Properties

Label 338.10.a.k.1.6
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-96,81,1536,-1693] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 10375x^{4} - 44865x^{3} + 25702990x^{2} + 68900300x - 16723086000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4}\cdot 13 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-75.8221\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +242.466 q^{3} +256.000 q^{4} +2071.64 q^{5} -3879.46 q^{6} -323.249 q^{7} -4096.00 q^{8} +39107.0 q^{9} -33146.3 q^{10} -88320.7 q^{11} +62071.4 q^{12} +5171.98 q^{14} +502304. q^{15} +65536.0 q^{16} -452044. q^{17} -625712. q^{18} -649714. q^{19} +530341. q^{20} -78377.0 q^{21} +1.41313e6 q^{22} -1.58223e6 q^{23} -993143. q^{24} +2.33858e6 q^{25} +4.70966e6 q^{27} -82751.7 q^{28} +2.92672e6 q^{29} -8.03686e6 q^{30} -1.27453e6 q^{31} -1.04858e6 q^{32} -2.14148e7 q^{33} +7.23270e6 q^{34} -669656. q^{35} +1.00114e7 q^{36} -8.01993e6 q^{37} +1.03954e7 q^{38} -8.48545e6 q^{40} -4.82644e6 q^{41} +1.25403e6 q^{42} +2.82958e7 q^{43} -2.26101e7 q^{44} +8.10157e7 q^{45} +2.53157e7 q^{46} -1.19241e7 q^{47} +1.58903e7 q^{48} -4.02491e7 q^{49} -3.74173e7 q^{50} -1.09605e8 q^{51} -3.78650e6 q^{53} -7.53546e7 q^{54} -1.82969e8 q^{55} +1.32403e6 q^{56} -1.57534e8 q^{57} -4.68275e7 q^{58} -2.26572e7 q^{59} +1.28590e8 q^{60} +2.05910e7 q^{61} +2.03925e7 q^{62} -1.26413e7 q^{63} +1.67772e7 q^{64} +3.42637e8 q^{66} -1.62784e8 q^{67} -1.15723e8 q^{68} -3.83638e8 q^{69} +1.07145e7 q^{70} +3.82791e7 q^{71} -1.60182e8 q^{72} -3.92315e8 q^{73} +1.28319e8 q^{74} +5.67028e8 q^{75} -1.66327e8 q^{76} +2.85496e7 q^{77} -1.33317e8 q^{79} +1.35767e8 q^{80} +3.72193e8 q^{81} +7.72231e7 q^{82} +5.40870e8 q^{83} -2.00645e7 q^{84} -9.36473e8 q^{85} -4.52732e8 q^{86} +7.09631e8 q^{87} +3.61762e8 q^{88} -8.59345e8 q^{89} -1.29625e9 q^{90} -4.05052e8 q^{92} -3.09031e8 q^{93} +1.90786e8 q^{94} -1.34598e9 q^{95} -2.54244e8 q^{96} -7.32952e8 q^{97} +6.43986e8 q^{98} -3.45396e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{2} + 81 q^{3} + 1536 q^{4} - 1693 q^{5} - 1296 q^{6} - 473 q^{7} - 24576 q^{8} + 69813 q^{9} + 27088 q^{10} - 14011 q^{11} + 20736 q^{12} + 7568 q^{14} + 294780 q^{15} + 393216 q^{16} - 173558 q^{17}+ \cdots + 881769510 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 242.466 1.72825 0.864124 0.503279i \(-0.167873\pi\)
0.864124 + 0.503279i \(0.167873\pi\)
\(4\) 256.000 0.500000
\(5\) 2071.64 1.48235 0.741174 0.671313i \(-0.234269\pi\)
0.741174 + 0.671313i \(0.234269\pi\)
\(6\) −3879.46 −1.22206
\(7\) −323.249 −0.0508857 −0.0254429 0.999676i \(-0.508100\pi\)
−0.0254429 + 0.999676i \(0.508100\pi\)
\(8\) −4096.00 −0.353553
\(9\) 39107.0 1.98684
\(10\) −33146.3 −1.04818
\(11\) −88320.7 −1.81884 −0.909422 0.415875i \(-0.863476\pi\)
−0.909422 + 0.415875i \(0.863476\pi\)
\(12\) 62071.4 0.864124
\(13\) 0 0
\(14\) 5171.98 0.0359816
\(15\) 502304. 2.56186
\(16\) 65536.0 0.250000
\(17\) −452044. −1.31268 −0.656342 0.754463i \(-0.727897\pi\)
−0.656342 + 0.754463i \(0.727897\pi\)
\(18\) −625712. −1.40491
\(19\) −649714. −1.14375 −0.571875 0.820341i \(-0.693784\pi\)
−0.571875 + 0.820341i \(0.693784\pi\)
\(20\) 530341. 0.741174
\(21\) −78377.0 −0.0879431
\(22\) 1.41313e6 1.28612
\(23\) −1.58223e6 −1.17895 −0.589475 0.807787i \(-0.700665\pi\)
−0.589475 + 0.807787i \(0.700665\pi\)
\(24\) −993143. −0.611028
\(25\) 2.33858e6 1.19735
\(26\) 0 0
\(27\) 4.70966e6 1.70550
\(28\) −82751.7 −0.0254429
\(29\) 2.92672e6 0.768404 0.384202 0.923249i \(-0.374477\pi\)
0.384202 + 0.923249i \(0.374477\pi\)
\(30\) −8.03686e6 −1.81151
\(31\) −1.27453e6 −0.247869 −0.123935 0.992290i \(-0.539551\pi\)
−0.123935 + 0.992290i \(0.539551\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −2.14148e7 −3.14341
\(34\) 7.23270e6 0.928208
\(35\) −669656. −0.0754303
\(36\) 1.00114e7 0.993420
\(37\) −8.01993e6 −0.703498 −0.351749 0.936094i \(-0.614413\pi\)
−0.351749 + 0.936094i \(0.614413\pi\)
\(38\) 1.03954e7 0.808754
\(39\) 0 0
\(40\) −8.48545e6 −0.524089
\(41\) −4.82644e6 −0.266747 −0.133374 0.991066i \(-0.542581\pi\)
−0.133374 + 0.991066i \(0.542581\pi\)
\(42\) 1.25403e6 0.0621852
\(43\) 2.82958e7 1.26216 0.631079 0.775719i \(-0.282613\pi\)
0.631079 + 0.775719i \(0.282613\pi\)
\(44\) −2.26101e7 −0.909422
\(45\) 8.10157e7 2.94519
\(46\) 2.53157e7 0.833643
\(47\) −1.19241e7 −0.356440 −0.178220 0.983991i \(-0.557034\pi\)
−0.178220 + 0.983991i \(0.557034\pi\)
\(48\) 1.58903e7 0.432062
\(49\) −4.02491e7 −0.997411
\(50\) −3.74173e7 −0.846657
\(51\) −1.09605e8 −2.26864
\(52\) 0 0
\(53\) −3.78650e6 −0.0659168 −0.0329584 0.999457i \(-0.510493\pi\)
−0.0329584 + 0.999457i \(0.510493\pi\)
\(54\) −7.53546e7 −1.20597
\(55\) −1.82969e8 −2.69616
\(56\) 1.32403e6 0.0179908
\(57\) −1.57534e8 −1.97668
\(58\) −4.68275e7 −0.543344
\(59\) −2.26572e7 −0.243429 −0.121714 0.992565i \(-0.538839\pi\)
−0.121714 + 0.992565i \(0.538839\pi\)
\(60\) 1.28590e8 1.28093
\(61\) 2.05910e7 0.190411 0.0952056 0.995458i \(-0.469649\pi\)
0.0952056 + 0.995458i \(0.469649\pi\)
\(62\) 2.03925e7 0.175270
\(63\) −1.26413e7 −0.101102
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 3.42637e8 2.22273
\(67\) −1.62784e8 −0.986905 −0.493452 0.869773i \(-0.664265\pi\)
−0.493452 + 0.869773i \(0.664265\pi\)
\(68\) −1.15723e8 −0.656342
\(69\) −3.83638e8 −2.03752
