Properties

Label 2-338-1.1-c9-0-7
Degree $2$
Conductor $338$
Sign $1$
Analytic cond. $174.082$
Root an. cond. $13.1940$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s − 7.07·3-s + 256·4-s − 302.·5-s + 113.·6-s − 6.51e3·7-s − 4.09e3·8-s − 1.96e4·9-s + 4.83e3·10-s + 2.26e3·11-s − 1.81e3·12-s + 1.04e5·14-s + 2.13e3·15-s + 6.55e4·16-s + 2.41e5·17-s + 3.14e5·18-s + 3.25e5·19-s − 7.73e4·20-s + 4.61e4·21-s − 3.62e4·22-s − 1.66e6·23-s + 2.89e4·24-s − 1.86e6·25-s + 2.78e5·27-s − 1.66e6·28-s − 2.69e6·29-s − 3.42e4·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.0504·3-s + 0.5·4-s − 0.216·5-s + 0.0356·6-s − 1.02·7-s − 0.353·8-s − 0.997·9-s + 0.152·10-s + 0.0466·11-s − 0.0252·12-s + 0.725·14-s + 0.0109·15-s + 0.250·16-s + 0.700·17-s + 0.705·18-s + 0.572·19-s − 0.108·20-s + 0.0517·21-s − 0.0330·22-s − 1.24·23-s + 0.0178·24-s − 0.953·25-s + 0.100·27-s − 0.513·28-s − 0.708·29-s − 0.00771·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(174.082\)
Root analytic conductor: \(13.1940\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.2797440001\)
\(L(\frac12)\) \(\approx\) \(0.2797440001\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 16T \)
13 \( 1 \)
good3 \( 1 + 7.07T + 1.96e4T^{2} \)
5 \( 1 + 302.T + 1.95e6T^{2} \)
7 \( 1 + 6.51e3T + 4.03e7T^{2} \)
11 \( 1 - 2.26e3T + 2.35e9T^{2} \)
17 \( 1 - 2.41e5T + 1.18e11T^{2} \)
19 \( 1 - 3.25e5T + 3.22e11T^{2} \)
23 \( 1 + 1.66e6T + 1.80e12T^{2} \)
29 \( 1 + 2.69e6T + 1.45e13T^{2} \)
31 \( 1 + 3.21e6T + 2.64e13T^{2} \)
37 \( 1 + 1.87e7T + 1.29e14T^{2} \)
41 \( 1 - 2.25e7T + 3.27e14T^{2} \)
43 \( 1 + 2.74e7T + 5.02e14T^{2} \)
47 \( 1 - 9.41e6T + 1.11e15T^{2} \)
53 \( 1 - 1.21e7T + 3.29e15T^{2} \)
59 \( 1 + 3.34e7T + 8.66e15T^{2} \)
61 \( 1 + 1.94e8T + 1.16e16T^{2} \)
67 \( 1 - 6.02e6T + 2.72e16T^{2} \)
71 \( 1 + 2.31e8T + 4.58e16T^{2} \)
73 \( 1 - 1.33e8T + 5.88e16T^{2} \)
79 \( 1 + 1.86e7T + 1.19e17T^{2} \)
83 \( 1 + 4.19e7T + 1.86e17T^{2} \)
89 \( 1 + 3.13e8T + 3.50e17T^{2} \)
97 \( 1 + 5.74e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.850314375474342965532917933430, −9.180131680804505919383022619774, −8.159409134427570318745511683661, −7.33564853519223837266653283275, −6.19661777482389420830655710244, −5.49859364023416637678977728095, −3.75559930339246849296605929995, −2.95864733467541088608850064409, −1.70177194135466718807702295700, −0.24536968273860115236784909218, 0.24536968273860115236784909218, 1.70177194135466718807702295700, 2.95864733467541088608850064409, 3.75559930339246849296605929995, 5.49859364023416637678977728095, 6.19661777482389420830655710244, 7.33564853519223837266653283275, 8.159409134427570318745511683661, 9.180131680804505919383022619774, 9.850314375474342965532917933430

Graph of the $Z$-function along the critical line