Properties

Label 338.10.a.m
Level $338$
Weight $10$
Character orbit 338.a
Self dual yes
Analytic conductor $174.082$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-160,-162,2560,3088] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} - 124193 x^{8} - 182380 x^{7} + 5434866119 x^{6} + 59076086702 x^{5} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10}\cdot 3\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 q^{2} + ( - \beta_1 - 16) q^{3} + 256 q^{4} + ( - \beta_{3} - 2 \beta_1 + 309) q^{5} + (16 \beta_1 + 256) q^{6} + ( - \beta_{7} + \beta_{4} + \cdots + 1136) q^{7} - 4096 q^{8} + (\beta_{6} + 2 \beta_{5} - \beta_{4} + \cdots + 5411) q^{9}+ \cdots + ( - 30180 \beta_{9} - 8398 \beta_{8} + \cdots + 20279919) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 160 q^{2} - 162 q^{3} + 2560 q^{4} + 3088 q^{5} + 2592 q^{6} + 11376 q^{7} - 40960 q^{8} + 54184 q^{9} - 49408 q^{10} - 8784 q^{11} - 41472 q^{12} - 182016 q^{14} + 357296 q^{15} + 655360 q^{16}+ \cdots + 199174752 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 2 x^{9} - 124193 x^{8} - 182380 x^{7} + 5434866119 x^{6} + 59076086702 x^{5} + \cdots + 20\!\cdots\!04 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 13\!\cdots\!57 \nu^{9} + \cdots + 10\!\cdots\!92 ) / 16\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 17\!\cdots\!77 \nu^{9} + \cdots + 58\!\cdots\!68 ) / 97\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 19\!\cdots\!31 \nu^{9} + \cdots + 13\!\cdots\!88 ) / 78\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 47\!\cdots\!75 \nu^{9} + \cdots - 32\!\cdots\!44 ) / 78\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 83\!\cdots\!93 \nu^{9} + \cdots - 15\!\cdots\!88 ) / 97\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 68\!\cdots\!13 \nu^{9} + \cdots + 40\!\cdots\!28 ) / 78\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 10\!\cdots\!25 \nu^{9} + \cdots + 37\!\cdots\!60 ) / 12\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 17\!\cdots\!27 \nu^{9} + \cdots + 18\!\cdots\!32 ) / 78\!\cdots\!52 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 2\beta_{5} - \beta_{4} - 2\beta_{3} + 3\beta_{2} + 5\beta _1 + 24838 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 11 \beta_{9} + 106 \beta_{8} - 132 \beta_{7} + 52 \beta_{6} - 105 \beta_{5} + 347 \beta_{4} + \cdots + 121990 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 11917 \beta_{9} + 6569 \beta_{8} + 17268 \beta_{7} + 71280 \beta_{6} + 93845 \beta_{5} + \cdots + 911246754 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 498568 \beta_{9} + 2722403 \beta_{8} - 8130432 \beta_{7} + 1106771 \beta_{6} - 5650398 \beta_{5} + \cdots - 8518391914 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 822775058 \beta_{9} + 386152714 \beta_{8} + 1083402768 \beta_{7} + 4220311979 \beta_{6} + \cdots + 37713409743242 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 1578207537 \beta_{9} - 39648991236 \beta_{8} - 408155284116 \beta_{7} - 60285746286 \beta_{6} + \cdots - 11\!\cdots\!42 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 46087993369659 \beta_{9} + 17043313583679 \beta_{8} + 58818259346292 \beta_{7} + 231528796948330 \beta_{6} + \cdots + 16\!\cdots\!26 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 15\!\cdots\!78 \beta_{9} + \cdots - 87\!\cdots\!18 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
212.520
192.242
167.269
137.089
−8.92175
−39.8286
−108.125
−129.854
−188.829
−231.562
−16.0000 −228.520 256.000 −1660.64 3656.31 737.048 −4096.00 32538.2 26570.2
1.2 −16.0000 −208.242 256.000 1666.10 3331.87 11980.1 −4096.00 23681.6 −26657.6
1.3 −16.0000 −183.269 256.000 −518.346 2932.31 −8697.72 −4096.00 13904.6 8293.53
1.4 −16.0000 −153.089 256.000 1938.97 2449.42 8817.58 −4096.00 3753.21 −31023.5
1.5 −16.0000 −7.07825 256.000 −302.293 113.252 −6519.27 −4096.00 −19632.9 4836.69
1.6 −16.0000 23.8286 256.000 683.525 −381.258 −4980.66 −4096.00 −19115.2 −10936.4
1.7 −16.0000 92.1245 256.000 −641.917 −1473.99 7255.53 −4096.00 −11196.1 10270.7
1.8 −16.0000 113.854 256.000 −2120.34 −1821.66 2716.31 −4096.00 −6720.36 33925.4
1.9 −16.0000 172.829 256.000 1469.33 −2765.26 4966.19 −4096.00 10186.8 −23509.2
1.10 −16.0000 215.562 256.000 2573.60 −3449.00 −4899.07 −4096.00 26784.1 −41177.7
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.10.a.m 10
13.b even 2 1 338.10.a.n 10
13.f odd 12 2 26.10.e.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.10.e.a 20 13.f odd 12 2
338.10.a.m 10 1.a even 1 1 trivial
338.10.a.n 10 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{10} + 162 T_{3}^{9} - 112385 T_{3}^{8} - 15204372 T_{3}^{7} + 4579527943 T_{3}^{6} + \cdots - 87\!\cdots\!28 \) Copy content Toggle raw display
\( T_{5}^{10} - 3088 T_{5}^{9} - 7137486 T_{5}^{8} + 25886451056 T_{5}^{7} + 11664060879169 T_{5}^{6} + \cdots - 29\!\cdots\!00 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 16)^{10} \) Copy content Toggle raw display
$3$ \( T^{10} + \cdots - 87\!\cdots\!28 \) Copy content Toggle raw display
$5$ \( T^{10} + \cdots - 29\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$11$ \( T^{10} + \cdots - 33\!\cdots\!32 \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 47\!\cdots\!37 \) Copy content Toggle raw display
$19$ \( T^{10} + \cdots + 61\!\cdots\!56 \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 14\!\cdots\!28 \) Copy content Toggle raw display
$29$ \( T^{10} + \cdots + 10\!\cdots\!53 \) Copy content Toggle raw display
$31$ \( T^{10} + \cdots + 46\!\cdots\!28 \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 16\!\cdots\!41 \) Copy content Toggle raw display
$41$ \( T^{10} + \cdots - 19\!\cdots\!71 \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots + 32\!\cdots\!52 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots + 35\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots - 22\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots - 73\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots + 22\!\cdots\!89 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots - 69\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots + 52\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 61\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 10\!\cdots\!12 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 24\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 59\!\cdots\!68 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 35\!\cdots\!08 \) Copy content Toggle raw display
show more
show less