\(70\) 1.07145e7 0.0533373
\(71\) 3.82791e7 0.178772 0.0893860 0.995997i \(-0.471510\pi\)
0.0893860 + 0.995997i \(0.471510\pi\)
\(72\) −1.60182e8 −0.702454
\(73\) −3.92315e8 −1.61690 −0.808448 0.588567i \(-0.799692\pi\)
−0.808448 + 0.588567i \(0.799692\pi\)
\(74\) 1.28319e8 0.497448
\(75\) 5.67028e8 2.06932
\(76\) −1.66327e8 −0.571875
\(77\) 2.85496e7 0.0925532
\(78\) 0 0
\(79\) −1.33317e8 −0.385092 −0.192546 0.981288i \(-0.561675\pi\)
−0.192546 + 0.981288i \(0.561675\pi\)
\(80\) 1.35767e8 0.370587
\(81\) 3.72193e8 0.960694
\(82\) 7.72231e7 0.188619
\(83\) 5.40870e8 1.25096 0.625478 0.780242i \(-0.284904\pi\)
0.625478 + 0.780242i \(0.284904\pi\)
\(84\) −2.00645e7 −0.0439716
\(85\) −9.36473e8 −1.94585
\(86\) −4.52732e8 −0.892480
\(87\) 7.09631e8 1.32799
\(88\) 3.61762e8 0.643058
\(89\) −8.59345e8 −1.45182 −0.725909 0.687791i \(-0.758581\pi\)
−0.725909 + 0.687791i \(0.758581\pi\)
\(90\) −1.29625e9 −2.08256
\(91\) 0 0
\(92\) −4.05052e8 −0.589475
\(93\) −3.09031e8 −0.428379
\(94\) 1.90786e8 0.252041
\(95\) −1.34598e9 −1.69544
\(96\) −2.54244e8 −0.305514
\(97\) −7.32952e8 −0.840626 −0.420313 0.907379i \(-0.638080\pi\)
−0.420313 + 0.907379i \(0.638080\pi\)
\(98\) 6.43986e8 0.705276
\(99\) −3.45396e9 −3.61375
\(100\) 5.98677e8 0.598677
\(101\) 1.97094e8 0.188464 0.0942319 0.995550i \(-0.469960\pi\)
0.0942319 + 0.995550i \(0.469960\pi\)
\(102\) 1.75369e9 1.60417
\(103\) −5.00520e7 −0.0438181 −0.0219091 0.999760i \(-0.506974\pi\)
−0.0219091 + 0.999760i \(0.506974\pi\)
\(104\) 0 0
\(105\) −1.62369e8 −0.130362
\(106\) 6.05839e7 0.0466102
\(107\) −3.62618e8 −0.267437 −0.133719 0.991019i \(-0.542692\pi\)
−0.133719 + 0.991019i \(0.542692\pi\)
\(108\) 1.20567e9 0.852752
\(109\) −3.93006e8 −0.266673 −0.133337 0.991071i \(-0.542569\pi\)
−0.133337 + 0.991071i \(0.542569\pi\)
\(110\) 2.92750e9 1.90647
\(111\) −1.94456e9 −1.21582
\(112\) −2.11844e7 −0.0127214
\(113\) 5.62974e7 0.0324814 0.0162407 0.999868i \(-0.494830\pi\)
0.0162407 + 0.999868i \(0.494830\pi\)
\(114\) 2.52054e9 1.39773
\(115\) −3.27782e9 −1.74761
\(116\) 7.49239e8 0.384202
\(117\) 0 0
\(118\) 3.62515e8 0.172130
\(119\) 1.46123e8 0.0667969
\(120\) −2.05744e9 −0.905756
\(121\) 5.44260e9 2.30819
\(122\) −3.29455e8 −0.134641
\(123\) −1.17025e9 −0.461005
\(124\) −3.26280e8 −0.123935
\(125\) 7.98529e8 0.292547
\(126\) 2.02261e8 0.0714897
\(127\) 2.62698e9 0.896064 0.448032 0.894017i \(-0.352125\pi\)
0.448032 + 0.894017i \(0.352125\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 6.86078e9 2.18132
\(130\) 0 0
\(131\) 5.16288e9 1.53169 0.765846 0.643024i \(-0.222320\pi\)
0.765846 + 0.643024i \(0.222320\pi\)
\(132\) −5.48219e9 −1.57171
\(133\) 2.10019e8 0.0582006
\(134\) 2.60454e9 0.697847
\(135\) 9.75674e9 2.52815
\(136\) 1.85157e9 0.464104
\(137\) 3.62647e9 0.879511 0.439755 0.898118i \(-0.355065\pi\)
0.439755 + 0.898118i \(0.355065\pi\)
\(138\) 6.13821e9 1.44074
\(139\) 8.48644e8 0.192823 0.0964116 0.995342i \(-0.469264\pi\)
0.0964116 + 0.995342i \(0.469264\pi\)
\(140\) −1.71432e8 −0.0377151
\(141\) −2.89120e9 −0.616016
\(142\) −6.12466e8 −0.126411
\(143\) 0 0
\(144\) 2.56291e9 0.496710
\(145\) 6.06311e9 1.13904
\(146\) 6.27704e9 1.14332
\(147\) −9.75906e9 −1.72377
\(148\) −2.05310e9 −0.351749
\(149\) 6.87641e9 1.14294 0.571470 0.820623i \(-0.306373\pi\)
0.571470 + 0.820623i \(0.306373\pi\)
\(150\) −9.07244e9 −1.46323
\(151\) 7.47346e9 1.16984 0.584919 0.811092i \(-0.301126\pi\)
0.584919 + 0.811092i \(0.301126\pi\)
\(152\) 2.66123e9 0.404377
\(153\) −1.76781e10 −2.60809
\(154\) −4.56793e8 −0.0654450
\(155\) −2.64037e9 −0.367428
\(156\) 0 0
\(157\) −6.66627e9 −0.875657 −0.437829 0.899058i \(-0.644252\pi\)
−0.437829 + 0.899058i \(0.644252\pi\)
\(158\) 2.13308e9 0.272302
\(159\) −9.18098e8 −0.113921
\(160\) −2.17228e9 −0.262044
\(161\) 5.11455e8 0.0599917
\(162\) −5.95508e9 −0.679313
\(163\) −1.48829e10 −1.65136 −0.825682 0.564136i \(-0.809210\pi\)
−0.825682 + 0.564136i \(0.809210\pi\)
\(164\) −1.23557e9 −0.133374
\(165\) −4.43638e10 −4.65963
\(166\) −8.65393e9 −0.884559
\(167\) 9.86588e9 0.981548 0.490774 0.871287i \(-0.336714\pi\)
0.490774 + 0.871287i \(0.336714\pi\)
\(168\) 3.21032e8 0.0310926
\(169\) 0 0
\(170\) 1.49836e10 1.37593
\(171\) −2.54084e10 −2.27245
\(172\) 7.24372e9 0.631079
\(173\) 2.03269e10 1.72530 0.862648 0.505806i \(-0.168805\pi\)
0.862648 + 0.505806i \(0.168805\pi\)
\(174\) −1.13541e10 −0.939033
\(175\) −7.55944e8 −0.0609282
\(176\) −5.78819e9 −0.454711
\(177\) −5.49361e9 −0.420705
\(178\) 1.37495e10 1.02659
\(179\) −9.13339e9 −0.664957 −0.332478 0.943111i \(-0.607885\pi\)
−0.332478 + 0.943111i \(0.607885\pi\)
\(180\) 2.07400e10 1.47259
\(181\) 2.57653e10 1.78436 0.892180 0.451681i \(-0.149175\pi\)
0.892180 + 0.451681i \(0.149175\pi\)
\(182\) 0 0
\(183\) 4.99262e9 0.329078
\(184\) 6.48083e9 0.416822
\(185\) −1.66144e10 −1.04283
\(186\) 4.94449e9 0.302910
\(187\) 3.99248e10 2.38757
\(188\) −3.05258e9 −0.178220
\(189\) −1.52239e9 −0.0867858
\(190\) 2.15356e10 1.19885
\(191\) −1.48931e10 −0.809720 −0.404860 0.914379i \(-0.632680\pi\)
−0.404860 + 0.914379i \(0.632680\pi\)
\(192\) 4.06791e9 0.216031
\(193\) −3.54691e9 −0.184010 −0.0920051 0.995759i \(-0.529328\pi\)
−0.0920051 + 0.995759i \(0.529328\pi\)
\(194\) 1.17272e10 0.594412
\(195\) 0 0
\(196\) −1.03038e10 −0.498705
\(197\) −1.73630e10 −0.821348 −0.410674 0.911782i \(-0.634707\pi\)
