Defining parameters
Level: | \( N \) | \(=\) | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 338.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(455\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(338))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 423 | 116 | 307 |
Cusp forms | 395 | 116 | 279 |
Eisenstein series | 28 | 0 | 28 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(103\) | \(28\) | \(75\) | \(96\) | \(28\) | \(68\) | \(7\) | \(0\) | \(7\) | |||
\(+\) | \(-\) | \(-\) | \(108\) | \(30\) | \(78\) | \(101\) | \(30\) | \(71\) | \(7\) | \(0\) | \(7\) | |||
\(-\) | \(+\) | \(-\) | \(107\) | \(31\) | \(76\) | \(100\) | \(31\) | \(69\) | \(7\) | \(0\) | \(7\) | |||
\(-\) | \(-\) | \(+\) | \(105\) | \(27\) | \(78\) | \(98\) | \(27\) | \(71\) | \(7\) | \(0\) | \(7\) | |||
Plus space | \(+\) | \(208\) | \(55\) | \(153\) | \(194\) | \(55\) | \(139\) | \(14\) | \(0\) | \(14\) | ||||
Minus space | \(-\) | \(215\) | \(61\) | \(154\) | \(201\) | \(61\) | \(140\) | \(14\) | \(0\) | \(14\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(338))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(338))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(338)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 2}\)