Defining parameters
Level: | \( N \) | = | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | = | \( 10 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(70980\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(338))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32169 | 10522 | 21647 |
Cusp forms | 31713 | 10522 | 21191 |
Eisenstein series | 456 | 0 | 456 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(338))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
338.10.a | \(\chi_{338}(1, \cdot)\) | 338.10.a.a | 1 | 1 |
338.10.a.b | 1 | |||
338.10.a.c | 1 | |||
338.10.a.d | 1 | |||
338.10.a.e | 3 | |||
338.10.a.f | 3 | |||
338.10.a.g | 5 | |||
338.10.a.h | 5 | |||
338.10.a.i | 5 | |||
338.10.a.j | 5 | |||
338.10.a.k | 6 | |||
338.10.a.l | 6 | |||
338.10.a.m | 10 | |||
338.10.a.n | 10 | |||
338.10.a.o | 12 | |||
338.10.a.p | 12 | |||
338.10.a.q | 15 | |||
338.10.a.r | 15 | |||
338.10.b | \(\chi_{338}(337, \cdot)\) | n/a | 116 | 1 |
338.10.c | \(\chi_{338}(191, \cdot)\) | n/a | 230 | 2 |
338.10.e | \(\chi_{338}(23, \cdot)\) | n/a | 232 | 2 |
338.10.g | \(\chi_{338}(27, \cdot)\) | n/a | 1644 | 12 |
338.10.h | \(\chi_{338}(25, \cdot)\) | n/a | 1632 | 12 |
338.10.i | \(\chi_{338}(3, \cdot)\) | n/a | 3288 | 24 |
338.10.k | \(\chi_{338}(17, \cdot)\) | n/a | 3264 | 24 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(338))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_1(338)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)