−0.410674 + 0.911782i \(0.634707\pi\)
\(198\) 5.52633e10 2.55531
\(199\) 3.76276e9 0.170086 0.0850429 0.996377i \(-0.472897\pi\)
0.0850429 + 0.996377i \(0.472897\pi\)
\(200\) −9.57883e9 −0.423329
\(201\) −3.94697e10 −1.70562
\(202\) −3.15351e9 −0.133264
\(203\) −9.46058e8 −0.0391008
\(204\) −2.80590e10 −1.13432
\(205\) −9.99867e9 −0.395412
\(206\) 8.00832e8 0.0309841
\(207\) −6.18763e10 −2.34238
\(208\) 0 0
\(209\) 5.73832e10 2.08030
\(210\) 2.59791e9 0.0921800
\(211\) −4.32571e10 −1.50240 −0.751201 0.660074i \(-0.770525\pi\)
−0.751201 + 0.660074i \(0.770525\pi\)
\(212\) −9.69343e8 −0.0329584
\(213\) 9.28140e9 0.308962
\(214\) 5.80188e9 0.189107
\(215\) 5.86188e10 1.87096
\(216\) −1.92908e10 −0.602987
\(217\) 4.11990e8 0.0126130
\(218\) 6.28809e9 0.188567
\(219\) −9.51233e10 −2.79440
\(220\) −4.68401e10 −1.34808
\(221\) 0 0
\(222\) 3.11130e10 0.859713
\(223\) 3.28691e10 0.890053 0.445027 0.895517i \(-0.353194\pi\)
0.445027 + 0.895517i \(0.353194\pi\)
\(224\) 3.38951e8 0.00899541
\(225\) 9.14549e10 2.37895
\(226\) −9.00758e8 −0.0229678
\(227\) −6.91613e10 −1.72881 −0.864404 0.502798i \(-0.832304\pi\)
−0.864404 + 0.502798i \(0.832304\pi\)
\(228\) −4.03287e10 −0.988342
\(229\) 3.37155e10 0.810158 0.405079 0.914282i \(-0.367244\pi\)
0.405079 + 0.914282i \(0.367244\pi\)
\(230\) 5.24452e10 1.23575
\(231\) 6.92231e9 0.159955
\(232\) −1.19878e10 −0.271672
\(233\) −1.18954e10 −0.264410 −0.132205 0.991222i \(-0.542206\pi\)
−0.132205 + 0.991222i \(0.542206\pi\)
\(234\) 0 0
\(235\) −2.47025e10 −0.528368
\(236\) −5.80024e9 −0.121714
\(237\) −3.23250e10 −0.665535
\(238\) −2.33796e9 −0.0472325
\(239\) −1.57903e10 −0.313040 −0.156520 0.987675i \(-0.550028\pi\)
−0.156520 + 0.987675i \(0.550028\pi\)
\(240\) 3.29190e10 0.640466
\(241\) −2.20834e10 −0.421687 −0.210843 0.977520i \(-0.567621\pi\)
−0.210843 + 0.977520i \(0.567621\pi\)
\(242\) −8.70816e10 −1.63214
\(243\) −2.45608e9 −0.0451871
\(244\) 5.27129e9 0.0952056
\(245\) −8.33818e10 −1.47851
\(246\) 1.87240e10 0.325980
\(247\) 0 0
\(248\) 5.22047e9 0.0876350
\(249\) 1.31143e11 2.16196
\(250\) −1.27765e10 −0.206862
\(251\) −6.29786e10 −1.00152 −0.500762 0.865585i \(-0.666947\pi\)
−0.500762 + 0.865585i \(0.666947\pi\)
\(252\) −3.23617e9 −0.0505509
\(253\) 1.39744e11 2.14432
\(254\) −4.20316e10 −0.633613
\(255\) −2.27063e11 −3.36292
\(256\) 4.29497e9 0.0625000
\(257\) −3.54456e10 −0.506832 −0.253416 0.967357i \(-0.581554\pi\)
−0.253416 + 0.967357i \(0.581554\pi\)
\(258\) −1.09772e11 −1.54243
\(259\) 2.59243e9 0.0357980
\(260\) 0 0
\(261\) 1.14455e11 1.52670
\(262\) −8.26062e10 −1.08307
\(263\) 6.47320e10 0.834292 0.417146 0.908840i \(-0.363030\pi\)
0.417146 + 0.908840i \(0.363030\pi\)
\(264\) 8.77150e10 1.11136
\(265\) −7.84427e9 −0.0977116
\(266\) −3.36031e9 −0.0411540
\(267\) −2.08362e11 −2.50910
\(268\) −4.16727e10 −0.493452
\(269\) 1.09719e11 1.27760 0.638800 0.769373i \(-0.279431\pi\)
0.638800 + 0.769373i \(0.279431\pi\)
\(270\) −1.56108e11 −1.78767
\(271\) −8.64910e10 −0.974112 −0.487056 0.873371i \(-0.661929\pi\)
−0.487056 + 0.873371i \(0.661929\pi\)
\(272\) −2.96251e10 −0.328171
\(273\) 0 0
\(274\) −5.80235e10 −0.621908
\(275\) −2.06545e11 −2.17780
\(276\) −9.82114e10 −1.01876
\(277\) −7.77431e10 −0.793419 −0.396710 0.917944i \(-0.629848\pi\)
−0.396710 + 0.917944i \(0.629848\pi\)
\(278\) −1.35783e10 −0.136347
\(279\) −4.98430e10 −0.492476
\(280\) 2.74291e9 0.0266686
\(281\) 9.42110e10 0.901411 0.450706 0.892673i \(-0.351172\pi\)
0.450706 + 0.892673i \(0.351172\pi\)
\(282\) 4.62592e10 0.435589
\(283\) −1.77969e11 −1.64932 −0.824661 0.565627i \(-0.808634\pi\)
−0.824661 + 0.565627i \(0.808634\pi\)
\(284\) 9.79946e9 0.0893860
\(285\) −3.26354e11 −2.93013
\(286\) 0 0
\(287\) 1.56014e9 0.0135736
\(288\) −4.10066e10 −0.351227
\(289\) 8.57557e10 0.723140
\(290\) −9.70098e10 −0.805424
\(291\) −1.77716e11 −1.45281
\(292\) −1.00433e11 −0.808448
\(293\) 6.82054e10 0.540648 0.270324 0.962769i \(-0.412869\pi\)
0.270324 + 0.962769i \(0.412869\pi\)
\(294\) 1.56145e11 1.21889
\(295\) −4.69376e10 −0.360846
\(296\) 3.28496e10 0.248724
\(297\) −4.15961e11 −3.10205
\(298\) −1.10023e11 −0.808181
\(299\) 0 0
\(300\) 1.45159e11 1.03466
\(301\) −9.14658e9 −0.0642258
\(302\) −1.19575e11 −0.827200
\(303\) 4.77888e10 0.325712
\(304\) −4.25797e10 −0.285938
\(305\) 4.26571e10 0.282256
\(306\) 2.82849e11 1.84420
\(307\) 1.38459e11 0.889605 0.444803 0.895629i \(-0.353274\pi\)
0.444803 + 0.895629i \(0.353274\pi\)
\(308\) 7.30869e9 0.0462766
\(309\) −1.21359e10 −0.0757286
\(310\) 4.22459e10 0.259811
\(311\) −2.41824e11 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(312\) 0 0
\(313\) 2.23726e11 1.31755 0.658776 0.752339i \(-0.271075\pi\)
0.658776 + 0.752339i \(0.271075\pi\)
\(314\) 1.06660e11 0.619183
\(315\) −2.61882e10 −0.149868
\(316\) −3.41293e10 −0.192546
\(317\) 6.73120e10 0.374391 0.187196 0.982323i \(-0.440060\pi\)
0.187196 + 0.982323i \(0.440060\pi\)
\(318\) 1.46896e10 0.0805540
\(319\) −2.58490e11 −1.39761
\(320\) 3.47564e10 0.185293
\(321\) −8.79226e10 −0.462198
\(322\) −8.18328e9 −0.0424205
\(323\) 2.93699e11 1.50138
\(324\) 9.52813e10 0.480347
\(325\) 0 0
\(326\) 2.38126e11 1.16769
\(327\) −9.52907e10 −0.460878
\(328\) 1.97691e10 0.0943094
\(329\) 3.85446e9 0.0181377
\(330\) 7.09822e11 3.29486
