10.a.f 3
338.10.a.g 5
338.10.a.h 5
338.10.a.i 5
338.10.a.j 5
338.10.a.k 6
338.10.a.l 6
338.10.a.m 10
338.10.a.n 10
338.10.a.o 12
338.10.a.p 12
338.10.a.q 15
338.10.a.r 15
338.10.b \(\chi_{338}(337, \cdot)\) n/a 116 1
338.10.c \(\chi_{338}(191, \cdot)\) n/a 230 2
338.10.e \(\chi_{338}(23, \cdot)\) n/a 232 2
338.10.g \(\chi_{338}(27, \cdot)\) n/a 1644 12
338.10.h \(\chi_{338}(25, \cdot)\) n/a 1632 12
338.10.i \(\chi_{338}(3, \cdot)\) n/a 3288 24
338.10.k \(\chi_{338}(17, \cdot)\) n/a 3264 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(338))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(338)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)