\(331\) −1.30577e10 −0.0597918 −0.0298959 0.999553i \(-0.509518\pi\)
−0.0298959 + 0.999553i \(0.509518\pi\)
\(332\) 1.38463e11 0.625478
\(333\) −3.13635e11 −1.39774
\(334\) −1.57854e11 −0.694059
\(335\) −3.37231e11 −1.46294
\(336\) −5.13652e9 −0.0219858
\(337\) 9.86243e10 0.416533 0.208266 0.978072i \(-0.433218\pi\)
0.208266 + 0.978072i \(0.433218\pi\)
\(338\) 0 0
\(339\) 1.36502e10 0.0561360
\(340\) −2.39737e11 −0.972927
\(341\) 1.12567e11 0.450835
\(342\) 4.06534e11 1.60686
\(343\) 2.60547e10 0.101640
\(344\) −1.15899e11 −0.446240
\(345\) −7.94762e11 −3.02031
\(346\) −3.25230e11 −1.21997
\(347\) −2.70738e11 −1.00246 −0.501229 0.865315i \(-0.667119\pi\)
−0.501229 + 0.865315i \(0.667119\pi\)
\(348\) 1.81665e11 0.663996
\(349\) 4.49289e11 1.62111 0.810553 0.585665i \(-0.199167\pi\)
0.810553 + 0.585665i \(0.199167\pi\)
\(350\) 1.20951e10 0.0430827
\(351\) 0 0
\(352\) 9.26110e10 0.321529
\(353\) 3.91119e11 1.34067 0.670337 0.742057i \(-0.266150\pi\)
0.670337 + 0.742057i \(0.266150\pi\)
\(354\) 8.78977e10 0.297484
\(355\) 7.93007e10 0.265002
\(356\) −2.19992e11 −0.725909
\(357\) 3.54298e10 0.115442
\(358\) 1.46134e11 0.470195
\(359\) 4.82667e11 1.53364 0.766818 0.641865i \(-0.221839\pi\)
0.766818 + 0.641865i \(0.221839\pi\)
\(360\) −3.31840e11 −1.04128
\(361\) 9.94411e10 0.308165
\(362\) −4.12245e11 −1.26173
\(363\) 1.31965e12 3.98913
\(364\) 0 0
\(365\) −8.12737e11 −2.39680
\(366\) −7.98819e10 −0.232693
\(367\) 8.75496e9 0.0251917 0.0125958 0.999921i \(-0.495991\pi\)
0.0125958 + 0.999921i \(0.495991\pi\)
\(368\) −1.03693e11 −0.294737
\(369\) −1.88748e11 −0.529984
\(370\) 2.65831e11 0.737391
\(371\) 1.22398e9 0.00335422
\(372\) −7.91119e10 −0.214190
\(373\) −2.44379e11 −0.653693 −0.326846 0.945077i \(-0.605986\pi\)
−0.326846 + 0.945077i \(0.605986\pi\)
\(374\) −6.38797e11 −1.68827
\(375\) 1.93617e11 0.505594
\(376\) 4.88412e10 0.126021
\(377\) 0 0
\(378\) 2.43583e10 0.0613668
\(379\) −9.92531e10 −0.247097 −0.123549 0.992339i \(-0.539427\pi\)
−0.123549 + 0.992339i \(0.539427\pi\)
\(380\) −3.44570e11 −0.847718
\(381\) 6.36953e11 1.54862
\(382\) 2.38289e11 0.572558
\(383\) −6.77313e11 −1.60840 −0.804202 0.594357i \(-0.797407\pi\)
−0.804202 + 0.594357i \(0.797407\pi\)
\(384\) −6.50866e10 −0.152757
\(385\) 5.91445e10 0.137196
\(386\) 5.67505e10 0.130115
\(387\) 1.10656e12 2.50770
\(388\) −1.87636e11 −0.420313
\(389\) −8.14332e11 −1.80314 −0.901568 0.432637i \(-0.857583\pi\)
−0.901568 + 0.432637i \(0.857583\pi\)
\(390\) 0 0
\(391\) 7.15238e11 1.54759
\(392\) 1.64860e11 0.352638
\(393\) 1.25183e12 2.64714
\(394\) 2.77808e11 0.580781
\(395\) −2.76186e11 −0.570841
\(396\) −8.84213e11 −1.80688
\(397\) 5.08779e11 1.02795 0.513975 0.857805i \(-0.328173\pi\)
0.513975 + 0.857805i \(0.328173\pi\)
\(398\) −6.02042e10 −0.120269
\(399\) 5.09227e10 0.100585
\(400\) 1.53261e11 0.299338
\(401\) −5.16372e11 −0.997271 −0.498635 0.866812i \(-0.666165\pi\)
−0.498635 + 0.866812i \(0.666165\pi\)
\(402\) 6.31515e11 1.20605
\(403\) 0 0
\(404\) 5.04562e10 0.0942319
\(405\) 7.71050e11 1.42408
\(406\) 1.51369e10 0.0276484
\(407\) 7.08326e11 1.27955
\(408\) 4.48944e11 0.802087
\(409\) 2.62291e11 0.463478 0.231739 0.972778i \(-0.425558\pi\)
0.231739 + 0.972778i \(0.425558\pi\)
\(410\) 1.59979e11 0.279599
\(411\) 8.79296e11 1.52001
\(412\) −1.28133e10 −0.0219091
\(413\) 7.32391e9 0.0123870
\(414\) 9.90022e11 1.65632
\(415\) 1.12049e12 1.85435
\(416\) 0 0
\(417\) 2.05768e11 0.333246
\(418\) −9.18132e11 −1.47100
\(419\) −3.20332e10 −0.0507736 −0.0253868 0.999678i \(-0.508082\pi\)
−0.0253868 + 0.999678i \(0.508082\pi\)
\(420\) −4.15665e10 −0.0651811
\(421\) 2.73798e10 0.0424777 0.0212389 0.999774i \(-0.493239\pi\)
0.0212389 + 0.999774i \(0.493239\pi\)
\(422\) 6.92113e11 1.06236
\(423\) −4.66317e11 −0.708189
\(424\) 1.55095e10 0.0233051
\(425\) −1.05714e12 −1.57175
\(426\) −1.48502e11 −0.218469
\(427\) −6.65601e9 −0.00968921
\(428\) −9.28301e10 −0.133719
\(429\) 0 0
\(430\) −9.37900e11 −1.32297
\(431\) 3.23502e11 0.451574 0.225787 0.974177i \(-0.427505\pi\)
0.225787 + 0.974177i \(0.427505\pi\)
\(432\) 3.08652e11 0.426376
\(433\) −8.59258e11 −1.17470 −0.587351 0.809332i \(-0.699829\pi\)
−0.587351 + 0.809332i \(0.699829\pi\)
\(434\) −6.59184e9 −0.00891873
\(435\) 1.47010e12 1.96855
\(436\) −1.00609e11 −0.133337
\(437\) 1.02800e12 1.34842
\(438\) 1.52197e12 1.97594
\(439\) 7.18588e11 0.923400 0.461700 0.887036i \(-0.347240\pi\)
0.461700 + 0.887036i \(0.347240\pi\)
\(440\) 7.49441e11 0.953236
\(441\) −1.57402e12 −1.98170
\(442\) 0 0
\(443\) 2.12241e11 0.261826 0.130913 0.991394i \(-0.458209\pi\)
0.130913 + 0.991394i \(0.458209\pi\)
\(444\) −4.97808e11 −0.607909
\(445\) −1.78026e12 −2.15210
\(446\) −5.25906e11 −0.629363
\(447\) 1.66730e12 1.97528
\(448\) −5.42322e9 −0.00636071
\(449\) 8.97769e11 1.04245 0.521226 0.853419i \(-0.325475\pi\)
0.521226 + 0.853419i \(0.325475\pi\)
\(450\) −1.46328e12 −1.68217
\(451\) 4.26275e11 0.485172
\(452\) 1.44121e10 0.0162407
\(453\) 1.81206e12 2.02177
\(454\) 1.10658e12 1.22245
\(455\) 0 0
\(456\) 6.45259e11 0.698863
\(457\) −1.14101e12 −1.22367 −0.611837 0.790984i \(-0.709569\pi\)
−0.611837 + 0.790984i \(0.709569\pi\)
\(458\) −5.39448e11 −0.572868
\(459\) −2.12897e12 −2.23879
\(460\) −8.39123e11 −0.873806
\(461\) 7.89279e11 0.813910 0.406955 0.913448i \(-0.366591\pi\)
0.406955 + 0.913448i \(0.366591\pi\)
\(462\) −1.10757e11 −0.113105
\(463\) 7.23863e11 0.732052 0.366026 0.930605i \(-0.380718\pi\)
0.366026 + 0.930605i \(0.380718\pi\)
\(464\) 1.91805e11 0.192101
\(465\) −6.40201e11 −0.635007
\(466\) 1.90327e11 0.186966
\(467\) −6.62553e11 −0.644607 −0.322303 0.946636i \(-0.604457\pi\)
−0.322303 + 0.946636i \(0.604457\pi\)
\(468\) 0 0
\(469\) 5.26198e10 0.0502193
\(470\) 3.95241e11 0.373612
\(471\) −1.61635e12 −1.51335
\(472\) 9.28039e10 0.0860651
\(473\) −2.49910e12 −2.29567
\(474\) 5.17200e11 0.470604
\(475\) −1.51941e12 −1.36947
\(476\) 3.74074e10 0.0333984
\(477\) −1.48078e11 −0.130966
\(478\) 2.52645e11 0.221353
\(479\) −2.25076e12 −1.95353 −0.976763 0.214320i \(-0.931246\pi\)
−0.976763 + 0.214320i \(0.931246\pi\)
\(480\) −5.26704e11 −0.452878
\(481\) 0 0
\(482\) 3.53335e11 0.298178
\(483\) 1.24011e11 0.103680
\(484\) 1.39331e12 1.15410
\(485\) −1.51842e12 −1.24610
\(486\) 3.92973e10 0.0319521
\(487\) −4.78992e11 −0.385876 −0.192938 0.981211i \(-0.561802\pi\)
−0.192938 + 0.981211i \(0.561802\pi\)
\(488\) −8.43406e10 −0.0673205
\(489\) −3.60860e12 −2.85397
\(490\) 1.33411e12 1.04546
\(491\) −1.43609e10 −0.0111510 −0.00557551 0.999984i \(-0.501775\pi\)
−0.00557551 + 0.999984i \(0.501775\pi\)
\(492\) −2.99584e11 −0.230503
\(493\) −1.32300e12 −1.00867
\(494\) 0 0
\(495\) −7.15537e12 −5.35684
\(496\) −8.35276e10 −0.0619673
\(497\) −1.23737e10 −0.00909694
\(498\) −2.09829e12 −1.52874
\(499\) −1.19092e11 −0.0859862 −0.0429931 0.999075i \(-0.513689\pi\)
−0.0429931 + 0.999075i \(0.513689\pi\)
\(500\) 2.04424e11 0.146274
\(501\) 2.39214e12 1.69636
\(502\) 1.00766e12 0.708184
\(503\) 1.92943e12 1.34392 0.671960 0.740587i \(-0.265453\pi\)
0.671960 + 0.740587i \(0.265453\pi\)
\(504\) 5.17787e10 0.0357449
\(505\) 4.08309e11 0.279369
\(506\) −2.23590e12 −1.51627
\(507\) 0 0
\(508\) 6.72506e11 0.448032
\(509\) 2.58236e12 1.70525 0.852624 0.522525i \(-0.175010\pi\)
0.852624 + 0.522525i \(0.175010\pi\)
\(510\) 3.63301e12 2.37794
\(511\) 1.26815e11 0.0822769
\(512\) −6.87195e10 −0.0441942
\(513\) −3.05994e12 −1.95067
\(514\) 5.67130e11 0.358384
\(515\) −1.03690e11 −0.0649537
\(516\) 1.75636e12 1.09066
\(517\) 1.05315e12 0.648308
\(518\) −4.14789e10 −0.0253130
\(519\) 4.92859e12 2.98174
\(520\) 0 0
\(521\) −2.01270e12 −1.19676 −0.598382 0.801211i \(-0.704189\pi\)
−0.598382 + 0.801211i \(0.704189\pi\)
\(522\) −1.83128e12 −1.07954
\(523\) −2.41278e12 −1.41013 −0.705067 0.709141i \(-0.749083\pi\)
−0.705067 + 0.709141i \(0.749083\pi\)
\(524\) 1.32170e12 0.765846
\(525\) −1.83291e11 −0.105299
\(526\) −1.03571e12 −0.589933
\(527\) 5.76143e11 0.325374
\(528\) −1.40344e12 −0.785853
\(529\) 7.02308e11 0.389922
\(530\) 1.25508e11 0.0690925
\(531\) −8.86054e11 −0.483654
\(532\) 5.37650e10 0.0291003
\(533\) 0 0
\(534\) 3.33380e12 1.77420
\(535\) −7.51214e11 −0.396435
\(536\) 6.66763e11 0.348923
\(537\) −2.21454e12 −1.14921
\(538\) −1.75550e12 −0.903400
\(539\) 3.55483e12 1.81413
\(540\) 2.49773e12 1.26408
\(541\) 1.72399e12 0.865260 0.432630 0.901572i \(-0.357586\pi\)
0.432630 + 0.901572i \(0.357586\pi\)
\(542\) 1.38386e12 0.688801
\(543\) 6.24723e12 3.08381
\(544\) 4.74002e11 0.232052
\(545\) −8.14168e11 −0.395303
\(546\) 0 0
\(547\) 1.89229e12 0.903741 0.451870 0.892084i \(-0.350757\pi\)
0.451870 + 0.892084i \(0.350757\pi\)
\(548\) 9.28375e11 0.439755
\(549\) 8.05250e11 0.378317
\(550\) 3.30472e12 1.53994
\(551\) −1.90153e12 −0.878863
\(552\) 1.57138e12 0.720371
\(553\) 4.30947e10 0.0195957
\(554\) 1.24389e12 0.561032
\(555\) −4.02844e12 −1.80226
\(556\) 2.17253e11 0.0964116
\(557\) −2.08244e11 −0.0916694 −0.0458347 0.998949i \(-0.514595\pi\)
−0.0458347 + 0.998949i \(0.514595\pi\)
\(558\) 7.97488e11 0.348233
\(559\) 0 0
\(560\) −4.38866e10 −0.0188576
\(561\) 9.68043e12 4.12631
\(562\) −1.50738e12 −0.637394
\(563\) 1.52235e12 0.638597 0.319299 0.947654i \(-0.396553\pi\)
0.319299 + 0.947654i \(0.396553\pi\)
\(564\) −7.40147e11 −0.308008
\(565\) 1.16628e11 0.0481488
\(566\) 2.84751e12 1.16625
\(567\) −1.20311e11 −0.0488856
\(568\) −1.56791e11 −0.0632054
\(569\) −2.49853e12 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(570\) 5.22167e12 2.07192
\(571\) −1.73010e12 −0.681098 −0.340549 0.940227i \(-0.610613\pi\)
−0.340549 + 0.940227i \(0.610613\pi\)
\(572\) 0 0
\(573\) −3.61108e12 −1.39940
\(574\) −2.49623e10 −0.00959800
\(575\) −3.70018e12 −1.41162
\(576\) 6.56106e11 0.248355
\(577\) 3.24966e12 1.22052 0.610262 0.792199i \(-0.291064\pi\)
0.610262 + 0.792199i \(0.291064\pi\)
\(578\) −1.37209e12 −0.511337
\(579\) −8.60006e11 −0.318015
\(580\) 1.55216e12 0.569521
\(581\) −1.74836e11 −0.0636557
\(582\) 2.84346e12 1.02729
\(583\) 3.34426e11 0.119892
\(584\) 1.60692e12 0.571659
\(585\) 0 0
\(586\) −1.09129e12 −0.382296
\(587\) −2.11024e12 −0.733603 −0.366802 0.930299i \(-0.619547\pi\)
−0.366802 + 0.930299i \(0.619547\pi\)
\(588\) −2.49832e12 −0.861886
\(589\) 8.28080e11 0.283500
\(590\) 7.51002e11 0.255157
\(591\) −4.20995e12 −1.41949
\(592\) −5.25594e11 −0.175874
\(593\) 2.79941e11 0.0929651 0.0464826 0.998919i \(-0.485199\pi\)
0.0464826 + 0.998919i \(0.485199\pi\)
\(594\) 6.65537e12 2.19348
\(595\) 3.02714e11 0.0990162
\(596\) 1.76036e12 0.571470
\(597\) 9.12344e11 0.293951
\(598\) 0 0
\(599\) −5.96835e11 −0.189423 −0.0947117 0.995505i \(-0.530193\pi\)
−0.0947117 + 0.995505i \(0.530193\pi\)
\(600\) −2.32255e12 −0.731617
\(601\) 2.18920e11 0.0684465 0.0342232 0.999414i \(-0.489104\pi\)
0.0342232 + 0.999414i \(0.489104\pi\)
\(602\) 1.46345e11 0.0454145
\(603\) −6.36599e12 −1.96082
\(604\) 1.91321e12 0.584919
\(605\) 1.12751e13 3.42154
\(606\) −7.64621e11 −0.230313
\(607\) −4.54396e12 −1.35858 −0.679290 0.733870i \(-0.737712\pi\)
−0.679290 + 0.733870i \(0.737712\pi\)
\(608\) 6.81275e11 0.202188
\(609\) −2.29387e11 −0.0675758
\(610\) −6.82514e11 −0.199585
\(611\) 0 0
\(612\) −4.52558e12 −1.30405
\(613\) 1.88769e12 0.539955 0.269978 0.962867i \(-0.412984\pi\)
0.269978 + 0.962867i \(0.412984\pi\)
\(614\) −2.21534e12 −0.629046
\(615\) −2.42434e12 −0.683370
\(616\) −1.16939e11 −0.0327225
\(617\) −4.37252e12 −1.21464 −0.607322 0.794456i \(-0.707756\pi\)
−0.607322 + 0.794456i \(0.707756\pi\)
\(618\) 1.94175e11 0.0535482
\(619\) 3.63885e11 0.0996221 0.0498111 0.998759i \(-0.484138\pi\)
0.0498111 + 0.998759i \(0.484138\pi\)
\(620\) −6.75935e11 −0.183714
\(621\) −7.45178e12 −2.01070
\(622\) 3.86918e12 1.03648
\(623\) 2.77782e11 0.0738768
\(624\) 0 0
\(625\) −2.91327e12 −0.763697
\(626\) −3.57962e12 −0.931650
\(627\) 1.39135e13 3.59528
\(628\) −1.70656e12 −0.437829
\(629\) 3.62536e12 0.923470
\(630\) 4.19012e11 0.105973
\(631\) −5.15487e12 −1.29445 −0.647225 0.762299i \(-0.724071\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(632\) 5.46068e11 0.136151
\(633\) −1.04884e13 −2.59652
\(634\) −1.07699e12 −0.264734
\(635\) 5.44216e12 1.32828
\(636\) −2.35033e11 −0.0569603
\(637\) 0 0
\(638\) 4.13583e12 0.988258
\(639\) 1.49698e12 0.355191
\(640\) −5.56103e11 −0.131022
\(641\) −4.21103e12 −0.985206 −0.492603 0.870254i \(-0.663955\pi\)
−0.492603 + 0.870254i \(0.663955\pi\)
\(642\) 1.40676e12 0.326823
\(643\) −2.64608e12 −0.610454 −0.305227 0.952280i \(-0.598732\pi\)
−0.305227 + 0.952280i \(0.598732\pi\)
\(644\) 1.30932e11 0.0299958
\(645\) 1.42131e13 3.23347
\(646\) −4.69919e12 −1.06164
\(647\) −1.64583e12 −0.369246 −0.184623 0.982809i \(-0.559106\pi\)
−0.184623 + 0.982809i \(0.559106\pi\)
\(648\) −1.52450e12 −0.339657
\(649\) 2.00110e12 0.442759
\(650\) 0 0
\(651\) 9.98938e10 0.0217984
\(652\) −3.81002e12 −0.825682
\(653\) −1.34152e12 −0.288727 −0.144363 0.989525i \(-0.546113\pi\)
−0.144363 + 0.989525i \(0.546113\pi\)
\(654\) 1.52465e12 0.325890
\(655\) 1.06957e13 2.27050
\(656\) −3.16306e11 −0.0666868
\(657\) −1.53423e13 −3.21252
\(658\) −6.16714e10 −0.0128253
\(659\) 2.87415e12 0.593643 0.296822 0.954933i \(-0.404073\pi\)
0.296822 + 0.954933i \(0.404073\pi\)
\(660\) −1.13571e13 −2.32982
\(661\) −5.83418e12 −1.18870 −0.594351 0.804206i \(-0.702591\pi\)
−0.594351 + 0.804206i \(0.702591\pi\)
\(662\) 2.08923e11 0.0422792
\(663\) 0 0
\(664\) −2.21541e12 −0.442279
\(665\) 4.35085e11 0.0862734
\(666\) 5.01816e12 0.988350
\(667\) −4.63075e12 −0.905910
\(668\) 2.52566e12 0.490774
\(669\) 7.96965e12 1.53823
\(670\) 5.39569e12 1.03445
\(671\) −1.81861e12 −0.346328
\(672\) 8.21842e10 0.0155463
\(673\) 3.05453e12 0.573953 0.286976 0.957938i \(-0.407350\pi\)
0.286976 + 0.957938i \(0.407350\pi\)
\(674\) −1.57799e12 −0.294533
\(675\) 1.10139e13 2.04209
\(676\) 0 0
\(677\) 3.54962e12 0.649431 0.324715 0.945812i \(-0.394731\pi\)
0.324715 + 0.945812i \(0.394731\pi\)
\(678\) −2.18404e11 −0.0396941
\(679\) 2.36926e11 0.0427758
\(680\) 3.83580e12 0.687963
\(681\) −1.67693e13 −2.98781
\(682\) −1.80108e12 −0.318789
\(683\) −2.11804e12 −0.372427 −0.186214 0.982509i \(-0.559622\pi\)
−0.186214 + 0.982509i \(0.559622\pi\)
\(684\) −6.50454e12 −1.13622
\(685\) 7.51275e12 1.30374
\(686\) −4.16876e11 −0.0718701
\(687\) 8.17488e12 1.40015
\(688\) 1.85439e12 0.315539
\(689\) 0 0
\(690\) 1.27162e13 2.13568
\(691\) −4.53146e12 −0.756113 −0.378056 0.925783i \(-0.623407\pi\)
−0.378056 + 0.925783i \(0.623407\pi\)
\(692\) 5.20368e12 0.862648
\(693\) 1.11649e12 0.183888
\(694\) 4.33180e12 0.708845
\(695\) 1.75809e12 0.285831
\(696\) −2.90665e12 −0.469516
\(697\) 2.18176e12 0.350155
\(698\) −7.18863e12 −1.14630
\(699\) −2.88424e12 −0.456966
\(700\) −1.93522e11 −0.0304641
\(701\) −8.76423e12 −1.37083 −0.685413 0.728154i \(-0.740378\pi\)
−0.685413 + 0.728154i \(0.740378\pi\)
\(702\) 0 0
\(703\) 5.21066e12 0.804626
\(704\) −1.48178e12 −0.227355
\(705\) −5.98954e12 −0.913150
\(706\) −6.25791e12 −0.947999
\(707\) −6.37105e10 −0.00959012
\(708\) −1.40636e12 −0.210353
\(709\) 1.22926e13 1.82699 0.913493 0.406855i \(-0.133375\pi\)
0.913493 + 0.406855i \(0.133375\pi\)
\(710\) −1.26881e12 −0.187385
\(711\) −5.21364e12 −0.765117
\(712\) 3.51988e12 0.513295
\(713\) 2.01660e12 0.292225
\(714\) −5.66877e11 −0.0816295
\(715\) 0 0
\(716\) −2.33815e12 −0.332478
\(717\) −3.82861e12 −0.541010
\(718\) −7.72267e12 −1.08444
\(719\) 1.36942e13 1.91098 0.955492 0.295018i \(-0.0953257\pi\)
0.955492 + 0.295018i \(0.0953257\pi\)
\(720\) 5.30945e12 0.736297
\(721\) 1.61792e10 0.00222972
\(722\) −1.59106e12 −0.217906
\(723\) −5.35449e12 −0.728779
\(724\) 6.59593e12 0.892180
\(725\) 6.84437e12 0.920052
\(726\) −2.11144e13 −2.82074
\(727\) −6.80422e12 −0.903386 −0.451693 0.892173i \(-0.649180\pi\)
−0.451693 + 0.892173i \(0.649180\pi\)
\(728\) 0 0
\(729\) −7.92138e12 −1.03879
\(730\) 1.30038e13 1.69480
\(731\) −1.27909e13 −1.65681
\(732\) 1.27811e12 0.164539
\(733\) −1.07488e13 −1.37529 −0.687644 0.726048i \(-0.741355\pi\)
−0.687644 + 0.726048i \(0.741355\pi\)
\(734\) −1.40079e11 −0.0178132
\(735\) −2.02173e13 −2.55523
\(736\) 1.65909e12 0.208411
\(737\) 1.43772e13 1.79503
\(738\) 3.01996e12 0.374755
\(739\) 2.67055e12 0.329382 0.164691 0.986345i \(-0.447337\pi\)
0.164691 + 0.986345i \(0.447337\pi\)
\(740\) −4.25329e12 −0.521414
\(741\) 0 0
\(742\) −1.95837e10 −0.00237179
\(743\) −1.70018e12 −0.204666 −0.102333 0.994750i \(-0.532631\pi\)
−0.102333 + 0.994750i \(0.532631\pi\)
\(744\) 1.26579e12 0.151455
\(745\) 1.42455e13 1.69424
\(746\) 3.91006e12 0.462231
\(747\) 2.11518e13 2.48545
\(748\) 1.02208e13 1.19378
\(749\) 1.17216e11 0.0136087
\(750\) −3.09787e12 −0.357509
\(751\) 7.55427e12 0.866588 0.433294 0.901253i \(-0.357351\pi\)
0.433294 + 0.901253i \(0.357351\pi\)
\(752\) −7.81460e11 −0.0891100
\(753\) −1.52702e13 −1.73088
\(754\) 0 0
\(755\) 1.54823e13 1.73411
\(756\) −3.89733e11 −0.0433929
\(757\) −5.47470e12 −0.605939 −0.302970 0.953000i \(-0.597978\pi\)
−0.302970 + 0.953000i \(0.597978\pi\)
\(758\) 1.58805e12 0.174724
\(759\) 3.38832e13 3.70592
\(760\) 5.51312e12 0.599427
\(761\) −2.70489e12 −0.292361 −0.146180 0.989258i \(-0.546698\pi\)
−0.146180 + 0.989258i \(0.546698\pi\)
\(762\) −1.01913e13 −1.09504
\(763\) 1.27039e11 0.0135699
\(764\) −3.81263e12 −0.404860
\(765\) −3.66226e13 −3.86610
\(766\) 1.08370e13 1.13731
\(767\) 0 0
\(768\) 1.04139e12 0.108015
\(769\) −1.13975e13 −1.17528 −0.587640 0.809123i \(-0.699943\pi\)
−0.587640 + 0.809123i \(0.699943\pi\)
\(770\) −9.46312e11 −0.0970122
\(771\) −8.59438e12 −0.875931
\(772\) −9.08008e11 −0.0920051
\(773\) 4.56053e12 0.459417 0.229709 0.973259i \(-0.426223\pi\)
0.229709 + 0.973259i \(0.426223\pi\)
\(774\) −1.77050e13 −1.77322
\(775\) −2.98059e12 −0.296787
\(776\) 3.00217e12 0.297206
\(777\) 6.28578e11 0.0618678
\(778\) 1.30293e13 1.27501
\(779\) 3.13581e12 0.305092
\(780\) 0 0
\(781\) −3.38084e12 −0.325158
\(782\) −1.14438e13 −1.09431
\(783\) 1.37838e13 1.31052
\(784\) −2.63777e12 −0.249353
\(785\) −1.38101e13 −1.29803
\(786\) −2.00292e13 −1.87181
\(787\) −1.13068e13 −1.05064 −0.525318 0.850906i \(-0.676054\pi\)
−0.525318 + 0.850906i \(0.676054\pi\)
\(788\) −4.44493e12 −0.410674
\(789\) 1.56953e13 1.44186
\(790\) 4.41898e12 0.403645
\(791\) −1.81981e10 −0.00165284
\(792\) 1.41474e13 1.27765
\(793\) 0 0
\(794\) −8.14046e12 −0.726870
\(795\) −1.90197e12 −0.168870
\(796\) 9.63268e11 0.0850429
\(797\) 2.07792e13 1.82418 0.912088 0.409994i \(-0.134469\pi\)
0.912088 + 0.409994i \(0.134469\pi\)
\(798\) −8.14763e11 −0.0711243
\(799\) 5.39023e12 0.467893
\(800\) −2.45218e12 −0.211664
\(801\) −3.36064e13 −2.88453
\(802\) 8.26195e12 0.705177
\(803\) 3.46496e13 2.94088
\(804\) −1.01042e13 −0.852808
\(805\) 1.05955e12 0.0889285
\(806\) 0 0
\(807\) 2.66031e13 2.20801
\(808\) −8.07299e11 −0.0666320
\(809\) 1.62520e13 1.33395 0.666974 0.745081i \(-0.267589\pi\)
0.666974 + 0.745081i \(0.267589\pi\)
\(810\) −1.23368e13 −1.00698
\(811\) −1.58175e13 −1.28394 −0.641969 0.766730i \(-0.721882\pi\)
−0.641969 + 0.766730i \(0.721882\pi\)
\(812\) −2.42191e11 −0.0195504
\(813\) −2.09712e13 −1.68351
\(814\) −1.13332e13 −0.904780
\(815\) −3.08320e13 −2.44790
\(816\) −7.18310e12 −0.567161
\(817\) −1.83842e13 −1.44359
\(818\) −4.19666e12 −0.327728
\(819\) 0 0
\(820\) −2.55966e12 −0.197706
\(821\) 2.02338e13 1.55430 0.777149 0.629317i \(-0.216665\pi\)
0.777149 + 0.629317i \(0.216665\pi\)
\(822\) −1.40687e13 −1.07481
\(823\) 1.31293e13 0.997565 0.498782 0.866727i \(-0.333781\pi\)
0.498782 + 0.866727i \(0.333781\pi\)
\(824\) 2.05013e11 0.0154920
\(825\) −5.00803e13 −3.76378
\(826\) −1.17183e11 −0.00875897
\(827\) 6.91456e12 0.514032 0.257016 0.966407i \(-0.417261\pi\)
0.257016 + 0.966407i \(0.417261\pi\)
\(828\) −1.58403e13 −1.17119
\(829\) −2.56314e13 −1.88485 −0.942426 0.334414i \(-0.891462\pi\)
−0.942426 + 0.334414i \(0.891462\pi\)
\(830\) −1.79278e13 −1.31122
\(831\) −1.88501e13 −1.37122
\(832\) 0 0
\(833\) 1.81944e13 1.30929
\(834\) −3.29228e12 −0.235641
\(835\) 2.04386e13 1.45500
\(836\) 1.46901e13 1.04015
\(837\) −6.00261e12 −0.422742
\(838\) 5.12532e11 0.0359023
\(839\) 9.91399e12 0.690748 0.345374 0.938465i \(-0.387752\pi\)
0.345374 + 0.938465i \(0.387752\pi\)
\(840\) 6.65064e11 0.0460900
\(841\) −5.94148e12 −0.409555
\(842\) −4.38077e11 −0.0300363
\(843\) 2.28430e13 1.55786
\(844\) −1.10738e13 −0.751201
\(845\) 0 0
\(846\) 7.46107e12 0.500765
\(847\) −1.75931e12 −0.117454
\(848\) −2.48152e11 −0.0164792
\(849\) −4.31515e13 −2.85044
\(850\) 1.69143e13 1.11139
\(851\) 1.26894e13 0.829388
\(852\) 2.37604e12 0.154481
\(853\) −1.42759e13 −0.923280 −0.461640 0.887067i \(-0.652739\pi\)
−0.461640 + 0.887067i \(0.652739\pi\)
\(854\) 1.06496e11 0.00685130
\(855\) −5.26371e13 −3.36856
\(856\) 1.48528e12 0.0945534
\(857\) 2.99825e12 0.189869 0.0949344 0.995484i \(-0.469736\pi\)
0.0949344 + 0.995484i \(0.469736\pi\)
\(858\) 0 0
\(859\) 7.23194e12 0.453196 0.226598 0.973988i \(-0.427240\pi\)
0.226598 + 0.973988i \(0.427240\pi\)
\(860\) 1.50064e13 0.935478
\(861\) 3.78282e11 0.0234586
\(862\) −5.17603e12 −0.319311
\(863\) 2.46804e13 1.51462 0.757311 0.653054i \(-0.226513\pi\)
0.757311 + 0.653054i \(0.226513\pi\)
\(864\) −4.93844e12 −0.301493
\(865\) 4.21101e13 2.55749
\(866\) 1.37481e13 0.830640
\(867\) 2.07929e13 1.24977
\(868\) 1.05470e11 0.00630650
\(869\) 1.17747e13 0.700423
\(870\) −2.35216e13 −1.39197
\(871\) 0 0
\(872\) 1.60975e12 0.0942833
\(873\) −2.86635e13 −1.67019
\(874\) −1.64480e13 −0.953480
\(875\) −2.58124e11 −0.0148865
\(876\) −2.43516e13 −1.39720
\(877\) −8.23060e12 −0.469822 −0.234911 0.972017i \(-0.575480\pi\)
−0.234911 + 0.972017i \(0.575480\pi\)
\(878\) −1.14974e13 −0.652942
\(879\) 1.65375e13 0.934373
\(880\) −1.19911e13 −0.674040
\(881\) 1.17358e13 0.656330 0.328165 0.944620i \(-0.393570\pi\)
0.328165 + 0.944620i \(0.393570\pi\)
\(882\) 2.51843e13 1.40127
\(883\) −1.84130e13 −1.01930 −0.509649 0.860382i \(-0.670225\pi\)
−0.509649 + 0.860382i \(0.670225\pi\)
\(884\) 0 0
\(885\) −1.13808e13 −0.623632
\(886\) −3.39586e12 −0.185139
\(887\) −2.39771e13 −1.30059 −0.650294 0.759682i \(-0.725354\pi\)
−0.650294 + 0.759682i \(0.725354\pi\)
\(888\) 7.96493e12 0.429857
\(889\) −8.49167e11 −0.0455969
\(890\) 2.84841e13 1.52176
\(891\) −3.28723e13 −1.74735
\(892\) 8.41449e12 0.445027
\(893\) 7.74728e12 0.407678
\(894\) −2.66768e13 −1.39674
\(895\) −1.89211e13 −0.985697
\(896\) 8.67715e10 0.00449770
\(897\) 0 0
\(898\) −1.43643e13 −0.737125
\(899\) −3.73019e12 −0.190464
\(900\) 2.34124e13 1.18948
\(901\) 1.71166e12 0.0865279
\(902\) −6.82040e12 −0.343068
\(903\) −2.21774e12 −0.110998
\(904\) −2.30594e11 −0.0114839
\(905\) 5.33766e13 2.64504
\(906\) −2.89930e13 −1.42961
\(907\) −5.21702e12 −0.255971 −0.127985 0.991776i \(-0.540851\pi\)
−0.127985 + 0.991776i \(0.540851\pi\)
\(908\) −1.77053e13 −0.864404
\(909\) 7.70777e12 0.374448
\(910\) 0 0
\(911\) −2.45077e13 −1.17888 −0.589441 0.807811i \(-0.700652\pi\)
−0.589441 + 0.807811i \(0.700652\pi\)
\(912\) −1.03241e13 −0.494171
\(913\) −4.77701e13 −2.27529
\(914\) 1.82561e13 0.865268
\(915\) 1.03429e13 0.487807
\(916\) 8.63117e12 0.405079
\(917\) −1.66890e12 −0.0779413
\(918\) 3.40636e13 1.58306
\(919\) −2.88261e13 −1.33311 −0.666554 0.745456i \(-0.732232\pi\)
−0.666554 + 0.745456i \(0.732232\pi\)
\(920\) 1.34260e13 0.617874
\(921\) 3.35716e13 1.53746
\(922\) −1.26285e13 −0.575521
\(923\) 0 0
\(924\) 1.77211e12 0.0799774
\(925\) −1.87553e13 −0.842336
\(926\) −1.15818e13 −0.517639
\(927\) −1.95738e12 −0.0870596
\(928\) −3.06888e12 −0.135836
\(929\) 1.24962e13 0.550435 0.275218 0.961382i \(-0.411250\pi\)
0.275218 + 0.961382i \(0.411250\pi\)
\(930\) 1.02432e13 0.449018
\(931\) 2.61504e13 1.14079
\(932\) −3.04522e12 −0.132205
\(933\) −5.86342e13 −2.53328
\(934\) 1.06009e13 0.455806
\(935\) 8.27100e13 3.53921
\(936\) 0 0
\(937\) 4.48550e13 1.90100 0.950501 0.310722i \(-0.100571\pi\)
0.950501 + 0.310722i \(0.100571\pi\)
\(938\) −8.41916e11 −0.0355104
\(939\) 5.42461e13 2.27706
\(940\) −6.32385e12 −0.264184
\(941\) 2.65409e13 1.10348 0.551738 0.834017i \(-0.313965\pi\)
0.551738 + 0.834017i \(0.313965\pi\)
\(942\) 2.58615e13 1.07010
\(943\) 7.63656e12 0.314481
\(944\) −1.48486e12 −0.0608572
\(945\) −3.15386e12 −0.128647
\(946\) 3.99856e13 1.62328
\(947\) −2.62042e13 −1.05875 −0.529377 0.848387i \(-0.677574\pi\)
−0.529377 + 0.848387i \(0.677574\pi\)
\(948\) −8.27520e12 −0.332768
\(949\) 0 0
\(950\) 2.43106e13 0.968364
\(951\) 1.63209e13 0.647041
\(952\) −5.98518e11 −0.0236163
\(953\) 2.20756e13 0.866950 0.433475 0.901166i \(-0.357287\pi\)
0.433475 + 0.901166i \(0.357287\pi\)
\(954\) 2.36925e12 0.0926070
\(955\) −3.08532e13 −1.20029
\(956\) −4.04231e12 −0.156520
\(957\) −6.26751e13 −2.41541
\(958\) 3.60122e13 1.38135
\(959\) −1.17225e12 −0.0447545
\(960\) 8.42726e12 0.320233
\(961\) −2.48152e13 −0.938561
\(962\) 0 0
\(963\) −1.41809e13 −0.531355
\(964\) −5.65336e12 −0.210843
\(965\) −7.34793e12 −0.272767
\(966\) −1.98417e12 −0.0733132
\(967\) −1.80518e13 −0.663898 −0.331949 0.943297i \(-0.607706\pi\)
−0.331949 + 0.943297i \(0.607706\pi\)
\(968\) −2.22929e13 −0.816070
\(969\) 7.12122e13 2.59476
\(970\) 2.42946e13 0.881126
\(971\) −1.61183e13 −0.581879 −0.290940 0.956741i \(-0.593968\pi\)
−0.290940 + 0.956741i \(0.593968\pi\)
\(972\) −6.28757e11 −0.0225936
\(973\) −2.74323e11 −0.00981194
\(974\) 7.66387e12 0.272856
\(975\) 0 0
\(976\) 1.34945e12 0.0476028
\(977\) 3.09179e13 1.08564 0.542818 0.839850i \(-0.317357\pi\)
0.542818 + 0.839850i \(0.317357\pi\)
\(978\) 5.77376e13 2.01806
\(979\) 7.58979e13 2.64063
\(980\) −2.13457e13 −0.739255
\(981\) −1.53693e13 −0.529837
\(982\) 2.29774e11 0.00788496
\(983\) −1.01227e13 −0.345784 −0.172892 0.984941i \(-0.555311\pi\)
−0.172892 + 0.984941i \(0.555311\pi\)
\(984\) 4.79335e12 0.162990
\(985\) −3.59700e13 −1.21752
\(986\) 2.11681e13 0.713239
\(987\) 9.34577e11 0.0313464
\(988\) 0 0
\(989\) −4.47705e13 −1.48802
\(990\) 1.14486e14 3.78786
\(991\) 7.78955e12 0.256555 0.128278 0.991738i \(-0.459055\pi\)
0.128278 + 0.991738i \(0.459055\pi\)
\(992\) 1.33644e12 0.0438175
\(993\) −3.16606e12 −0.103335
\(994\) 1.97979e11 0.00643251
\(995\) 7.79511e12 0.252126
\(996\) 3.35726e13 1.08098
\(997\) 4.46662e12 0.143170 0.0715849 0.997435i \(-0.477194\pi\)
0.0715849 + 0.997435i \(0.477194\pi\)
\(998\) 1.90547e12 0.0608014
\(999\) −3.77712e13 −1.19982
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.k.1.6 6
13.4 even 6 26.10.c.b.3.1 12
13.10 even 6 26.10.c.b.9.1 yes 12
13.12 even 2 338.10.a.l.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.c.b.3.1 12 13.4 even 6
26.10.c.b.9.1 yes 12 13.10 even 6
338.10.a.k.1.6 6 1.1 even 1 trivial
338.10.a.l.1.6 6 13.12 even 2